Delay and Accessibility in Random Temporal Networks

2nd Symposium on Spatial Networks

Shahriar Etemadi Tajbakhsh

September 13, 2017

Outline

- Accessibility in Deterministic Static and Temporal Networks
- Accessibility in Random Temporal Networks: Problem Definition
- Exact Method: Erdös-Rényi Random Temporal Networks
- Upper Bound for General Random Temporal Networks
- Lower Bound I: Clique Search
- Lower Bound II: Edge-Disjoint Path Selection
- Discretization of Continuous ON-OFF Distributions
- Numerical Experiments on Synthetic Networks
- Numerical Experiments on Real World Data
- Current Research : Accessibility in Spatio-Temporal Networks

Accessibility in Deterministic Static and Temporal Networks

Static Networks

Defined be adjacency matrix \mathbf{A}. $\left(\mathbf{A}^{n}\right)_{i j}$ gives the number of paths of length n or less between vertices i and j.
Accessibility matrix $\mathcal{P}(n)$ in n steps is defined as follows.
$\mathcal{P}_{i j}(n)=\left\{\begin{array}{ll}1 & \text { if }\left(\mathbf{A}^{n}\right)_{i j}>0 \\ 0 & \text { if }\left(\mathbf{A}^{n}\right)_{i j}=0\end{array}\right.$.
Temporal Networks
Defined by a sequence of adjacency matrices $\mathbf{A}_{1}, \ldots, \mathbf{A}_{T}$ over T time slots. Matrix $\mathcal{C}_{T}=\prod_{i=1}^{T}\left(\mathbf{1}+\mathbf{A}_{i}\right)$ gives the total number of temporal paths between any two vertices.
Accessibility matrix $\mathcal{P}(n)$ in n steps is defined as follows.
$\mathcal{P}_{i j}(n)=\left\{\begin{array}{ll}1 & \text { if }\left(\mathcal{C}_{T}\right)_{i j}>0 \\ 0 & \text { if }\left(\mathcal{C}_{T}\right)_{i j}=0\end{array}\right.$.

Accessibility in Deterministic Static and Temporal Networks (Cont'd)

$t=1$

$t=2$

Accessibility Graph

Figure: Temporal Networks

Accessibility in Random Temporal Networks: Problem Definition

- The set vertices $V=\{1, \ldots, N\}$.
- Discrete time slots $T=1,2, \ldots$
- Probability of an edge between i and j at time $t: p_{i j}(T)$.
- If an edge exists between i and $j, e_{T}(i, j)=1$, otherwise $e_{i j}(T)=0$.
- A temporal path between i and j by time T : $A_{m}^{i j}(T)=v_{m}^{i j}(0) \ldots v_{m}^{i j}(T)\left(\right.$ where $v_{m}^{i j}(0)=i, v_{m} i j(T)=j$ and $\left.v_{m}^{i j}(t) \in\{1, \ldots, N\}, \forall t \in\{1, \ldots, T-1\}\right)$.
- All paths from i to $j: A^{i j}(T)=\left\{A_{1}^{i j}(T), \ldots, A_{M(T)}^{i j}(T)\right\}$.
- Temporal path from i to j with $v_{m}^{i j}(T-1)=\ell: B_{m}^{i \ell j}(T)$.
- $B^{i \ell j}(T)=\left\{B_{1}^{i \ell j}, \ldots, B_{M(T)}^{i \ell j}\right\}$.
- Enumerator of paths $1 \leqslant m \leqslant M(T)=N^{T-1}$

Accessibility in Random Temporal Networks: Problem Definition (Cont'd)

Open Path

A temporal path between i and j by time T denoted by $A_{m}^{i j}(T)=v_{m}^{i j}(0) \ldots v_{m}^{i j}(T)\left(\right.$ where $v_{m}^{i j}(0)=i, v_{m} i j(T)=j$ and $\left.v_{m}^{i j}(t) \in\{1, \ldots, N\}\right)$, is defined to be open if for any two successive pair of distinct vertices $e_{T}\left(v_{m}^{i j}(t) v_{m}^{i j}(t+1)\right)=1$.

Objective
Our goal is to find $P(i \stackrel{T}{\hookrightarrow} j)$ (or a bound for it), where $P(i \stackrel{T}{\leftrightarrows} j)$ is the probability of at least one open temporal path between vertices i and j.

Exact Method: Erdös-Rényi Random Temporal Networks

- We assume $p_{i j}(T)=p(T), \forall i, j \in V$
- We start from vertex i to visit other vertices. Any vertex u at time $t=1$ is labeled as visited if $e_{1}(i, u)=1$.
- The set of visited vertices at time $T: \omega(T)$.
- The set of all vertices visited from $t=1$ to $t=T$: $W(T)$.
- A vertex is labeled as visited in time T if there exist an edge between any the vertices in $W(T-1)$.
- $W(T+1)=W(T) \cup \omega(T)$.

Exact Method (Cont'd)

Calculation of $P(i \stackrel{T}{\leftrightarrow} j)$
We have $|\omega(1)| \sim B(N, p(1))$ and
$|\omega(T)| \sim B\left(N, 1-\left(1-p(T)^{|W(T-1)|}\right)\right)$. Thefore we can conclude that:

$$
\begin{gathered}
P(|W(T)|=k)= \\
\sum_{\ell=0}^{k} P(|W(T-1)|=\ell)\binom{N-\ell}{k-\ell}\left(1-(1-p(T))^{\ell}\right)^{k-\ell}(1-p(T))^{N-k} \\
\Rightarrow P(i \stackrel{T}{\leftrightarrow} j)=P(j \in W(T))= \\
\sum_{\ell=1}^{N} P(j \in W(T)| | W(T) \mid=\ell) P(\mid W(T)=\ell)= \\
\frac{\ell}{N-1} P(|W(T)|=\ell)
\end{gathered}
$$

Exact Method (Cont'd)

Figure: Node j has not been visited by time t. In time slot $t+1$ node j falls into the set of nodes labeled as visited.

Upper Bound for General Random Temporal Networks

Definition

A family \mathcal{A} of subsets of $K=\{1, \ldots, k\}$ is monotone decreasing if $A \in \mathcal{A}$ and $A^{\prime} \subseteq A \Rightarrow A^{\prime} \in \mathcal{A}$. Similarly, it is monotone increasing if $A \in \mathcal{A}$ and $A \subseteq A^{\prime} \Rightarrow A^{\prime} \in \mathcal{A}$.

FKG-Harris Inequality
Let \mathcal{A} and \mathcal{B} be two monotone increasing families of subsets of K and let \mathcal{C} and \mathcal{D} be two monotone decreasing families of subsets of K. Then for any real vector $p=\left(p_{1}, \ldots, p_{k}\right), 0 \leqslant p_{i} \leqslant p_{k}$

$$
\begin{aligned}
& P_{r_{p}}(\mathcal{A} \cap \mathcal{B}) \geqslant P_{r_{p}}(\mathcal{A}) \cdot P_{r_{p}}(\mathcal{B}) \\
& P_{r_{p}}(\mathcal{C} \cap \mathcal{D}) \geqslant P_{r_{p}}(\mathcal{C}) \cdot P_{r_{p}}(\mathcal{D}) \\
& P_{r_{p}}(\mathcal{A} \cap \mathcal{C}) \leqslant P_{r_{p}}(\mathcal{A}) \cdot P_{r_{p}}(\mathcal{C})
\end{aligned}
$$

Upper Bound (Cont'd):

Definition

$$
\alpha_{i j}(T)=1-\prod_{\ell=1}^{N}\left(1-\alpha_{i \ell}(T) p_{\ell j}(T+1)\right), \alpha_{i j}(1)=p_{i j}(1)
$$

Theorem
$P(i \stackrel{T}{\leftrightarrows} j) \leqslant \alpha_{i j}(T)$, for all $(i, j) \in V \times V$ and any positive integer $T \geqslant 1$.

Proof
Induction: $T=1: \alpha_{i j}(1)=p_{i j}(1) \sqrt{ }$
$P(i \stackrel{T}{\longleftrightarrow} j) \leq \alpha_{i j}(T) \Rightarrow P(i \stackrel{T+1}{\longleftrightarrow} j) \leq \alpha_{i j}(T+1)$.

$$
P(i \stackrel{T}{\hookrightarrow} j)=P\left(\bigcup_{m=1}^{M(T)} A_{m}^{i \ell}(T)\right) \leqslant \alpha_{i j}(T) \Rightarrow
$$

Upper Bound (Cont'd)

Proof (Cont'd)

$$
\begin{aligned}
& P\left(\bigcup_{m=1}^{M(T)} A_{m}^{i \ell}(T)\right) p_{\ell j}(T+1)=P\left(\left[\bigcup_{m=1}^{M(T)} A_{m}^{i \ell}(T)\right] \cap\{\ell j\}\right)= \\
& P\left(\bigcup_{m=1}^{M(T)}\left(A_{m}^{i \ell}(T) \cap \ell j\right) \Rightarrow P\left(\bigcup_{m=1}^{M(T)} B_{m}^{i \ell j}(T+1)\right) \leqslant \alpha_{i \ell}(T) p_{\ell j}(T+1)\right. \\
& \Rightarrow P\left(\bigcap_{m=1}^{M(T)} \bar{B}_{m}^{i \ell j}(T+1)\right) \geqslant 1-\alpha_{i \ell} p_{\ell j}(T+1) \\
& \xlongequal{F K G} P\left(\bigcup_{m=1}^{M(T+1)} A_{m}^{i j}(T+1)=P\left(\bigcup_{\ell=1}^{N}\left(\bigcup_{m=1}^{M(T+1)} B_{m}^{i \ell j}(T+1)\right) \leqslant\right.\right. \\
& 1-\prod_{\ell=1}^{N} P\left(\bigcap_{m=1}^{M(T)} \bar{B}_{m}^{i \ell j}(T+1)\right) \leqslant 1-\prod_{\ell=1}^{N}\left(1-\alpha_{i \ell}(T) p_{\ell j}(T+1)\right) \\
& \\
& =\alpha_{i j}(T+1)
\end{aligned}
$$

Lower Bound I

Algorithm

- We form the the probability matrix \mathcal{M} where $\mathcal{M}_{i j}=\min _{t}\left\{p_{i j}(t)\right\}, \forall t=1, \ldots, T$.
- Define a set of thresholds $S=\left\{p_{1}, \ldots, p_{|S|}\right\}$.
- For $\ell=1: N(N-1)$

$$
\text { Form } G^{\ell} \text { as follows. }
$$

$$
G_{i j}^{\ell}=\left\{\begin{array}{ll}
1 & \text { if } \mathcal{M}_{i j}>p_{\ell} \\
0 & \text { if } \mathcal{M}_{i j}<p_{\ell}
\end{array} .\right.
$$

Find the maximum clique in G^{ℓ}. Denote the size of clique by N_{ℓ}.
Apply Exact Method for a network with fixed probability p_{ℓ} and size N_{ℓ}. Denote the probability with $P(\ell)$.
End

- $P_{L}=\max _{\ell}\{P(\ell)\}$

Lower Bound I (Cont'd)

Figure: Lower Bound I: Searching for a clique based on a given threshold $p_{\min }=0.5$. The triplet on each edge represents the probabilities of links' be open in time slots $t=1, t=2$ and $t=3$.

Lower Bound II

Edge Disjoint Paths

Fact: Any two edge disjoint paths are independent of each other.
\Rightarrow Any set of disjoint paths gives a lower bound on the $P(i \stackrel{T}{\longleftrightarrow} j)$. If denote the set of edge disjoint paths by R_{1}, \ldots, R_{d}, then we have $P(i \stackrel{T}{\leftrightarrows} j) \geq 1-\prod_{k=1}^{d} P\left(R_{k}\right)$.

Probability of a Path

Suppose $R_{k}=e_{r_{1}}^{k} \ldots, e_{r_{L_{k}}}^{i}$.
$p_{\text {min }}^{k}=\min _{l \in\left\{1, \ldots, L_{k}\right\}}\left\{\mathcal{M}_{e_{r_{l}} e_{r_{1+1}}}\right\}$. quality of a path:
$P\left(R_{k}\right) \geqslant 1-\sum_{m=1}^{L_{k}-1}\binom{T}{j}\left(1-p_{\text {min }}\right)^{T-m} p_{\text {min }}^{m}=f\left(R_{k}\right)$
The objective would be to find a set of high quality paths between an origin I and a destination J.

Lower Bound II (Cont'd)

Figure: Comparing two paths $R_{a}=I, K, J$ and $R_{b}=I, K, L, J$ based on their quality, $f\left(R_{a}(10)\right)=0.26$ (on the left) and $f\left(R_{b}(10)\right)=0.98$ (on the right).

Quantization of Continuous Probability Distributions of ON-OFF Periods

Figure: Different possibilities (events) based on starting from ON or OFF position for a given edge.

Quantization of Continuous Probability Distributions of ON-OFF Periods

Problem Formulation

If we are given the probability distributions of the ON and OFF periods (for a specific link) denoted by $f_{O N}(\tau)$ and $f_{\text {OFF }}(\tau)$ and also the probability of starting from ON position, we can obtain the probability of being in ON position (denoted by $S W=1$, and $S W=0$ for OFF) at time t_{0} which is obtained as follows.
$P(S W=1)=p 0 \sum_{i=0}^{\infty} \int_{0}^{t_{0}} f_{S_{i}}$ ov $(s)\left(1-F_{O N}(t 0-s)\right) d s+$
$\left(1-p_{0}\right) \sum_{i=0}^{\infty} \int_{0}^{t_{0}} f_{s_{i}^{O F F}}(s)\left(1-F_{O N}(t 0-s)\right) d s$
$f_{S_{i} O N}(s)= \begin{cases}1 & \text { if } i=0 \\ \underbrace{f_{O N} * \cdots * f_{O N} * \underbrace{* f_{\text {OFF }} \cdots * f_{\text {OFF }}}_{i}}_{i} & \text { if } i>0 .\end{cases}$
$f_{S_{i} \text { OFF }}(s)=\underbrace{f_{\text {ON }} * \cdots * f_{\text {ON }}}_{i} \underbrace{* f_{\text {OFF }} \cdots * f_{\text {OFF }}}_{i+1}$

Numerical Experiments: Synthetic Networks

Figure: Probability of accessibility between two (randomly selected) nodes in a network with $N=20$ nodes. The probability of each edge is uniformly selected from the range $[0.05,1]$ and remains constant during the observation window of 16 time slots.

Numerical Experiments: Synthetic Networks (Cont'd)

Figure: Probability of accessibility between two randomly selected nodes for the partially connected network. In this network of $N=20$ nodes a fraction $\alpha=0.5$ of the edges are assumed to be open with a fixed probability $p=0.1$ and the rest of edges will not be open at any time.

Numerical Experiments: Synthetic Networks (Cont'd)

Figure: Comparison between the upper bound and Monte-Carlo simulations of the probability of accessibility for 40 randomly selected pairs in four time slots, $t=2, t=4, t=6$ and $t=8$

Numerical Experiments: Synthetic Networks (Cont'd

$$
\pi\left(D_{i \rightarrow j}\right)=\frac{d P(i \stackrel{t}{\rightarrow} j)}{d t}
$$

Figure: Accessibility delay distribution (for the experiment setting of Fig. 6). Such delay is defined as the elapsed time for a node j to become accessible from i for the first time (for uniform probabilities of edges).

Numerical Experiments: Synthetic Networks(Cont'd)

$$
\pi\left(D_{i \rightarrow j}\right)=\frac{d P(i \stackrel{t}{\rightarrow} j)}{d t}
$$

Figure: Accessibility delay distribution (for the partially connected network setting experiment in Fig. 7.)

Numerical Experiments: Synthetic Networks(Cont'd)

Figure: Comparing probability of an edge existing between two specific nodes (randomly selected) obtained from simulations and ON-OFF analytical model for exponentially distributed ON-OFF periods

Numerical Experiments: Real World Data

Figure: Comparing the expected delay derived from the upper-bound and estimated edge probabilities over the training phase, and the average delay from the 10 experiments. Due to the relatively small size of the dataset and possibility of unexpected events (e.g absence of a vehicle from the network) a few points of discrepancy are not surprising.

Numerical Experiments: Real World Data (Cont'd)

Figure: Pearson's correlation coefficient between the predicted probabilities of accessibility and the empirically estimated values.

Current Research: Accessibility in Spatio-Temporal Networks

Figure: Two-hop connectivity in a random spatio-temporal network PPP with parameter λ. We assume $p_{i j}(t)=e^{-r_{i j}^{2}}$

- $T=1: \quad P(1 \stackrel{1}{\leftrightarrow} 2)=p_{12}(1)=e^{-d^{2}}$
- $T=2: \quad P(1 \stackrel{2}{\leftrightarrow} 2)=1-p_{12}^{2}(1) \exp \left[\frac{-\pi \lambda}{2} e^{-\frac{1}{2} d^{2}}\right]$ (D. Hedges, et al., 2017)
- $T=3$:
$P(1 \stackrel{2}{\leftrightarrow} 2)=1-[1-P(1 \stackrel{2}{\leftrightarrow} 2)] \mathbb{E}\left[\prod_{\ell \in \Phi}\left(1-\alpha_{i \ell}(2) p_{\ell j}(3)\right)\right]$ where $\alpha_{i \ell}(2)=P(i \stackrel{2}{\leftrightarrow} \ell)$.

