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Thermostats: Analysis and application
Gary P. Morriss
School of Physics, University of New South Wales, Sydney 2052 NSW, Australia
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Gaussian isokinetic and isoenergetic deterministic thermostats are reviewed in the correct historical
context with their later justification using Gauss’ principle of least constraint. The Nose´–Hoover
thermostat for simulating the canonical ensemble is also developed. For some model systems the
Lyapunov exponents satisfy the conjugate pairing rule and a Hamiltonian formulation is obtained.
We prove the conjugate pairing rule for nonequilibrium systems where the force is derivable from
a potential. The generalized symplectic structure and Hamiltonian formulation is discussed. The
application of such thermostats to the Lorentz gas is considered in some detail. The periodic orbit
expansion methods are used to calculate averages and to categorize the generic transitions in the
structure of the attractor. We prove that the conductivity in the nonequilibrium Lorentz gas is
non-negative. ©1998 American Institute of Physics.@S1054-1500~98!01602-4#
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Deterministic thermostats have been used extensively in
the molecular dynamics simulation of equilibrium and
nonequilibrium fluids for the last 15 years.1,2 Their use in
that context has seemed natural to many workers, but
those from different backgrounds have often treated
changes to the basic equations of motion with some sus
picion. Today with a much better understanding of un-
thermostated nonequilibrium systems,3 it is possible to
see thermostated systems in general as a different an
complimentary approach to the study of nonequilibrium
states. Here we review the development of the thermosta
approach from its beginnings to recent developments that
have revolutionized our understanding of nonequilibrium
systems.

I. INTRODUCTION

The fundamental question that is asked when study
nonequilibrium systems, in particular when calculating tra
port coefficients, is the following. Consider a single syst
or an ensemble of systems which are unperturbed initi
~see Fig. 1!. If a constant steady external field is applied~at
some arbitrary time origin!, what is the subsequent behavi
of the system or the ensemble? We may be interested in
transient response, or simply the steady-state response i
long time limit. Regardless of the details of the perturbati
the physical situation is the same. The applied external fi
does work on the system, and this work is converted to h
which must be removed to achieve a steady state. Deter
istic thermostats are a natural method to remove this he

In molecular-dynamics calculations it is almost univer
to use periodic boundary conditions. If the number of p
ticles in a fixed volume is small, that is significantly less th
1023, then the fraction of particles near a wall is similar
the fraction in the bulk, and the simulation results will n
reflect those of an infinite system. Periodic boundary con
3211054-1500/98/8(2)/321/16/$15.00
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tions minimize the effect of boundaries and allows the sim
lation of homogeneous systems. The homogeneity is part
larly useful as it means that it is easy to determine the s
point. If we consider a possible experimental setup then
system is maintained at fixed temperature by placing it
contact with a ‘‘large’’ heat reservoir. Clearly this introduce
boundary effects as the heat is transported from the p
where it is generated to the reservoir, and associated
this flow is a temperature gradient. Once a temperature
dient is produced there will be a density gradient to maint
mechanical stability, and it becomes difficult to determi
the state point to which the measured properties corresp

One of the first realizations for the thermostated syste
was that the method has some very important advantage
equilibrium molecular dynamics. The natural ensemble fo
system evolving under Newtonian equations of motion is o
where (N,V,E) are fixed. However, using a thermostat it
possible to simulate a canonical ensemble with (N,V,T)
fixed. Many other ensembles can also be simulated using
techniques developed for thermostats, including cons
pressure and constant enthalpy4 systems.

To use a deterministic thermostat to maintain const
temperature it is necessary to have a phase variable ex
sion for the instantaneous temperature. At equilibrium
can use the equipartition theorem to define the kinetic te
perature, so that

3

2
NkBT5

1

2 (
i 51

N

mivi
2. ~1!

The thermodynamic temperature can be defined using

1

T
5

]S

]EU
N,V

. ~2!

The identification of the temperature in the a microcanoni
ensemble has been considered recently.5
© 1998 American Institute of Physics
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The definition of the temperature away from equilibriu
is problematic. The kinetic and thermodynamic temperatu
would be the same if the postulate of local thermodynam
equilibrium was exact. However, we know that the ener
pressure, enthalpy, etc. are all functions of the thermo
namic forces which drive the system away from equilibriu
and so presumably is the entropy. It is extremely unlik
that the field dependence of the entropy and the energy
precisely those required for the exact equivalence of the
netic and thermodynamic temperatures for all nonequi
rium systems. The philosophy that is usually adopted is
the kinetic temperature is a convenientoperational state
variable to fix to obtain a steady state, and that there
unique correspondence between the kinetic temperature
the true temperature.

II. CONSTRAINT DYNAMICS AND THERMOSTATS

Thermostats were first introduced as a practical met
of performing nonequilibrium computer simulations at
fixed state point. Only later was it realized that these devi
may have a fundamental role in the statistical mechanic
many-body systems. The first deterministic method for th
mostating molecular-dynamics simulations was proposed
multaneously and independently by Evans and Hoover. T
method was to introduce a damping term into the equati
of motion.

mi r̈ i5Fi2ami ṙ i , ~3!

where the value of the damping is controlled bya where

a5
( i 51

N Fi–ṙ i

( i 51
N mi ṙ i

2 . ~4!

This value ofa keeps the kinetic energy~or kinetic tempera-
ture! exactly constant. The damping term removes the na

FIG. 1. The nonequilibrium ‘‘thought experiment.’’
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ral fluctuations in kinetic energy thusa can be either nega
tive or positive depending upon the instantaneous value
$r i , ṙ i%. These equations were proposed by Hoover,6 and the
same equation~3! with a damping term chosen to keep th
internal energy constant, was proposed by Evans.7 Initially
the use of damping terms had no theoretical justification
was a year before the connection with Gauss’ principle w
made.8

A. The fundamental equations of mechanics

Pars9,10 constructs mechanics using one of three differ
forms of what he calls thefundamental equation. Consider a
general dynamical system withN equations of motion, sub
ject to m constraints. We need to introduce the forces
constraintf i , so the equations of motion becomemiẍi5Fi

1 f i . If we consider a virtual displacementdxi , at fixed
time, which is consistent with the constraints, and that
forces of constraintf i do no work on the system, we obtai
the first fundamental equation

(
i 51

N

~miẍi2Fi !dxi50, ~5!

which is valid for an arbitrary virtual displacement. This
d’Alembert’s principle, discovered by Lagrange in or abo
1760.11

To obtain thesecondform of the fundamental equatio
we consider from the same configuration, and at the sa
instant, two different velocities for the systemẋ1 ,ẋ2 ,...,ẋN

and ẋ11D ẋ1 ,ẋ21D ẋ2 ,...,ẋN1D ẋN . The ~finite! velocity
variationsD ẋ1 ,...,D ẋN then satisfy thesecondform of the
fundamental equation~Jourdain 1908!

(
i 51

N

~miẍi2Fi !D ẋi50. ~6!

In this form both the configuration and time are given, a
we consider the difference~either finite or infinitesimal! be-
tween any two possible velocities for the system.

The third form of the fundamental equation is obtaine
by considering two possible motions with the same confi
ration and velocity at timet, but with different accelerations
ẍ and ẍ1D ẍ. The ~finite! acceleration variations
D ẍ1 ,...,D ẍN satisfy the equations for the virtual displac
ment, and we may write

(
i 51

N

~miẍi2Fi !D ẍi50 ~7!

~used by Gauss and Gibbs!. To summarize, in the first form
we consider an infinitesimal virtual displacement from
given configuration. In the second form the configuration
not varied, and we use the difference between any two p
sible velocities. In the third form both coordinates and v
locities are unvaried, and we use the difference between
two possible accelerations.
ense or copyright; see http://chaos.aip.org/about/rights_and_permissions
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B. Gauss’ principle of least constraint

Suppose the position and velocity of the system
given, and consider the square of the curvatureC, regarded
as a function of the accelerations

C~ ẍ!5
1

2 (
i51

N

miSẍi2
Fi

mi
D2

. ~8!

The values ofẍ considered are those that are possible for
system. Gauss’s principle of least constraint12 states that the
actual acceleration is that for whichC is a minimum. If we
consider a variation ofẍi to ẍi1D ẍi , the proof is straight-
forward

DC5
1

2 (
i 51

N

mi~D ẍi !
21(

i 51

N

~miẍi2Fi !D ẍi .

If ẍi is the actual physical acceleration then the last term
zero using the third fundamental form, and any variat
aboutẍi increasesC. To find the equations of motion for
given system we need only the less powerful result thatC is
stationary for the actual motionDC50. Notice that in the
application of Gauss’s principle we are concerned with
simple algebraic problem of minimizing a quadratic form
the curvatureC.

C. Geometric derivation

For an arbitrary constraint problem we can write t
constraint as a function of positions, velocities, and time

g~r , ṙ ,t !50, ~9!

whereg is the particular functional form. If this equation
differentiated with respect to time, we obtain an accelerat
dependent constraint equation,

n~r , ṙ ,t !• r̈5s~r , ṙ ,t !. ~10!

We refer to this equation as thedifferential constraint equa-
tion and it is the equation for theconstraintplane.n is the
vector normal to the constraint plane ands is the shortest
distance between the plane and the origin. In the absenc
the constraint the system would evolve according to Ne
ton’s equations of motion~see Fig. 2!. This trajectory would
in general not satisfy the constraint. The only accelerati
which do continuously satisfy the constraint are those wh
terminate on the constraint plane. To obtain the constrai
acceleration we must uniquely project the unconstrained
celeration back into the constraint plane.

FIG. 2. The geometric interpretation of Gauss’ principle of least constra
Downloaded 26 Apr 2012 to 137.222.137.12. Redistribution subject to AIP lic
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Gauss’ principle states that the trajectories actually fo
lowed are those which deviate as little as possible, in a lea
squares sense, from the unconstrained Newtonian traje
ries.

The projection which the system actually follows is th
one which minimizes the magnitude of the constraint for
This means that the force of constraint is parallel to the n
mal to the constraint surface. The Gaussian equations of
tion are thenr̈5F2ln where l is a Gaussian multiplier
which is a function of position, velocity, and time.

To calculate the multiplier we use the differential for
of the constraint function. Substituting for the accelerati
we find that

l5
n–F2s

n–n
. ~11!

Notice that the original constraint equation is never us
explicitly. Gauss’ principle only uses thedifferential form of
the constraint equation, hence the precise value of the c
strained quantity is undetermined. The constraint only act
stop its value changing.

From an operational point of view a much simpler de
vation of constrained equations of motion is possible us
Lagrange multipliers. Gauss’ principle reduces to finding
minimum of C( r̈ ), subject to the constraint. IfG( r̈ ) is the
acceleration dependent form of the constraint, then the c
strained equations of motion are obtained from

]

] r̈
~C2lG!50. ~12!

It is easy to see that the Lagrange multiplierl is equal to
minus the Gaussian multiplier.

D. Gaussian iso-kinetic thermostat „GIK…

We illustrate this method by deriving equations of m
tion for which the kinetic energy is a constant of the motio
The constraint function is

g~r , ṙ ,t !5(
i 51

N
1

2
mi ṙ i

22K050. ~13!

Differentiating once with respect to time gives the equat
for the constraint plane

G~r i , ṙ i , r̈ i ,t !5(
i 51

N

mi ṙ i–r̈ i50. ~14!

Therefore to obtain the constrained Gaussian equations
minimize the curvatureC subject to the constraint equatio
~14!. That is

]

] r̈ i
S 1

2 (
j51

N

mjSr̈ j2
Fj

mj
D 2

1a(
j 51

N

mj ṙ j–r̈ j D 50. ~15!

This gives the thermostated equation of motion to be Eq.~3!.
Eliminating r̈ i using the differential form of the constrain
equation~14!, we find that the multiplier is again given b
Eq. ~4!.

t.
ense or copyright; see http://chaos.aip.org/about/rights_and_permissions
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E. The GIK thermostat for external fields

Using Gauss’ principle, the isokinetic equations of m
tion for a system subject to an external field can be writ
as,

q̇i5
pi

m
1CiFe~ t !, ~16!

ṗi5Fi1DiFe~ t !2api , ~17!

whereCi andDi are phase variables which describe the c
pling between the system and the external field.1,4 The
Gaussian multiplier is

a5a01a1Fe~ t !5
( i~1/mi !Fi–pi

( i~1/mi !pi
2

1
( i~1/mi !Di–pi

( i~1/mi !pi
2 Fe~ t !. ~18!

In writing these equations we are assuming the total mom
tum is fixed at zero. It is important to keep in mind that t
expression for the multiplier depends explicitly on the ext
nal field and implicitly on time. Therefore we can separa
the multiplier into field-dependent and field-independe
partsa0 , a1 .

If we define the internal energy to be

H05(
i 51

N pi
2

2mi
1F ~19!

then we can characterize the energy flow to and from
system. If the system is perturbed by an external field, t
that field does work on the system~supplying energy!, and
that energy must be extracted from the system through
thermostat in order to maintain a steady state. Differentia
Eq. ~19! and substituting the thermostated equations of m
tion ~16! and ~17! gives

Ḣ052J~q,p!Fe~ t !23NkTa~q,p!, ~20!

where the dissipative fluxJ(q,p) is defined by

J~q,p!52(
i 51

N S 1

mi
pi–Di~q,p!2Fi–Ci~q,p! D . ~21!

If a steady state is achieved~for a time-independent externa
field! then we expect a balance between the average en
supplied to the system by the external field, and the aver
energy removed by the thermostat, so that^Ḣ0&50, and

^Ḣ0&52^J&Fe23NkT^a&50. ~22!

Then we can define a field-dependent transport coefficien

a~Fe!52
^J&
Fe

, ~23!

which may be related to a Navier–Stokes transport coe
cient aNS in the limit Fe→0. From Eq.~22! it follows that
the field-dependent transport coefficient can also be given

a~Fe!5
3NkT

Fe
2 ^a&. ~24!
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Thus the transport coefficient can be calculated in two wa
either directly from the average current using Eq.~23!, or
from the average thermostating multiplier:

F. The Gaussian isoenergetic thermostat „GIE…

It is easy to show that if Gauss’ principle is used to
the internal energy, then the equations of motion are
same as those in Eqs.~16! and ~17!, but the thermostating
multiplier is now

a5
( i 51

N ~~1/mi !Di–pi2Ci–Fi !

( i 51
N ~1/mi !pi

2 Fe~ t !. ~25!

In the isoenergetic case it is clear that the multiplier vanis
when the external field is zero. This is as expected sinc
the absence of an external field, the total energy is conser

Gauss’ principle can also be used to fix the value
other phase variables in a many particle simulation, for
ample, the pressure.13 Indeed, one approach in nonequilib
rium systems1 has been to use Gauss’ principle to move b
tween constant field simulations~the Thévenin ensemble!
and constant current simulations~the Norton ensemble!.
However, there appear to be cases where Gauss’ princ
does not give physically meaningful results. For example
one uses Gauss’ principle to maintain a constant heat fl
then a comparison with linear response theory shows tha
Gaussian equations of motioncannot be used to calculate
thermal conductivity.2 The correct application of Gauss
principle seems to be limited to arbitrary holonomic co
straints and to nonholonomic constraint functions which
homogeneousfunctions of the velocities.

G. The GIK distribution function

The ergodically generated equilibrium distribution fun
tion f for GIK dynamics can be obtained by solving th
Liouville equation.14 Here the distribution function isf (G)
[ f (q,p)[ f (q1 ,...,qN ,p1 ,...,pN) where the phase pointG
completely describes the state of a singleN-particle system.
Consider the total time derivative off , then from the Liou-
ville equation, we see that

d f

dt
52 f

]

]G
•Ġ52 f S (

i 51

N
]

]qi
•q̇i1(

i 51

N
]

]pi
•ṗi D .

~26!

At equilibrium the Gaussian isokinetic equations~3! and~4!
can be written as a pair of first-order equations as

q̇i5
pi

m
, ṗi5Fi2api , ~27!

a5
( i~1/mi !Fi–pi

( i~1/mi !pi
2 5

2Ḟ

2K0
, ~28!

whereḞ is the time derivative of the total potential energ
Notice that theq̇i equation is independent ofqi . Computing
the second term in Eq.~26! we get 3N identical terms from
the 3N derivatives,a(]/]pi)•pi , but using conservation o
ense or copyright; see http://chaos.aip.org/about/rights_and_permissions
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total momentum only 3N23 of these terms are independen
We also get 3N terms frompi•]a/]pi which sum to give
2a. Thus Eq.~26! becomes

d f

dt
5 f (

i 51

N
]

]pi
•~api !5~3N24!a f 52

~3N24!

2K0
Ḟf .

~29!

Integrating both sides with respect to time gives

f T~G!5
exp@2bF~G!#d„K~G!2K0…

*dG exp@2bF~G!#d„K~G!2K0…
, ~30!

where we identifyb5(kBT)215(3N24)/2K0 . This is con-
sistent with the fact that the GIK equations have four co
stants of the motion; the kinetic energy, and the three co
ponents of the total linear momentum. We call th
distribution the isokinetic distribution function and it has
very simple form: a microcanonical distribution of kinet
degrees of freedom, and a canonical distribution of confi
rational degrees of freedom.

H. The Nosé Hamiltonian for the canonical ensemble

The Nose´ method15 considers an extended system w
an additional degree of freedoms, which acts as an externa
heat reservoir, interacting with the system through the
locities of the particles. The potential energy that Nose´ chose
to associate with this new degree of freedom wasg
11)kBT ln s, whereg is related to the number of degrees
freedom of the system. It is essentially the choice of
potential fors which leads to dynamics which generate t
canonical ensemble. The Hamiltonian forN particles moving
in a potentialF ~which may contain both interactions be
tween the particles and external fields! is

HN~q,p,s,ps ;l!5(
i 51

N
pi

2

2ms2 1F~q!1
ps

2

2Q

1~g11!kBT ln s, ~31!

whereQ is an arbitrary constant corresponding to themass
of the reservoir. The time variablel which appears in the
Hamilton equations of motion@but not on the right-hand sid
~RHS! of Eq. ~31!# need not correspond to physical tim
The equations of motion generated by this Hamiltonian a

dqi

dl
5

pi

ms2 ,
dpi

dl
5Fi , ~32!

ds

dl
5

ps

Q
,

dps

dl
5(

i 51

N
pi

2

mis
32

~g11!kBT

s
. ~33!

Eliminating the variableps from the equations of motion, a
single second-order differential equation fors is obtained. If
the system is at equilibrium, the average force on thes co-
ordinate must be zero, so that

K d2s

dl2L 5
1

Q K (
i 51

N
pi

2

mis
32

~g11!kBT

s L 50. ~34!

If we choose the Hamiltonian momenta to be related to
physical momenta bypi5spi , then
Downloaded 26 Apr 2012 to 137.222.137.12. Redistribution subject to AIP lic
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e

e

K (
i 51

N
pi

2

mis
3L 5K (

i 51

N
1

s

pi
2

mi
L 5~g11!kBTK 1

sL . ~35!

This suggests a particular dynamical average that is equ
the temperaturekBT and hence suggests the general form
the dynamical average of an arbitrary phase variableA,

kBT5
@1/~g11!#^( i 51

N 1/s pi
2/mi&

^1/s&

⇒^A&l5
*0

T~dl/s!A~l!

*0
Tdl/s

. ~36!

Comparing this with the usual physical time average s
gests that the physical time is related to the Hamiltonian ti
by dt5dl/s. This type of variable transformation, wher
both the momenta and the time change (pi ,l)⇒(pi ,t), will
be used many times in what follows.

To calculate the equilibrium distribution function for th
NoséHamiltonian we use the fact that for an ergodic syste
the extended system is microcanonical. Hence from Eq.~31!

Z5
1

N! E dq dp ds dpsdS (
i 51

N
pi

2

2mis
2 1F~q!1

ps
2

2Q

1~g11!kBT ln s2ED , ~37!

whereq and p are 3N-dimensional vectors,q[(q1 ...,qN)
and p[(p1 ,...,pN). If we change variables fromp to p,
wherep[(p1 ,...,pN) andpi5pi /s for all i , then

Z5
1

N! E dq dp ds dpss
3NdS H0~q,p!1

ps
2

2Q

1~g11!kBT ln s2ED , ~38!

where H0(q,p)5( ipi
2/2mi1F(q) is the usualN-particle

Hamiltonian. The integral overs can be performed as th
only contributions come from the zeros of the argument
the delta function. If G(s)5H0(q,p)1ps

2/2Q1(g
11)kBT ln s2E, thenG has only one zero, that is

s05expS 2
H0~q,p!1ps

2/2Q2E

~g11!kBT D . ~39!

Using the identityd„G(s)…5d(s2s0)/G8(s) it is easy to
show that the integral overs gives

Z5
1

N! E dq dp dps

1

~g11!kBT

3expX2 1

kBT

3N11

g11 S H0~q,p!1
ps

2

2Q
2ED C. ~40!

Here the choiceg53N cancels the factor inside the expo
nent. The integral overps is the infinite integral of a Gauss
ian and the result is
ense or copyright; see http://chaos.aip.org/about/rights_and_permissions
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Z5
1

~3N11! S 2pQ

kBT D 1/2 1

N! E dq dp

3expS 2
H0~q,p!2E

kBT D . ~41!

If the variablesq, p, s, andps are distributed microcanoni
cally then variablesq andp are canonically distributed.

I. The Nosé –Hoover isokinetic thermostat „NIK…

To compute averages in real physical time the equati
of motion can be rewritten in terms of the physical variab
q, p, andt, eliminating the Hamiltonian variablesp, s, ps ,
andl entirely.16 We use the same transformation as abo
pi5spi anddt5dl/s, to rewrite the Nose´ equations of mo-
tion as

dqi

dt
5

pi

mi
,

dpi

dt
5Fi2zpi , ~42!

ds

dt
5zs,

~43!

dz

dt
5

1

Q S (
i 51

N pi
2

mi
2~g11!kBTD 5

1

t2 S K~p!

K0
21D ,

whereK05(g11)kBT/2 is the value of the kinetic energ
corresponding to the target temperature,K(p) is the instan-
taneous value of the kinetic energy,t is a relaxation time
which is related to the mass of thes degree of freedom (t2

5Q/2K0) and the multiplierz5ps /Q. The motion of the
system can now be determined without reference tos. It is
an irrelevant variable which can be ignored. The varia
dz/dt is a function ofp only, so the complete description o
the system can be given in terms of the variablesq, p, andz.
Notice that a Nose´ isoenergetic~NIE! thermostat can be con
structed from Eq.~42! and ~43! by replacing K(p) by
E(q,p), andK0 by E0 .

The N-particle distribution functionf (G,z) generated
dynamically by the isokinetic Nose´–Hoover equations o
motion can be obtained by solving the Liouville equati
written in terms of physical variablesq, p, andz. The Liou-
ville equation for the total time derivative off (G,z) is

d f

dt
52 f S ]

]G
•Ġ1

]

]z
ż D . ~44!

From the equations of motion~42! and~43! it is easy to see
that ż is a function ofp, and hence independent ofz. The
only nonzero contribution to the right-hand side comes fr
the p dependence ofṗ, so that

d

dt
ln f 53Nz. ~45!

Consider the time derivative of the quantityH01 1
2Qz2

d

dt S H01
1

2
Qz2D5

dH0

dt
1Qz

dz

dt
52~g11!zkBT.

~46!
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If we takeg1153N, then from Eqs.~45! and~46! we find
that the equilibrium distribution function is the extended c
nonical distributionf c , where

f c~G,z!5
exp@2b~H01 1

2Qz2!#

*dG dz exp@2b~H01 1
2Qz2!#

. ~47!

In the Hoover representation of the equations of motion,
scaling variables has been eliminated so the number of d
grees of freedom of the system changes from 3N11 to 3N.

III. LYAPUNOV EXPONENTS FOR THERMOSTATED
SYSTEMS

A. The Lyapunov sum rule

One of the simplest connections between Lyapunov
ponents and transport coefficients is the Lyapunov sum r
For a GIK thermostat, and field-dependent equations of m
tion, the Liouville equation is given by Eq.~29! as long as
the field does not change phase-space volume, or equ
lently that the adiabatic incompressibility of phase-spa
AIG is satisfied.1 That is

(
i 51

N S ]

]qi
•Ci1

]

]pi
•Di D50. ~48!

For a comoving phase-space volume element located aG,
the number of ensemble members within the elementN0

does not change, so that the only change inf is due to the
changing volume of the element. So

f ~G,t !5
N0

V~ t !
5

N0

V0
expF2(

i
l i tG , ~49!

where thel i are local expansion~or contraction! rates. Thus

d

dt
ln f 52(

i
l i53Na1O~1!, ~50!

where bothl i and a are local properties of the trajector
segment. Combining these and time averaging, we find
the field-dependent transport coefficient is related to
Lyapunov exponentsl i by

a~Fe!52
kT

Fe
2 (

i
l i1O~1!. ~51!

The evaluation of the order one terms can often be d
exactly, as, for example, for planar Couette flow.17

B. The conjugate pairing rule

The conjugate pairing rule is a more subtle connect
between Lyapunov exponents and transport coefficie
which is not true in general. However, for those syste
where it is satisfied, it shows that the thermostat acts de
cratically on each pair of degrees of freedom.

The conjugate pairing rule states that ifl is a Lyapunov
exponent thenC2l is also an exponent, whereC is the
same for all pairs of exponents. For Hamiltonian systemsC
50

l11l25C. ~52!
ense or copyright; see http://chaos.aip.org/about/rights_and_permissions
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The conjugate pairing rule was initially a result obtain
numerically~from the data in Fig. 3! for the Lyapunov ex-
ponents of four and eight particle simulations of planar C
ette flow using theSLLOD algorithm and GIK thermostat.18,1

Later a proof of the conjugate pairing rule19 in the limit as
the number of particlesN→` was obtained, but that argu
ment is flawed. Below we present the correct derivation.20

C. Proof of the conjugate pairing rule

Here we prove the result exactly for a restricted ca
that is, isokinetic thermostats and forces derivable from
potentialF, for any value ofN. There is an important dif-
ference between the present result and past statements
conjugate pairing rule in that here we explicitly single o
two trivial exponents~equal to zero! which do not pair.
These are due to the conservation of kinetic energy, and
translation symmetry. They sum to zero, and so should
be included with the other pairs of exponents, which sum
a different constant. Excluding these directions, we de
the time evolution in a reduced 6N22-dimensional space, in
which pairing appears exactly.

The GIK equations of motion in an external field ta
the form given in Eq.~27!, whereF is the total force given as
a sum of interparticle forcesFint and the external fieldFext.
Transforming these equations to remove the mass, usinqi8
5qiAmi , pi85pi /Ami , and Fi85Fi /Ami then removing the
primes, gives

FIG. 3. The Lyapunov spectrum for eight particle Couette flow in thr
dimensions using theSLLOD algorithm and a GIK thermostat for reduce
strain rates of 0, 1, 2~Ref. 18!. ~a! The Lyapunov spectrum;~b! the sum of
conjugate pairs versus pair number.
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q̇5p, ṗ52¹F2ap5F2ap, ~53!

a52
p•¹F

p•p
, ~54!

where q[(q1 ,...,qN) and p[(p1 ,...,pN) are
3N-dimensional vectors.F is a scalar potential that gene
ates the total forceF.

There are two time-dependent matrices which can
used to describe the evolution of a linear perturbationdG in
tangent space, and they both depend on the initial ph
space pointG. These are the infinitesimal and finite evolutio
matrices,T andL, respectively, defined by

dĠ~ t !5T~ t !dG~ t !, dG~ t !5L~ t !dG~0!. ~55!

The matrixT is usually obtained by differentiating the equ
tions of motion, however, we will evaluate it in a restricte
subspace of the tangent space, which is slightly more c
plicated.L can be obtained fromT as the solution of

L̇~ t !5T~ t !L~ t !, ~56!

with the initial conditionL(0)5I . The Lyapunov exponents
are defined as the logarithms of the eigenvalues ofL, where

L5 lim
t→`

„LT~ t !L~ t !…1/2t. ~57!

The comoving basis vectors, which span the tangent sp
containingdG, rotate with the motion of the trajectory so a
to remain perpendicular to the direction of increasing kine
energy. This means that the finite time eigenvalues may
different to those obtained with fixed basis vectors, but in
long time limit the results are the same. We introduce 6N
22 orthonormal basis vectors, none of which are exac
along the flow, and demand that a perturbationdG be in the
space spanned by these vectors. This effectively means
we are taking a Poincare´ section, and considering the pe
turbed point to be the one at which the perturbed traject
intersects with the 6N22 dimensional space spanned by t
vectors. In general, the time elapsed along the perturbed
jectory t8 runs at an infinitesimally different rate tot. We
scale the time so thatp•p51, and choose one unit vecto
e05p. At an initial time, arbitrarily choose 3N21 unit vec-
torsei which together withe0 form an orthonormal set in 3N
space. This set of vectorsei ~wherei 51,...,3N21! is used in
both position and momentum space to form the required
sis. The separation of phase space into position and mom
tum space, while retaining the symplectic structure is w
makes this proof possible in the isokinetic case. The per
bations are taken from the 6N22-dimensional subspace de
fined by the two sets ofei . This means that there are n
perturbations in the direction of increasing kinetic ener
and none directly along the flow~which contains a compo
nent ofe0 in position space!. Now, the equations of motion
in 6N-dimensional space may be written as

dq

dt
5p,

dp

dt
5ė05 (

i 51

3N21

f•eiei , ~58!

wheref52¹f. If we choose, the unit vectors to have equ
tions of motion

-
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ėi52f–eie0 ~59!

then the basis remains orthonormal as for alli ~see Fig. 4!.
The perturbed trajectory (q8,p8) is given by

q85q1 (
i 51

3N21

dqiei , p85p1 (
i 51

3N21

dpiei ~60!

with equations of motion

dq8

dt8
5p8,

dp8

dt8
5 (

i 51

3N21

f8•ei8ei8 . ~61!

Here f8 is the value off at the perturbed coordinates,

f85f1 (
i 51

3N21

dqi¹ i f ~62!

and theei8 are new~arbitrary! unit vectors perpendicular to
p8. We choose the orthonormal set@ i 51,...,(3N21)#:

e085p8, ei85ei2dpie0 . ~63!

Then to first order is

dq̇i5dpi ,
~64!

d ṗ j52 (
i 51

3N21

„¹ i¹ jf1~ f–ej !~ f–ei !…dqi2adpj .

From these equations, the infinitesimal evolution matrix m
be read off as

T5S 0 I

M 2aI D , ~65!

where each of the elements are (3N21)3(3N21) subma-
trices. 0 is the zero matrix andI the identity matrix. The
crucial point in the derivation is that from Eq.~64! the M

FIG. 4. The basis vectors for one particle in three dimensions are par
transported along the trajectory.
Downloaded 26 Apr 2012 to 137.222.137.12. Redistribution subject to AIP lic
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submatrix is symmetric. To prove the conjugate pairing r
we need the symplectic eigenvalue theorem21,22 which we
outline below.

Definition 1: The T matrix is infinitesimallya symplec-
tic if

TTJ1JT52aJ, ~66!

where

J5S 0 I

2I 0D . ~67!

Definition 2: The L matrix is globallym symplectic if

mLTJL5J. ~68!

If we consider K(t)5LT(t)JL(t), note that K̇(t)
52aK(t). Solving forK, given thatK(0)5J, we find that
m is related toa by

m5expS E
0

t

a~s!dsD .

Theorem: a-symplectic eigenvalue theorem.
If matrix M satisfiesaMTJM5J for some finitea, and

if x is an eigenvalue ofM , then (xa)21 is also an eigenvalue
of M .

PROOF:
We note that ifx is an eigenvalue ofM , then det(M

2xI)50, andMT has the same eigenvalues asM . The de-
terminant of a product is equal to the product of the det
minants and det(J)51. Therefore

det~M2xI !50⇒det~MTJM2xMTJ!50

⇒det~a21J2xMTJ!50

⇒det„~~ax!21I 2MT!xJ…50

⇒det„~ax!21I 2MT
…50

⇒det„M2~ax!21I …50.
QED

Applying this result toM5LTL, wherea5m2, we find that
for each eigenvaluex.1, there is another (m2x)21. The
sum of the logarithms of this pair of eigenvalues ofLTL is

2l1t12l2t5 ln x1 ln~m2x!21522E
0

t

a~s!ds, ~69!

which is clearly independent of which pair of eigenvalues
chose.

l11l2521/tE
0

t

a~s!ds52^a& t . ~70!

This result applies to any trajectory segment, no matter h
small, if the comoving basis set is used. Finally, we take
t→` limit. The result is that any pair of Lyapunov expo
nents~except the trivial zeros! sum to2^a& t . An important
corollary is that, if there is an invariance in the equations
motion leading to a zero exponent, the conjugate expone
not zero as in the Hamiltonian case, but2^a& t . This proof is
valid for any number of particles moving in a potenti
which may contain both external terms and interactions

lel
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tween the particles. There is still no proof of conjugate pa
ing for SLLOD dynamics where it was first observed nume
cally. Indeed, now there is a suggestion that conjug
pairing does not hold exactly forSLLOD.23

D. Pairing of Lyapunov exponents for NIK dynamics

The Nose´ Hamiltonian equation~31! is written with vari-
ables (q,p,s,ps ,l) which satisfy conjugate pairing with
each pair summing to zero. However, the equations of m
tion may be written in terms of the physical variabl
(q,p,z,t) as Eqs.~42! and ~43!. In this form, it is apparent
that z acts like the Gaussian multipliera. In this representa-
tion the equilibrium distribution is canonical in the syste
variables wheng1153N. We note that the Lyapunov ex
ponents may depend on the variables used to define
phase space if the equations relating different coordinate
tems involve exponential functions of time. The total pha
space contraction, which is given by minus the sum of
Lyapunov exponents, is proportional to the average oz,
which is nonzero for a nonequilibrium steady state. Since
sum of the exponents is less than zero, it is clear that
exponents are quite different from the Nose´ values. In fact, it
has been shown that the conjugate pairing rule holds for N
thermostats.24 Numerical simulations also suggest that t
conjugate pairing rule holds for isoenergetic Gaussian th
mostats~GIE!.

IV. HAMILTONIAN FORMULATION OF THE GIK
THERMOSTAT

One of the most surprising results is that there is
Hamiltonian formulation of the GIK thermostat. Related
this is a variational formulation in terms of geodesic moti
in a curved space. The existence of a Hamiltonian permi
correspondence to be made between Gaussian thermos
systems, and other Hamiltonian dynamical systems, so
both can be treated on a similar footing. This permits sta
ments to be made about the conservation of phase volu
and the symplectic structure of phase space, for thermost
systems. An obvious question is how the phase volume c
servation of a Hamiltonian system is reconciled with the f
that thermostats cause phase-space contraction on the
age, leading to steady multifractal distributions and entro
production in a nonequilibrium system? The apparent con
diction is resolved by noting the distinction between physi
and canonical momenta~in analogy with a charged particl
in a magnetic field!. Phase-space volume is conserved wh
written in terms of canonical momenta, but these are
simply proportional to the physical momenta.

Consider the color conductivity algorithm fo
self-diffusion1 where there areN particles, in periodic
boundary conditions, interacting via a short-range poten
F int . Half of the particles have a positive color chargec, and
half have the opposite charge2c, which only interacts with
the external color fieldF. The Hamiltonian for this~unther-
mostated! system is
Downloaded 26 Apr 2012 to 137.222.137.12. Redistribution subject to AIP lic
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HC5(
i 51

N pi
2

2mi
1F int~q!2(

i 51

N

ciziF5(
i 51

N pi
2

2mi
1F~q!.

~71!

It is clear that the designation internal and external is
necessary as the two terms may be grouped together to
a single potentialF. If we introduce an isokinetic thermosta
this remains the case, but an isoenergetic thermostat di
guishes between the two, conserving the sum of the kin
energy andF int . The response variable is the color curre
density

Jz5
1

V (
i 51

N

ci żi . ~72!

Scaling so that the magnitude of the momentum vector is
gives

dqi

dt
5pi ,

dpi

dt
5Fi2api , a5(

i 51

N

Fi•pi , ~73!

where the total force isFi52]F/]qi . In these variables
the total kinetic energy is normalized to 1/2. Now we com
to the central result, a one parameter family of Hamiltonia
which generate these equations of motion:25

Hb~q,p;l!5
1

2
e~b11!F~q!(

i 51

N

pi
22

1

2
e~b21!F~q!. ~74!

From this Hamiltonian the equations of motion are

d

dl
qi5

]H

]pi
5e~b11!Fpi5~eFpi !e

bF, ~75!

d

dl
pi52

]H

]qi

52
1

2

]F

]qi
e~b21!FS ~b11!e2F(

i
pi

22~b21! D .

~76!

We are now free to choose the connection between Ha
tonian variables~q,p,l! and physical variables (q,p,t).
Equation~75! suggests a particular choice

dt

dl
5ebF and pi5eFpi . ~77!

But as the physical kinetic energy is equal to 1/2,e2FS ipi
2

51, and hence the conserved value of the Hamiltonian
zero. Combining this with Eq.~76! gives the GIK equations
of motion ~73!.

The phase-space contraction factor in the canonical v
ables is, of course, unity. Thus for the simplest caseb50 in
which the physical and canonical times are the same,
constant phase-space element is

dG5d3Nqd3Npd~H2E!

52e2~3N21!F„q~ t !…d3Nqd3NpdS (
i 51

N

pi
221D , ~78!
ense or copyright; see http://chaos.aip.org/about/rights_and_permissions
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with E50. From this the physical phase-space contract
factor @in the variables ~q,p!# is seen to be exp„(3N
21)DF… whereDF is the change inF„q(t)… between two
different coordinate sets corresponding to two differe
times. This is easily shown to be the time integral of t
phase-space contraction rate2(3N21)a obtained directly
from the equations of motion. Also the nonequilibrium K
wasaki distribution function26 can be derived from Eq.~78!.

The value ofb is completely arbitrary, and does no
affect the equations of motion, however, there are three
ticular values ofb in which the canonical variables have
simple interpretation. Hamiltonians with differentb are not
related by any of the usual types of canonical transformat
since the time variables differ in each case.

~1! For b521, the Hamiltonian reduces to kinetic plu
potential energy. The thermostated equations are
equivalent to a potential problem with zero total energy. A
ternatively, any system of particles with purely attracti
forces and zero total energy can be represented in term
GIK thermostated dynamics.

~2! For b50, the canonical and physical times are t
same, so this is the most natural form in which to derive
thermostated dynamics.

~3! For b51, the Hamiltonian is a quadratic form.

Hb51~q,p;l!5
1

2
e2F~q!(

i 51

N

pi
22 1

2. ~79!

Ignoring the constant, we see that GIK dynamics is equi
lent to a geodesic in a curved space with metricgmn, that is
Hg(q,p)5 1

2g
mn(q)pmpn . Hb51 is equivalent to geodesi

motion on configuration space with a metric given by

ds25e22F(
i 51

N

dqi
2. ~80!

The trajectory followed between two points in configurati
space has extremal length with respect to the above me
That is, for any two points in configuration space, the traj
tory followed by the system is a minimum value of*ds
among all trajectories from one point to the other. Occasi
ally it may be only a local minimum, or even~for sufficiently
pathological F! a maximum. We have also incidental
proved that the dynamics is time reversible, as there is
preferred direction along a geodesic. Thus we have sh
that the GIK thermostat is intimately related to more conv
tional dynamical systems, augmenting the link which h
already been made between quadratic Hamiltonians and
desic motion in a curved manifold.27

The one particle problem also has direct relevance
some other systems, for which the thermostated dynamic
exact. For example, the above form of the metric is equi
lent to Fermat’s principle for light passing through glass w
a refractive indexn5exp(2ex). In addition, theb521
form of the Hamiltonian is that of an electron moving in
potentialV5 1

2 exp(22ex) with a total energy of zero.
Another important point relates to boundary condition

For an equilibrium system, periodic boundary conditio
may be used without affecting the symplectic structure of
equations of motion. All that happens is thatq becomes a
Downloaded 26 Apr 2012 to 137.222.137.12. Redistribution subject to AIP lic
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compact submanifold. In our case, enforcing periodic bou
ary conditions results in abrupt changes inF at the bound-
aries, so that the global symplectic structure is not preser
Clearly the imposition of periodic boundary condition
breaks the global symplectic structure, as a multifractal
tractor appears. Nonetheless, it is still valid to view a pe
odic system as a local symplectic Hamiltonian system wh
phase space becomes a compact manifold~provided that the
momentum is bounded!.

V. THE LORENTZ GAS

The Lorentz gas is a simple model of electrical condu
tion in a periodic solid28 and has been studied as a low
dimensional example of a nonequilibrium steady state.2 The
model consists of a single point particle wandering throug
triangular lattice of fixed hard scatterers~see Fig. 5!. The
wandering point particle experiences an external fielde in
the negativex direction, and a GIK thermostat. The equ
tions of motion are

ẋ5px , ṗx5Fx2e2apx , ~81!

ẏ5py , ṗy5Fy2apy , ~82!

a5p–F2epx . ~83!

It is convenient to write the momentum vector asp
[(px ,py)5p(cosu,sinu) as its magnitudep is fixed by the
GIK thermostat. The only free variable in the momentum iu
~see Fig. 6!, and from Eqs.~81! and ~82! its equation of
motion is u̇5e sinu. Integrating over a time interval,Dt
5t12t0 , in the absence of a collision, gives

tanS u

2D5tanS u0

2 DexpS t2t0

e D . ~84!

The equations of motion forx andy can be parametrized b
u, and are given by

FIG. 5. The Lorentz gas showing the ‘‘central’’ scatterer and the surrou
ing hexagonal boundary which tiles the plane.

FIG. 6. Specifying the thermodynamic state point for the Lorentz gas
ense or copyright; see http://chaos.aip.org/about/rights_and_permissions
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x5x01
1

e
lnS sin u

sin u0
D , y5y01S u2u0

e D , ~85!

where a subscript zero indicates the initial value of the v
able. In this form it is straightforward to see that the Loren
gas described by the equations of motion~84! and ~85! is
equivalent to two particles with equal masses, in triangu
boundary conditions, subject to an external field and G
thermostat.

As the free motion of the wandering particle is analyt
a complete trajectory can be specified by noting the ph
point after each collision. The position of the wandering p
ticle can be specified by (x,y)5r (cosf,sinf), andr 51 on
the scatterer surface~the Poincare´ surface of section!, so the
complete phase point is specified by~f,u!. In this picture the
time evolution of the Lorentz gas is given by the mappingM
which moves the phase point from one collision to the ne

From Fig. 6 we use a scatterer spacingw5d22s
50.236 which is small enough to ensure a finite horiz
~that isw<4/)22!. We first consider the Lorentz gas as
geodesic problem to help give a more intuitive understand
of the Hamiltonian formulation outlined previously, and
explore new techniques for numerical and possibly exp
mental investigation of the nonequilibrium Lorentz gas.

A. The Lorentz gas as a geodesic problem

For a single particle moving in two dimensions under t
influence of a constant fieldF52e x̂ ~or potentialF5ex!
and GIK thermostat, the metric is

ds25e22ex~dx21dy2!. ~86!

Notice also that the Hamiltonian is cyclic iny, so the con-
jugate momentum is conservedpy5e2expy . This is not at
all obvious from the equations of motion~82!. We consider
the trajectory between two points which differ only by
separation in they direction. The intermediate points hav
larger values ofx because lengths as defined by the me
are smaller for larger values ofx ~see Fig. 7!. First we ob-
serve that there is a maximumy separation, so that if they
separation is larger thanp/e, then no trajectory exists. Thi
happens because the initial and final values ofu in Eq. ~85!
can differ by at mostp. In the limit asDy→p/e the total
length of the path from a point to infinity along thex direc-
tion is finite,

Sx0 ,`5E
x0

`

ds5E
x0

`

e2exdx5
e2ex0

e
~87!

so the shortest path between the two points withy separation
equal top/e consists of two straight lines projecting from
the two end points in the1x direction.

To set up the general geodesic problem we write the p
lengthS as a function of the initial and final coordinates a
find the extremal path. The path length is given by

S5E
0

x

ds5E
0

y

f ~x,ẋ,y!dy. ~88!

Here x is a function ofy, as the reverse is not necessar
true. The integrand is given byf (x,ẋ,y)5e2ex( ẋ211)1/2, so
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the Euler–Lagrange equation givesẍ1e ẋ21e50 which has
a solutionẋ5cotu. Or in Cartesian variables this reduces
Eq. ~85!. Notice thatu and u0 must have the same sign
therefore they differ by at mostp. Also the total length of a
path can be written as (1/e)e2ex0 sinu0(cotu02cotu).

B. Symbolic dynamics

A very useful technique for obtaining a coarse-grain
description of a trajectory is to label each piece of traject
between two collisions using the relative position of the s
ond scattered.29 If the last collision was with the central sca
terer in Fig. 8, we assign a label to the free flight accord
to the next scatterer. For a finite length of trajectory its sy
bolic code provides a coarse-grained description, but fo
periodic orbit the symbolic code uniquely specifies the or
~for a two-dimensional hyperbolic system!.

C. Periodic orbit expansions

We consider the Lorentz gas as the mapping of the P
carésection itself from which we want to extract the classic
averages of some phase variable. To construct a measure

FIG. 7. Wandering particle trajectories for the nonequilibrium Lorentz g
with different values of the initial momentum angleu at a field ofe51.

FIG. 8. Symbolic dynamics; each free flight leaving the central scattere
labeled according to the next scatterer that it hits. The symbol 18 co
sponds to a second bounce on the same scatterer.
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is valid at equilibrium~zero field!, and also away from equi
librium, we use periodic orbits. These techniques have
cently been developed and applied to systems with few
grees of freedom.29–31 For a mapping the measure of a ce
Ck can be written as32

m~Ck!5 lim
n→`S (

points of
period n in Ck

) L j
21D , ~89!

where PL i
21 is the product of the expanding Lyapuno

numbers. Using this measure for a system with only o
expanding direction, the classical average of a phase vari
B is

^B&5 lim
n→`

( iPPn
L i

21*0
t iB~s!ds

( iPPn
t iL i

21 , ~90!

wheret i is the period of thei th orbit and*0
t iB(s)ds is the

contribution of thei th periodic orbit to the average.Pn is the
set of periodic orbits of lengthn. The symbolic dynamics is
used to enumerate the set of periodic orbits. It is possibl
give a physical motivation based on the idea that because
periodic orbits are dense in the attractor, each orbit rep
sents the typical behavior of a group of finite~nonperiodic!
orbits with the same symbol sequence. The inve

FIG. 9. The length 2 periodic orbits for the Lorentz gas and their equi
rium stabilities lt5 ln L. For S, lt 51.3486; for L, lt 53.4334; for T,
lt 53.0983; and forV, lt 54.6348.
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Lyapunov numbers we call stability weights, and the m
unstable orbits are least probable, so have the sma
weight, while the least unstable orbits have the high
weight. The advantage of this approach is that the same
guments give both the equilibrium and nonequilibriu
averages.33

To illustrate the periodic orbit expansions in Fig. 9 w
give all of the length 2 periodic orbits for the Lorentz ga
There are four topologically distinct orbits$S,L,T,V%, the
full 24 orbits consist of rotations and reflections
$S,L,T,V%. Notice that there are two types of periodic orbit
those that are strictly periodic returning to the same po
$S,L% and those whose periodicity relies upon the triangu
lattice $T,V% which return to the same relative position in
different cell. Clearly the set$S,L% cannot contribute to a
current, whereas the set$T,V% do contribute.

A typical periodic orbit expansion~POE! calculation, as
in Table I, enumerates all of the periodic orbits to som
length and constructs a sequence of approximations to
classical average. From this sequence we extract the lim
the length of the orbits approaches infinity. In practical ter
we are limited to some maximum orbit length, and the exp
nential proliferation of orbits with length can make the es
mation of the average difficult~see Fig. 10!.

D. The bifurcation diagram

For the Lorentz gas, the behavior of the attractor in
~f,u! phase space can be studied, but to look at the beha
as a function of field it is more convenient to eliminate o

-

FIG. 10. The convergence of the conductivity from the periodic orbit e
pansion results in Table 1. The odd–even effect in the raw data ca
removed using a convergence enhancing technique such as the shanks
formation ~Ref. 34!.
of
erages
TABLE I. A typical result from a periodic orbit calculation for the nonequilibrium Lorentz gas at a field
e50.005. Notice the exponential profileration of orbits and the slow convergence of the periodic orbit av
to the ‘‘exact’’ simulation results.pf is the potential contribution to the pressure.

n No. of orbits Lxx Lxx
Shanks pfV l lShanks

2 24 0.3769 0.5429 1.4052
3 64 0.0902 0.2130 0.6455 2.0751 1.8233
4 98 0.3051 0.2077 0.5527 1.6716 1.8465
5 232 0.1269 0.2028 0.6325 1.9803 1.8691
6 674 0.2589 0.2105 0.6301 1.8065 1.9050
7 1902 0.1825 0.2078 0.6527 2.0339 1.9491
8 5343 0.2203 0.2019 0.6565 1.8987 1.9468
9 14138 0.1845 0.1967 0.6578 1.9724 1.9535

10 31475 0.2030 0.6771 1.9434
Exact 0.1978 0.1978 0.6608 1.9625
ense or copyright; see http://chaos.aip.org/about/rights_and_permissions
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of these variables. If we project the full Poincare´ section in
~f,u! onto theu axis we can observe the way a projection
the attractor behaves as the field varies, see Fig. 11. A sim
picture is obtained by projecting onto thef axis, so the
choice of projection is not critical.

The essential features of the bifurcation diagram for
Lorentz gas are

@a# Ergodic region
@b# Crisis
@c# Elliptic region
@d# Complex
@e# Stable orbits

0,e,2.2,
e52.2 and e52.34,
2.3,e,2.46,
2.407,e,2.52,
2.52,e.

There is overlap between the elliptic and complex region
this value of the spacing, but at other values of the spac
the ergodic and elliptic regions overlap.35 We now give a

FIG. 12. Lyapunov exponents for stable periodic orbits.

FIG. 11. The symmetrized (2u⇒u) bifurcation diagram for the Lorentz
gas mappingM (f,u) as a function of fielde, projected onto the~e,u! plane.
Above e'2.629 02 there is a single line which is the stable~4 8! length 2
orbit, which then becomes a stable length 8 orbit. After that there are ch
bands interspersed with periodic windows. The separated feature at 2,e
,2.46 is one example of a neutrally stable elliptical orbit (4 10)`.
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brief description of each region and then concentrate on
crisis ate52.2 and the emergence of the elliptic region
e52.3.

@e# Stable orbits: Fore.2.629, there is a stable orbit o
length 2 with symbol sequence~4 8!. As the field is lowered
through e'2.629 024 33 the curvature of the free fligh
lessen until symmetric glancing collisions occur. The m
stable outcome consists of three copies of the original o
introducing only two new collisions, and is the stable leng
eight orbit with symbol sequence~2 6 8 4 10 6 4 8!. There is
also evidence of a transition to a stable length 16, and the
stable length 32 orbit, particularly from the Lyapunov exp
nent results in Fig. 12.33

@c# In the elliptic region 2.3,e,2.46 there are two ini-
tial conditions for the~4 10! periodic orbit. One is a hyper
bolic fixed point, the other is a neutrally stable point wi
two zero~i.e., complex! Lyapunov exponents. The neutrall
stable~4 10! orbit is the ‘‘center’’ of the elliptic region. The
emergence of this~4 10! orbit, and thus the elliptic region
can be considered as the collision of a family of hyperbo
fixed points~see Fig. 13!, of which ~0 4 8! and~0 4 10 6! are
the first two members, to form the neutrally stable~4 10!.
The end of the elliptic region can be considered as the
lision between the hyperbolic~4 10! orbit and the elliptic~4
10! orbit. The existence of the elliptic region signals a brea
down in the ergodicity of the Lorentz gas38 as the phase
space is decomposable into two separate regions in w
trajectories remain for all time.

@b# At aboute52.2 the attractor suddenly changes fro
a space filling object to one with a much smaller suppor35

At this point the attractor and repeller become disjo
objects.36 Such a transition has been termed a crisis.37 Al-
though this transition should be observed as a sudden ch
in the value of capacity or box counting dimensionD0 , from
two to something smaller, the numerical difficulties in calc
lating D0 make this a poor indicator of the position of th
transition.35 The information dimensionD1 and Kaplan–
Yorke dimensionDKY change smoothly through the trans
tion, indicating that the attractor is multifractal, but giving n
indication of a transition, see Table II.

In order to find a better indicator of the crisis we retu
to the symbolic dynamic description of a generic trajecto
At the crisis point the symbolic dynamics reduces sudde

FIG. 13. The initialf value for the periodic orbits~0 4 8! and ~0 4 10 6!
which converge to the same initial condition as that for the elliptic~4 10! at
e52.3.

tic
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334 Chaos, Vol. 8, No. 2, 1998 G. P. Morriss and C. P. Dettmann
from ten symbols to five~see Fig. 14!, with the probability of
observing some symbols becoming zero~see Fig. 15!.

By studying the symbolic dynamics the following ord
parameters all give consistent indications of the position
the crises.

~1! Above the crisis a generic trajectory never has m
than one segment opposite the field direction, we term
mesoscopic irreversibility.

~2! The disappearance of the symbols 0 and 5 and 7
~3! The disappearance of backward collisions, where

backward collision is defined in Fig. 16.

E. The dynamical partition function

The partition function has a dual role in statistical m
chanics, it normalizes the distribution function, and also g
erates the thermodynamic properties, as, for example,

p5kT
]

]V
ln Zc~N,V,T!. ~91!

A dynamical partition function for the Lorentz gas has be
proposed39 by connecting the normalization factor in th
POE average formula with the canonical partition functio
Thus

Zd~V!5 lim
n→`

Z~n!~V!5 lim
n→`

(
i PPn

t i exp~2t il i !. ~92!

We observe that this partition function has the dimension
time, but this is analogous to the classical partition funct
for an N-particle system which has the units of action to t
Nth power~the semiclassical partition function has no uni
as \ sets a minimum length scale!. This characteristic time
unit required to make the dynamical partition function a pu
number can be expected to set a minimum time scale.
value of this minimum time scale only affects thermod
namic functions by at most a constant. Chernov40 has re-
cently shown that the partition function formula is exact f
the Lorentz gas, and that the time corresponds to the m
time between collisions.

FIG. 14. At the onset of the crises,e52.2, the possible symbol sequenc
are restricted.

TABLE II. Information dimensionD1 and Kaplan–Yorke dimensionDKY

near the crisis.

Field 2.1 2.15 2.2 2.25 2.3

D1 1.45 1.37 1.30 1.25 1.22
DKY 1.451 1.381 1.321 1.270 1.221
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F. Analytic expressions for the Lyapunov numbers

We have already seen that the evolution of the Lore
gas can then be written as a mapping from surface of sec
to surface of section. We can calculate the stability ma
for a trajectory or orbitJorbit by considering products of free
flight stability matrices and collision stability matrices.33

Thus

Jorbit5)
i 51

n

JM~ i !5)
i 51

n

JC~ i !JF~ i !, ~93!

where the collision stability matrix is

FIG. 15. ~a! Percentage probability of even symbols 0, 2, 4, 6.~b! Percent-
age probability of odd symbols 1, 3, 5.~c! Percentage probability of extra
symbols 13, 14, 18.

FIG. 16. The definitions of backward and forward collisions.
ense or copyright; see http://chaos.aip.org/about/rights_and_permissions
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JC~1!5S 21 2

0 1D ~94!

and the free flight stability matrix is

JF~1!

5S sin u08

sin u0

cos~f12u0!

cos~f12u08!
2e sin u08

sin~f12f0!

cos~f12u08!

1

e sin u0

sin~u082u0!

cos~f12u08!

cos~f02u08!

cos~f12u08!

D .

~95!

Given the trajectory details, (u i ,f i) at the beginning of the
free flight, andu i8 at the end, the Lyapunov numbersL1 and
L2 can be calculated as the eigenvalues of (JorbitJorbit

T )1/2.
The determinant ofJorbit can be calculated from the determ
nants of the constituent matrix factors. Thus for a perio
orbit

det~Jorbit!5)
i 51

n

det„JF~ i !…det~JC!5)
i 51

n sin u i 218

sin u i 21
. ~96!

The x displacement for thei th free flight isDxi5xi2xi 21

5(1/e)ln(sinui218 /sinui21) so the total displacement for
periodic orbitDx is

eDx5(
i 51

n

eDxi5 ln~detuJorbitu!. ~97!

Therefore the Lyapunov exponent sum ruleeDxi5(l i

1l2 i)t i is obeyed for individual periodic orbits.

G. Positivity of the conductivity

For the Lorentz gas in an external field there is a v
simple argument based on periodic orbit theory that sho
that the transport coefficient, in this case the conductivity
strictly non-negative. The average conductivity from the p
riodic orbit expansion is given by

Lxx~e!52 lim
n→`

1

e

( iPPn
DxiL i

21

( iPPn
t iL i

21 . ~98!

At every level in the expansion there are two classes of
riodic orbits: those withDxi50, and those for whichDxi

Þ0. Each orbit withDxiÞ0 has a time reverse, with exact
opposite displacement,Dx2 i52Dxi . The contribution to
the average conductivity for each time reverse pair of or
is

2eDxi~L i
212L2 i

21!52eDxi~e2l it i2el2 it i !

5Dxie
2l it i~12e~l i1l2 i !t i !

52eDxi~12eeDxi !L i
21, ~99!

where the last equality follows from Lyapunov expone
sum rule for individual periodic orbits. AsL i

21

5exp(2l1t) is positive, and2eDxi(12eeDxi) is never
negative, all contributions to the average conductivity a
positive, and hence the average conductivity itself
positive36 ~that is, in the same direction as the field!. The
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observed irreversibility in this microscopically reversib
system is due to the different stability weights assigned
forward and backward periodic orbits, but these stabi
weights are derived from the microscopic~reversible! dy-
namics. This result can be generalized to many particle c
conductivity systems.41 Ruelle42 has recently proposed for
mulas for the entropy production rate for Gaussian therm
stated systems and can sometimes prove that the ent
production is positive.

VI. CONCLUSIONS

We have shown how deterministic thermostating mec
nisms have developed from the arbitrary inclusion of
dampinglike term in the equations of motion, to a set
methods based on firm mechanical foundations, which
tract energy from nonequilibrium systems to achieve
steady state, or change ensembles in equilibrium system
move from The´venin ~constant field! to Norton ~constant
current! ensembles away from equilibrium. The linear a
nonlinear response theory of these thermostated system
also well developed.1

Since the first demonstration that thermostated syst
exhibit phase-space contraction~on average! and that the
nonequilibrium distribution~or measure! is multifractal,43

these systems have been studied as dynamical systems
the usual tools, Lyapunov exponents and generalized dim
sions. One of the most important results from this work is
conjugate pairing rule for Lyapunov exponents. Althou
not valid in general, the conjugate pairing rule demonstra
that the thermostating mechanism acts democratically on
pairs of degrees of freedom. This result is related to tha
Gaspard for open systems.44

Thermostated nonequilibrium systems are dissipat
and have until now been considered as non-Hamiltonian
tems. Now that a class of thermostated nonequilibrium s
tems have been shown to be Hamiltonian, to have a ge
alized symplectic structure, and to satisfy a generaliz
symplectic eigenvalue theorem, their status is equivalen
that of the well-studied case of Hamiltonian systems. A f
ther consequence of this is a variational principle for t
microscopic dynamics which can be regarded as an ex
sion of Hamilton’s principle.

The application of these techniques to the nonequi
rium Lorentz gas illustrates their use. For this system
map out the range of behavior as the field varies, identify
the major generic transitions in such nonequilibrium s
tems. The periodic orbit expansion is used to calculate a
ages, and several results~such as the non-negativity of th
conductivity! are shown to be simple consequences of
periodic orbit approach. Indeed studies of the application
cycle expansions to the Lorentz gas have also led to
provements in cycle expansion methods, as, for, exam
with the introduction of stability ordering.45
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