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Accessibility in Deterministic Static and Temporal
Networks

Static Networks
Defined be adjacency matrix A. �An�ij gives the number of paths
of length n or less between vertices i and j .
Accessibility matrix P�n� in n steps is defined as follows.

Pij�n� � v 1 if �An�ij % 0
0 if �An�ij � 0

.

Temporal Networks

Defined by a sequence of adjacency matrices A1, . . . ,AT over T
time slots. Matrix CT �4T

i�1�1 � Ai� gives the total number of
temporal paths between any two vertices.
Accessibility matrix P�n� in n steps is defined as follows.

Pij�n� � v 1 if �CT �ij % 0
0 if �CT �ij � 0

.



Accessibility in Deterministic Static and Temporal
Networks (Cont’d)
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Accessibility in Random Temporal Networks: Problem
Definition

Z The set vertices V � r1, . . . ,Nx.

Z Discrete time slots T � 1, 2, . . .

Z Probability of an edge between i and j at time t: pij�T �.

Z If an edge exists between i and j , eT �i , j� � 1, otherwise
eij�T � � 0.

Z A temporal path between i and j by time T :
A
ij
m�T � � v

ij
m�0� . . . v ijm�T � (where v

ij
m�0� � i , vmij�T � � j and

v
ij
m�t� " r1, . . . ,Nx,¾t " r1, . . . ,T � 1x).

Z All paths from i to j : A
ij�T � � rAij

1�T �, . . . ,Aij

M�T ��T �x.

Z Temporal path from i to j with v
ij
m�T � 1� � `: B

i`j
m �T �.

Z B
i`j�T � � rB i`j

1 , . . . ,B
i`j

M�T �x.

Z Enumerator of paths 1 ( m ( M�T � � N
T�1



Accessibility in Random Temporal Networks: Problem
Definition (Cont’d)

Open Path

A temporal path between i and j by time T denoted by
A
ij
m�T � � v

ij
m�0� . . . v ijm�T � (where v

ij
m�0� � i , vmij�T � � j and

v
ij
m�t� " r1, . . . ,Nx), is defined to be open if for any two

successive pair of distinct vertices eT �v ijm�t�v ijm�t � 1�� � 1.

Objective

Our goal is to find P�i T
�� j� (or a bound for it), where P�i T

�� j�
is the probability of at least one open temporal path between
vertices i and j .



Exact Method : Erdös-Rényi Random Temporal Networks

Z We assume pij�T � � p�T �,¾i , j " V

Z We start from vertex i to visit other vertices. Any vertex u at
time t � 1 is labeled as visited if e1�i , u� � 1.

Z The set of visited vertices at time T : ω�T �.

Z The set of all vertices visited from t � 1 to t � T : W �T �.

Z A vertex is labeled as visited in time T if there exist an edge
between any the vertices in W �T � 1�.

Z W �T � 1� �W �T � < ω�T �.



Exact Method (Cont’d)

Calculation of P�i
T
�� j�

We have ¶ω�1�¶ � B�N, p�1�� and¶ω�T �¶ � B�N, 1 � �1 � p�T �¶W �T�1�¶��. Thefore we can
conclude that:

P�¶W �T �¶ � k� �
k

=
`�0

P�¶W �T � 1�¶ � `��N � `
k � `��1 � �1 � p�T ��`�k�`�1 � p�T ��N�k
� P�i T

�� j� � P�j "W �T �� �
N

=
`�1

P�j "W �T �»»»»»»¶W �T �¶ � `�P�¶W �T � � `� �
`

N � 1
P�¶W �T �¶ � `�



Exact Method (Cont’d)
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Figure: Node j has not been visited by time t. In time slot t � 1 node j
falls into the set of nodes labeled as visited.



Upper Bound for General Random Temporal Networks

Definition
A family A of subsets of K � r1, . . . , kx is monotone decreasing if
A " A and A

¬
N A� A

¬
" A. Similarly, it is monotone increasing

if A " A and A N A
¬
� A

¬
" A.

FKG-Harris Inequality

Let A and B be two monotone increasing families of subsets of K
and let C and D be two monotone decreasing families of subsets of
K . Then for any real vector p � �p1, . . . , pk�, 0 ( pi ( pk

Prp�A = B� ) Prp�A�.Prp�B�
Prp�C =D� ) Prp�C�.Prp�D�
Prp�A = C� ( Prp�A�.Prp�C�



Upper Bound (Cont’d):

Definition

αij�T � � 1 �
N

5
`�1

�1 � αi`�T �p`j�T � 1��, αij�1� � pij�1�

Theorem
P�i T
�� j� ( αij�T �, for all �i , j� " V � V and any positive integer

T ) 1.

Proof
Induction: T � 1 � αij�1� � pij�1�³
P�i T
�� j� & αij�T �� P�i T�1

���� j� & αij�T � 1�.

P�i T
�� j� � P�M�T �

�
m�1

A
i`
m�T �� ( αij�T ��



Upper Bound (Cont’d)

Proof (Cont’d)

P�M�T �

�
m�1

A
i`
m�T ��p`j�T � 1� � P��M�T �

�
m�1

A
i`
m�T �� = r`jx� �

P�M�T �

�
m�1

�Ai`
m�T � = `j�� P�M�T �

�
m�1

B
i`j
m �T � 1�� ( αi`�T �p`j�T � 1�

� P�M�T �

�
m�1

B
i`j
m �T � 1�� ) 1 � αi`p`j�T � 1�

FKG
���� P�M�T�1�

�
m�1

A
ij
m�T � 1� � P� N

�
`�1

�M�T�1�

�
m�1

B
i`j
m �T � 1�� (

1 �
N

5
`�1

P�M�T �

�
m�1

B
i`j
m �T � 1�� ( 1 �

N

5
`�1

�1 � αi`�T �p`j�T � 1��
� αij�T � 1�



Lower Bound I

Algorithm

Z We form the the probability matrix M where
Mij � mintrpij�t�x,¾t � 1, . . . ,T .

Z Define a set of thresholds S � rp1, . . . , p¶S¶x.

Z For ` � 1 � N�N � 1�
Form G

`
as follows.

G
`
ij � v 1 if Mij % p`

0 if Mij $ p`
.

Find the maximum clique in G
`
. Denote the size of clique by

N`.
Apply Exact Method for a network with fixed probability p`
and size N`. Denote the probability with P�`�.
End

Z PL � max`rP�`�x



Lower Bound I (Cont’d)
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Figure: Lower Bound I: Searching for a clique based on a given threshold
pmin � 0.5. The triplet on each edge represents the probabilities of links’
be open in time slots t � 1, t � 2 and t � 3.



Lower Bound II

Edge Disjoint Paths

Fact: Any two edge disjoint paths are independent of each other.

� Any set of disjoint paths gives a lower bound on the P�i T
�� j�.

If denote the set of edge disjoint paths by R1, . . . ,Rd , then we

have P�i T
�� j� ' 1 �4d

k�1 P�Rk�.

Probability of a Path

Suppose Rk � e
k
r1
. . . , e

i
rLk

.

p
k
min � minl"r1,...,LkxrMerl erl�1

x.
quality of a path:

P�Rk� ) 1 �<Lk�1
m�1 �Tj ��1 � pmin�T�mpmmin � f �Rk�

The objective would be to find a set of high quality paths between
an origin I and a destination J.



Lower Bound II (Cont’d)
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Figure: Comparing two paths Ra � I ,K , J and Rb � I ,K , L, J based on
their quality, f �Ra�10�� � 0.26 (on the left) and f �Rb�10�� � 0.98 (on
the right).



Quantization of Continuous Probability Distributions of
ON-OFF Periods
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Figure: Different possibilities (events) based on starting from ON or OFF
position for a given edge.



Quantization of Continuous Probability Distributions of
ON-OFF Periods

Problem Formulation
If we are given the probability distributions of the ON and OFF
periods (for a specific link) denoted by fON�τ� and fOFF �τ� and
also the probability of starting from ON position , we can obtain
the probability of being in ON position (denoted by SW � 1, and
SW � 0 for OFF) at time t0 which is obtained as follows.

P�SW � 1� � p0<�i�0 D
t0

0 fSON
i

�s��1 � FON�t0 � s��ds�
�1 � p0�<�i�0 D

t0

0 fSOFF
i

�s��1 � FON�t0 � s��ds
fSON

i
�s� � ~��������

1 if i � 0
fON � � � � � fONÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

i

�fOFF � � � � fOFFÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
i

if i % 0 .

fSOFF
i

�s� � fON � � � � � fONÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
i

�fOFF � � � � fOFFÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
i�1



Numerical Experiments: Synthetic Networks
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Figure: Probability of accessibility between two (randomly selected) nodes
in a network with N � 20 nodes. The probability of each edge is
uniformly selected from the range [0.05, 1] and remains constant during
the observation window of 16 time slots.



Numerical Experiments: Synthetic Networks (Cont’d)
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Figure: Probability of accessibility between two randomly selected nodes
for the partially connected network. In this network of N � 20 nodes a
fraction α � 0.5 of the edges are assumed to be open with a fixed
probability p � 0.1 and the rest of edges will not be open at any time.



Numerical Experiments: Synthetic Networks (Cont’d)
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Figure: Comparison between the upper bound and Monte-Carlo
simulations of the probability of accessibility for 40 randomly selected
pairs in four time slots, t � 2, t � 4, t � 6 and t � 8



Numerical Experiments: Synthetic Networks (Cont’d

π�Di�j� � dP�i t
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Figure: Accessibility delay distribution (for the experiment setting of Fig.
6). Such delay is defined as the elapsed time for a node j to become
accessible from i for the first time (for uniform probabilities of edges).



Numerical Experiments: Synthetic Networks(Cont’d)
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Figure: Accessibility delay distribution (for the partially connected
network setting experiment in Fig. 7.)



Numerical Experiments: Synthetic Networks(Cont’d)
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Figure: Comparing probability of an edge existing between two specific
nodes (randomly selected) obtained from simulations and ON-OFF
analytical model for exponentially distributed ON-OFF periods



Numerical Experiments: Real World Data
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Figure: Comparing the expected delay derived from the upper-bound and
estimated edge probabilities over the training phase, and the average
delay from the 10 experiments. Due to the relatively small size of the
dataset and possibility of unexpected events (e.g absence of a vehicle
from the network) a few points of discrepancy are not surprising.



Numerical Experiments: Real World Data (Cont’d)
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Figure: Pearson’s correlation coefficient between the predicted
probabilities of accessibility and the empirically estimated values.



Current Research : Accessibility in Spatio-Temporal
Networks

1 2
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Figure: Two-hop connectivity in a random spatio-temporal network

PPP with parameter λ. We assume pij�t� � e
�r

2
ij

Z T � 1: P�1
1
�� 2� � p12�1� � e

�d
2

Z T � 2: P�1
2
�� 2� � 1� p

2
12�1�exp��πλ

2
e
�

1
2
d

2� (D. Hedges, et al., 2017)

Z T � 3:
P�1

2
�� 2� � 1 � �1 � P�1

2
�� 2��E�4`"Φ�1 � αi`�2�p`j�3���

where αi`�2� � P�i 2
�� `�.


