Chaos Y

Thermostats: Analysis and application
Gary P. Morriss and Carl P. Dettmann

Citation: Chaos 8, 321 (1998); doi: 10.1063/1.166314

View online: http://dx.doi.org/10.1063/1.166314

View Table of Contents: http://chaos.aip.org/resource/1/CHAOEH/V8/i2
Published by the American Institute of Physics.

Related Articles

Field induced gradient simulations: A high throughput method for computing chemical potentials in
multicomponent systems
J. Chem. Phys. 136, 134108 (2012)

Optimization on a three-level heat engine working with two noninteracting fermions in a one-dimensional box trap
J. Appl. Phys. 111, 043505 (2012)

Robust interpolation between weak- and strong-correlation regimes of quantum systems
J. Chem. Phys. 136, 044109 (2012)

The gap equation for spin-polarized fermions
J. Math. Phys. 53, 012101 (2012)

Localized spectral asymptotics for boundary value problems and correlation effects in the free Fermi gas in
general domains
J. Math. Phys. 52, 072106 (2011)

Additional information on Chaos

Journal Homepage: http://chaos.aip.org/

Journal Information: http://chaos.aip.org/about/about_the_journal
Top downloads: http://chaos.aip.org/features/most_downloaded
Information for Authors: http://chaos.aip.org/authors

ADVERTISEMENT

Explore AIP’s new
open-access journal

AIP

Article-level metrics
now available

Join the conversation!
Submit Now Rate & comment on articles

Downloaded 26 Apr 2012 to 137.222.137.12. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions


http://chaos.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Gary P. Morriss&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Carl P. Dettmann&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.166314?ver=pdfcov
http://chaos.aip.org/resource/1/CHAOEH/v8/i2?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3693328?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3681295?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3679657?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3670747?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3610167?ver=pdfcov
http://chaos.aip.org/?ver=pdfcov
http://chaos.aip.org/about/about_the_journal?ver=pdfcov
http://chaos.aip.org/features/most_downloaded?ver=pdfcov
http://chaos.aip.org/authors?ver=pdfcov

CHAOS VOLUME 8, NUMBER 2 JUNE 1998

Thermostats: Analysis and application
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Carl P. Dettmann
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(Received 21 November 1997; accepted for publication 27 February) 1998

Gaussian isokinetic and isoenergetic deterministic thermostats are reviewed in the correct historical
context with their later justification using Gauss’ principle of least constraint. The -Ntsever
thermostat for simulating the canonical ensemble is also developed. For some model systems the
Lyapunov exponents satisfy the conjugate pairing rule and a Hamiltonian formulation is obtained.
We prove the conjugate pairing rule for nonequilibrium systems where the force is derivable from

a potential. The generalized symplectic structure and Hamiltonian formulation is discussed. The
application of such thermostats to the Lorentz gas is considered in some detail. The periodic orbit
expansion methods are used to calculate averages and to categorize the generic transitions in the
structure of the attractor. We prove that the conductivity in the nonequilibrium Lorentz gas is
non-negative. ©1998 American Institute of Physid$1054-150008)01602-4

Deterministic thermostats have been used extensively in tions minimize the effect of boundaries and allows the simu-
the molecular dynamics simulation of equilibrium and lation of homogeneous systems. The homogeneity is particu-
nonequilibrium fluids for the last 15 years!? Their use in  larly useful as it means that it is easy to determine the state
that context has seemed natural to many workers, but point. If we consider a possible experimental setup then the
those from different backgrounds have often treated system is maintained at fixed temperature by placing it in
changes to the basic equations of motion with some sus- contact with a “large” heat reservoir. Clearly this introduces
picion. Today with a much better understanding of un-  boundary effects as the heat is transported from the place
thermostated nonequilibrium systems’ it is possible to  where it is generated to the reservoir, and associated with
see thermostated systems in general as a different and this flow is a temperature gradient. Once a temperature gra-
complimentary approach to the study of nonequilibrium  dient is produced there will be a density gradient to maintain
states. Here we review the development of the thermostat mechanical stability, and it becomes difficult to determine
approach from its beginnings to recent developments that the state point to which the measured properties correspond.
have revolutionized our understanding of nonequilibrium One of the first realizations for the thermostated systems
systems. was that the method has some very important advantages for
equilibrium molecular dynamics. The natural ensemble for a
system evolving under Newtonian equations of motion is one
I. INTRODUCTION where (N,V,E) are fixed. However, using a thermostat it is

The fundamental question that is asked when studyin@OSSibIe to simulate a canonical ensemble with\(,T)

nonequilibrium systems, in particular when calculating transx€d- Many other ensembles can also be simulated using the

port coefficients, is the following. Consider a single systemi€chniques developed for thermostats, including constant
d constant enthdiystems.

or an ensemble of systems which are unperturbed initiallyP"¢SSureé an en o
(see Fig. 1 If a constant steady external field is applied To use a deterministic thermostat to maintain constant
some arbitrary time origin what is the subsequent behavior temperature it is necessary to have a phase variable expres-

of the system or the ensemble? We may be interested in t |

wlon for the instantaneous temperature. At equilibrium we

transient response, or simply the steady-state response in thgn Use the equipartition theorem to define the kinetic tem-
long time limit. Regardless of the details of the perturbation,Perature, so that
the physical situation is the same. The applied external field N
does work on the system, and this work is converted to heat, —NkgT== miviz- (1)
which must be removed to achieve a steady state. Determin- 2151
istic thermostats are a r_latural met_hod t_o_remove this_ heat.-l-he thermodynamic temperature can be defined using

In molecular-dynamics calculations it is almost universal
to use periodic boundary conditions. If the number of par- 1 S
ticles in a fixed volume is small, that is significantly lessthan T~ 5g| - @
10?2, then the fraction of particles near a wall is similar to NV
the fraction in the bulk, and the simulation results will not The identification of the temperature in the a microcanonical
reflect those of an infinite system. Periodic boundary condiensemble has been considered recehtly.

1054-1500/98/8(2)/321/16/$15.00 321 © 1998 American Institute of Physics
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Applied Field — ——p ral fluctuations in kinetic energy thus can be either nega-
1.5 T T tive or positive depending upon the instantaneous value of
, {ri,r;}. These equations were proposed by Hod\vand the
i same equationi3) with a damping term chosen to keep the
fos L ] internal energy constant, was proposed by EVamstially
the use of damping terms had no theoretical justification. It
0 was a year before the connection with Gauss’ principle was
made®
0.5 1 ]
2 -1 0 1 2
t
A. The fundamental equations of mechanics
Current —— 10 . . .
1.5 Pars'1°constructs mechanics using one of three different

) )
forms of what he calls thtundamental equatiorConsider a

1 general dynamical system withh equations of motion, sub-

, ject to m constraints. We need to introduce the forces of
R 7 constraintf;, so the equations of motion becomgx;=F;
+f,. If we consider a virtual displacemerd;, at fixed

0 : o . . .
time, which is consistent with the constraints, and that the
05 L I forces of constraint; do no work on the system, we obtain
2 -1 0 1 2 the first fundamental equation

FIG. 1. The nonequilibrium “thought experiment.”

N
izl(mi.).(i_lzi)‘sxizoa (5

The definition of the temperature away from equilibrium
is problematic. The kinetic and thermodynamic temperature@hich is valid for an arbitrary virtual displacement. This is
would be the same if the postulate of local thermodynamidi’Alembert’s principle, discovered by Lagrange in or about
equilibrium was exact. However, we know that the energy,1760™
pressure, enthalpy, etc. are all functions of the thermody- To obtain thesecondform of the fundamental equation
namic forces which drive the system away from equilibrium,we consider from the same configuration, and at the same
and so presumably is the entropy. It is extremely unlikelyinstant, two different velocities for the systexm,x,,... Xy
that the field dependence of the entropy and the energy a®nd X;+AX;, X+ AX,,... Xy+AXy. The (finite) velocity
precisely those required for the exact equivalence of the kivariationsAxy,...,Axy then satisfy thesecondform of the
netic and thermodynamic temperatures for all nonequilibfundamental equatiofJourdain 1908
rium systems. The philosophy that is usually adopted is that
the kinetic temperature is a convenieoperational state
variable to fix to obtain a steady state, and that there is a
unique correspondence between the kinetic temperature and

the true temperature. In this form both the configuration and time are given, and

we consider the differencither finite or infinitesimal be-
Il. CONSTRAINT DYNAMICS AND THERMOSTATS tween any two possible velocities for the system.

Thermostats were first introduced as a practical method 1he third form of the fundamental equation is obtained
of performing nonequilibrium computer simulations at aPY considering two possible motions with the same configu-
fixed state point. Only later was it realized that these device§ation and velocity at time, but with different accelerations,
may have a fundamental role in the statistical mechanics of _ @hd Xx+Ax.  The (finite) acceleration variations
many-body systems. The first deterministic method for therAX1,---,AXy satisfy the equations for the virtual displace-
mostating molecular-dynamics simulations was proposed sfnént, and we may write
multaneously and independently by Evans and Hoover. Their

N
Zl (mix;—F)Ax;=0. (6)

method was to introduce a damping term into the equations h . .
of motion. i ! Z’l (mix; —F;)Ax =0 @)
mif;=F—amjr;, 3
o (used by Gauss and Gibb§ o summarize, in the first form
where the value of the damping is controlled dyvhere we consider an infinitesimal virtual displacement from a
EiN:lFi e given configuration. In the second form the configuration is
A= SN2 (4 not varied, and we use the difference between any two pos-
=1 sible velocities. In the third form both coordinates and ve-

This value ofa keeps the kinetic enerdyr kinetic tempera- locities are unvaried, and we use the difference between any
ture) exactly constant. The damping term removes the natutwo possible accelerations.
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unconstrained Gauss’ principle states that the trajectories actually fol-
A acceleration lowed are those which deviate as little as possible, in a least-
e ﬂ squares sense, from the unconstrained Newtonian trajecto-
ries.

The projection which the system actually follows is the
one which minimizes the magnitude of the constraint force.
This means that the force of constraint is parallel to the nor-
mal to the constraint surface. The Gaussian equations of mo-
tion are thenr=F—\n where \ is a Gaussian multiplier
which is a function of position, velocity, and time.

FIG. 2. The geometric interpretation of Gauss’ principle of least constraint. ~ TO calculate the multiplier we use the differential form
of the constraint function. Substituting for the acceleration

n —kn

acceleration
space

constrained acceleration

»

o ] we find that
B. Gauss’ principle of least constraint
Suppose the position and velocity of the system are )= n-F S_ (12
given, and consider the square of the curvatDreegarded n-n
as a function of the accelerations Notice that the original constraint equation is never used
1 N £\2 explicitly. Gauss’ principle only uses thifferential form of
C(X)zéz m(s'(i__'> ) (8)  the constraint equation, hence the precise value of the con-
i=1 m strained quantity is undetermined. The constraint only acts to

The values ok considered are those that are possible for theéStop its value changing. . . .
system. Gauss'’s principle of least constrHistates that the From an operational point of view a much simpler deri-
actual acceleration is that for whidh is a minimum. If we  Vvation of constrained equations of motion is possible using

consider a variation ok; to X;+AX;, the proof is straight- Lagrange multipliers. Gauss’ principle reduces to finding the
forward minimum of C(r), subject to the constraint. [B(r) is the

acceleration dependent form of the constraint, then the con-

N N
strained equations of motion are obtained from

1

AC=3 2, mi(Ak)*+ 2, (mif%i—FA%;.
J

If X; is the actual physical acceleration then the last termis 57 (C—AG)=0. (12

zero using the third fundamental form, and any variation o

about; increase<C. To find the equations of motion for a It IS €asy to see that the Lagrange multiplieis equal to

given system we need only the less powerful result @a ~ Minus the Gaussian multiplier.

stationary for the actual motioAC=0. Notice that in the

application of Gauss’s principle we are concerned with the

simple algebraic problem of minimizing a quadratic form, p. Gaussian iso-kinetic thermostat ~ (GIK)

the curvatureC. . . . .
We illustrate this method by deriving equations of mo-

tion for which the kinetic energy is a constant of the motion.

C. Geometric derivation . L
The constraint function is

For an arbitrary constraint problem we can write the
constraint as a function of positions, velocities, and time

g(r,r,t)=0, 9
whereg is the particular functional form. If this equation is Differentiating once with respect to time gives the equation

differentiated with respect to time, we obtain an acceleratiorfor the constraint plane
dependent constraint equation, N

n(r,r,t)-r=s(r,r,t). (10) G(ri'fi’fi’t):;mifi"r‘i:o' (14

N
. 1 .

We refer to this equation as tiuéfferential constraint equa- - tperafore to obtain the constrained Gaussian equations we

tion and it is the equation for. theonstraintplane.n is the minimize the curvatur& subject to the constraint equation
vector normal to the constraint plane asds the shortest gjf 4). That is

distance between the plane and the origin. In the absence

the constraint the system would evolve according to New- g9 (1N
ton’s equations of motioksee Fig. 2. This trajectory would 67_"| (§j=1 mj(
in general not satisfy the constraint. The only accelerations

which do continuously satisfy the constraint are those whichThis gives the thermostated equation of motion to be(Bx.
terminate on the constraint plane. To obtain the constraineBiliminating r; using the differential form of the constraint
acceleration we must uniquely project the unconstrained aequation(14), we find that the multiplier is again given by
celeration back into the constraint plane. Eq. (4).

F— )
m

2 N

Downloaded 26 Apr 2012 to 137.222.137.12. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



324 Chaos, Vol. 8, No. 2, 1998 G. P. Morriss and C. P. Dettmann

E. The GIK thermostat for external fields Thus the transport coefficient can be calculated in two ways;
_either directly from the average current using E23), or

Using Gauss’ principle, the isokinetic equations of mo . L
r{rom the average thermostating multiplier:

tion for a system subject to an external field can be writte
as,

. P I _

qi:E'JrCi,:e(t), (16) F. The Gaussian isoenergetic thermostat  (GIE)
It is easy to show that if Gauss’ principle is used to fix

pi=F;+D;Fa(t)—ap;, (17 the internal energy, then the equations of motion are the

whereC; andD; are phase variables which describe the Cou_same as those in Eqele) and (17), but the thermostating

. multiplier is now
pling between the system and the external ftéldThe P

Gaussian multiplier is =N ((1my)D;-p;—Ci-Fi) - 25
a= .
_ N E (t)= Ei(llmi)Fi-pi EIN:l(:I'/rnl)pl2 ¢
a=aot arFe(t)= Ei(llmi)pi2 In the isoenergetic case it is clear that the multiplier vanishes
when the external field is zero. This is as expected since in
2i(1m;) ;- pi Fo(t). (18) the absence of an external field, the total energy is conserved.
Ei(l/mi)pi2 € Gauss’ principle can also be used to fix the value of

" , . other phase variables in a many particle simulation, for ex-
In writing these equations we are assuming the total momen-

tum is fixed at zero. It is important to keep in mind that theample, the pressuré.Indeed, one approach in nonequilib-

expression for the multiplier depends explicitly on the exter- UM systems has_been_to use Gauss ernm_ple to move be-
. L . tween constant field simulationghe Therenin ensemble
nal field and implicitly on time. Therefore we can separate . .
L : o and constant current simulatior(¢he Norton ensembje
the multiplier into field-dependent and field-independent A
artsan o However, there appear to be cases where Gauss’ principle
b 0 1 . does not give physically meaningful results. For example, if
If we define the internal energy to be ST .
one uses Gauss’ principle to maintain a constant heat flow,
N pi2 then a comparison with linear response theory shows that the
Ho=i21 om TP (19 Gaussian equations of motiarannotbe used to calculate
N thermal conductivity. The correct application of Gauss’
then we can characterize the energy flow to and from th@rinciple seems to be limited to arbitrary holonomic con-
system. If the system is perturbed by an external field, thestraints and to nonholonomic constraint functions which are
that field does work on the systefaupplying energy and  homogeneougunctions of the velocities.
that energy must be extracted from the system through the
thermostat in order to maintain a steady state. Differentiating
Eq. (19) and substituting the thermostated equations of Moy The GIK distribution function
tion (16) and(17) gives

The ergodically generated equilibrium distribution func-
Ho=—J(q,p)Fe(t) —3NkTa(q,p), (200 tion f for GIK dynamics can be obtained by solving the
Liouville equation** Here the distribution function i$(T")
=f(q,p)=f(qy,....9nP1,---,Pn) Where the phase poirt

1 completely describes the state of a siniylgarticle system.
J(a,p)= _,21 — Pi-Di(a.p)—Fi-Ci(a,p) |- (21)  consider the total time derivative 6f then from the Liou-

' ville equation, we see that

If a steady state is achievéfbr a time-independent external N N
field) then we expect a balance between the average energy ﬁ: _f 9 T=—+ S g+ S K T
supplied to the system by the external field, and the average dt ar =1 Jq i =1 9p; Pi-
energy removed by the thermostat, so tftdg)=0, and (26)

<|'_|0>: —(3)Fo—3NKT(@)=0. 22) At equilibr'ium the Ganssian.isokinetic equgtid& and(4)
can be written as a pair of first-order equations as

Then we can define a field-dependent transport coefficient by D

(J) Qizal, pi=Fi—ap;, (27)
= (23)

Fe

where the dissipative flud(q,p) is defined by
N

a(Fe) == )
, , , 2i(Um)Fi-pp —P
which may be related to a Navier—Stokes transport coeffi- a= W: K. (28)
cient ayg in the limit F.—0. From Eq.(22) it follows that ! v 0
the field-dependent transport coefficient can also be given bywhere® is the time derivative of the total potential energy.
Notice that they; equation is independent gf . Computing
3NKT ; X )
a(Fo)=—5 (a). (24)  the second term in Eq26) we get N identical terms from
Fe the 3N derivatives,a(d/dp;) - p;, but using conservation of
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total momentum only B — 3 of these terms are independent. N 7’12 N p 1
We also get 8l terms fromp;- da/dp; which sum to give <2 <2 sm —(g+1)kBT<§>. (35)
—a. Thus Eq.(26) becomes =1 =1
df N (3N—4) . This suggests a particular dynamical average that is equal to
T —le o (api)=(N-4)af=——— f. the temperatur&gT and hence suggests the general form for
N ' 0 (29 the dynamical average of an arbitrary phase varidble
Integrating both sides with respect to time gives [1/(g+ 1)(=N,1/s pPm;)
f(T)= ex — BP(I")]S(K(T') —Ky) 30 5 (1/s)
7 Jdr exi — BO(I)]6(K(I) —Ko)’ ) _ Jo(dN/9)AMN) 29
where we identify3= (kgT) "= (3N—4)/2K,. This is con- SN IVE

sistent with the fact that the GIK equations have four con- _ o _ .

stants of the motion; the kinetic energy, and the three comComparing this with the usual physical time average sug-
ponents of the total linear momentum. We call this gests that the phySicaI time is related to the Hamiltonian time
distribution the isokinetic distribution function and it has a by dt=d\/s. This type of variable transformation, where
very simple form: a microcanonical distribution of kinetic both the momenta and the time changg ()= (p; ,t), will

degrees of freedom, and a canonical distribution of configube used many times in what follows.
rational degrees of freedom. To calculate the equilibrium distribution function for the

NoseHamiltonian we use the fact that for an ergodic system,
the extended system is microcanonical. Hence from(&d.

H. The Nosé Hamiltonian for the canonical ensemble N

The Nosemethod® considers an extended system with 7= 1| dq dr ds dpsg( 2 i2+(b(q)+
an additional degree of freedosn which acts as an external N!

heat reservoir, interacting with the system through the ve-

locities of the particles. The potential energy that Nosese +(g+1)kgT In s— E) , (37
to associate with this new degree of freedom was (

+1)kgT In s, whereg is related to the number of degrees of

freedom of the system. It is essentially the choice of theVhereq and m are N-dimensional vectorsg=(q;...,an)
potential fors which leads to dynamics which generate the@"d #=(1,...,m\). If we change variables fromr to p,
canonical ensemble. The Hamiltonian foparticles moving  Wherep=(p1,....pn) andp;=-;/s for all i, then

in a potential® (which may contain both interactions be-

P
2Q

; . 1 2
tween the particles and external figlds _ = 3N (
Ny p2 4 N dg dp ds dps° 6| Ho(qg,p) + Q
Hn (g, 7,5,ps:0) = 2, +®(q)+ 55
s =1 2m32 2Q +(g+1)kgT In s—E), (38
+(g+1)kgT In s, (3D

where Hy(q,p) = ElpI 2m;+®(q) is the usualN-particle
Hamiltonian. The integral oves can be performed as the
only contributions come from the zeros of the argument of
the delta function. If G(s)=Hq(q,p)+p2/2Q+(g
+1)kgT In s—E, thenG has only one zero, that is

whereQ is an arbitrary constant corresponding to thass

of the reservoir. The time variable which appears in the
Hamilton equations of motiofbut not on the right-hand side
(RHS of Eqg. (31)] need not correspond to physical time.
The equations of motion generated by this Hamiltonian are

dgi _ =  dp; Ho(q,p) +p3/2Q—E
o™ me K—Fi ) (32 sozexp( G+ DkgT (39
N
ds_ps dps S 7l (g+1)kgT (33  Using the identity5(G(s))= &(s—s0)/G'(s) it is easy to
d\ Q' d» & ms’ s ' show that the integral oves gives
Eliminating the variablgg from the equations of motion, a 1 1
single second-order differential equation fois obtained. If Z= f dgdp dp —————
the system is at equilibrium, the average force ondlo®- N (g+1k
ordinate must be zero, so that ;{ 1 3N+1 p2 )
xXexp— ——=——— | Ho(q, +——E 40
d2s\ 1 /& @ (g+1)keT o o keT g+1 | Hol@P 55 ) .
d\?/ Q\& ms® s s (34)

Here the choiceg=3N cancels the factor inside the expo-
If we choose the Hamiltonian momenta to be related to thenent. The integral oveps is the infinite integral of a Gauss-
physical momenta byr,=sp;, then ian and the result is
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1 2mQ\ Y2 1 If we takeg+ 1=23N, then from Eqs(45) and(46) we find
Z= (BN+1) | kgT ) NT dq dp that the equilibrium distribution function is the extended ca-
. nonical distributionf., where
Ho(a,p) — E)
xexr{—— . (41) exd — B(Ho+ 109)]
keT fo(,0)= : (47)

1 2
If the variablesq, @, s, andpg are distributed microcanoni- JdT" dZ exil = B(Ho+2Q¢%)]
cally then variableg) andp are canonically distributed. In the Hoover representation of the equations of motion, the
scaling variables has been eliminated so the number of de-
grees of freedom of the system changes fra3L to 3N.

I. The Nosé —Hoover isokinetic thermostat ~ (NIK)

. . . . lll. LYAPUNOV EXPONENTS FOR THERMOSTATED
To compute averages in real physical time the equanongYSTEMS

of motion can be rewritten in terms of the physical variables

a, p, andt, eliminating the Hamiltonian variables, s, p;,  A. The Lyapunov sum rule

and \ entirely® We use the same transformation as above, One of the simplest connections between Lyapunov ex-
m=sp; anddt=d\/s, to rewrite the Nosequations of mo-  yonents and transport coefficients is the Lyapunov sum rule.

tion as For a GIK thermostat, and field-dependent equations of mo-
dg; p dp tion, the Liouville equation is given by Eq29) as long as
qGom H:Fi—gpi, (42)  the field does not change phase-space volume, or equiva-
! lently that the adiabatic incompressibility of phase-space

ds AT is satisﬁed1 That is
qr ¢S
dz 1/ K(p) 0‘1' )

Z ——(g+1)k T ( 1), .

i= B Ko For a comoving phase-space volume element locatdd at

the number of ensemble members within the elemént
does not change, so that the only changé is due to the
changing volume of the element. So

whereKy=(g+1)kgT/2 is the value of the kinetic energy

corresponding to the target temperatufép) is the instan-

taneous value of the kinetic energy,is a relaxation time

which is related to the mass of tisedegree of freedoma F(T1)= No _o {_2 it

=Q/2Ky) and the multiplier{=ps/Q. The motion of the V(t) V.

system can now be determined without referencs.tt is

an irrelevant variable which can be ignored. The variable

d//dt is a function ofp only, so the complete description of d

the system can be given in terms of the varialgjeg, and/{. dt In f=— EI Ai=3Na+0(1), (50

Notice that a NosésoenergetidNIE) thermostat can be con-

structed from Eq.(42) and (43) by replacing K(p) by  Where both\; and « are local properties of the trajectory

E(q,p), andK, by Ej. segment. Combining these and time averaging, we find that
The N-particle distribution functionf(I',{) generated the field-dependent transport coefficient is related to the

dynamically by the isokinetic NoséHoover equations of Lyapunov exponents; by

motion can be obtained by solving the Liouville equation KT

written in terms of physical variables p, and{. The Liou- a(Fo)=— 2 E Ni+0O(1). (51

ville equation for the total time derivative &{I",¢) is e !

(49

where the\; are local expansiofor contraction rates. Thus

The evaluation of the order one terms can often be done
ﬂ: - f(i T+ 9 é«) (44)  exactly, as, for example, for planar Couette flbw.
dt ar ac >
From the equations of motiof#2) and(43) it is easy to see B, The conjugate pairing rule
that ¢ is a function ofp, and hence independent ¢f The
only nonzero contribution to the right-hand side comes fron})e
the p dependence gb, so that

The conjugate pairing rule is a more subtle connection
tween Lyapunov exponents and transport coefficients,
which is not true in general. However, for those systems
where it is satisfied, it shows that the thermostat acts demo-

dt In f=3N¢. (45 cratically on each pair of degrees of freedom.
The conjugate pairing rule states thakifs a Lyapunov
Consider the time derivative of the quantiy+Q¢? exponent therC—\ is also an exponent, wher@ is the
1 dHO d¢ same for all pairs of exponents. For Hamiltonian systé€ns
gt | Hots sz) +QL gy =~ (g+1)¢kgT. =0
(46) Ai+N_=C. (52
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@ q=p, p=—-Vo—ap=F—ap, (53
I L DL DL R LR L
' 7 PV (54)
[ ggge® ¥R ="y
2f L gppftRYY ] i
N rE o y=0 ] where  g=(dy,...,0xn) and  p=(pi1,..-.Pn) are
O x Y=£ y 3N-dimensional vectorsd is a scalar potential that gener-
Sl IR ates the total forc€.
20l 8259, . p There are two time-dependent matrices which can be
s Tl IDRE 189 g used to describe the evolution of a linear perturba@brin
A T tangent space, and they both depend on the initial phase-
0 5 10 15 20 space point’. These are the infinitesimal and finite evolution
# matrices,T andL, respectively, defined by
| ) 5f(t)=T(t)5F(t), SI'(t)=L(t)sr(0). (55
E T L B L B AL
i : The matrixT is usually obtained by differentiating the equa-
O o o oasoreRnosas ey tions of motion, however, we will evaluate it in a restricted
P = subspace of the tangent space, which is slightly more com-
Ak : ] plicated.L can be obtained fror as the solution of
sE e L(O)=T(t)L(D), (56)
4 _ v ﬁz _ with the initial conditionL (0)=1. The Lyapunov exponents
. are defined as the logarithms of the eigenvalued oivhere
_5 TR S YR WA AN YO WU TN SN AN ST T S VN AT ST S ST W .
0 5 10 15 20 A=lim (LT(t)L(t)"2. (57)
# t—oo

FIG. 3. The Lyapunov spectrum for eight particle Couette flow in three-The comoving basis vectors, which span the tangent space
dimensions using theLLop algorithm and a GIK thermostat for reduced containingdI’, rotate with the motion of the trajectory so as
strain rates of 0, 1, &Ref. 19. (&) The Lyapunov spectrumib) the sum of 14 ramain perpendicular to the direction of increasing kinetic
conjugate pairs versus pair number. . . . .
energy. This means that the finite time eigenvalues may be
different to those obtained with fixed basis vectors, but in the

The conjugate pairing rule was initially a result obtainedIong time limit the re_sults are the same. W? introducé 6
—2 orthonormal basis vectors, none of which are exactly

numerically (from the data in Fig. Bfor the Lyapunov ex- .
ponents of four and eight particle simulations of planar Cou_along the flow, and demand that a pgrturbaﬁhbe in the
ette flow using thesLLOD algorithm and GIK thermostaf:! space spanned by these vectors. This effectively means that

Later a proof of the conjugate pairing riflén the limit as ¥veba:je ta_kltn? 1P(é)rl]ncar!aect;onh.aﬂihconsm:er;)ngd tthe_ petr-
the number of particlebl—~ was obtained, but that argu- urbed point to be the one at which he perturbed trajectory

ment is flawed. Below we present the correct derivaffon. intersects with the B—2 dimensional space spanned by the
vectors. In general, the time elapsed along the perturbed tra-

jectory t’ runs at an infinitesimally different rate to We
C. Proof of the conjugate pairing rule scale the time so thgt-p=1, and choose one unit vector
€,=p. At an initial time, arbitrarily choosel8—1 unit vec-

Here we prove the result exactly for a restricted case . . X
that is, isokinetic thermostats and forces derivable from éorsq which together witf, form an orthonormal set it

potential®, for any value ofN. There is an important dif- space. This set of vectoes (wherei =1,..., N —1) is used in

oth position and momentum space to form the required ba-
ference between the present result and past statements of the . . o
: o ) - . sSIS. The separation of phase space into position and momen-
conjugate pairing rule in that here we explicitly single out

- . . m while retaining th mplectic str re is wh
two trivial exponents(equal to zerp which do not pair. tum space, € retaining the symplectic structure is what

These are due to the conservation of kinetic energy, and tin;gakes this proof possible in the isokinetic case. The pertur-

. ations are taken from theNs- 2-dimensional subspace de-
translation symmetry. They sum to zero, and so should n

be included with the other pairs of exponents, which sum toIned by the two sets of . This means that there are no

: : L . perturbations in the direction of increasing kinetic energy
a different constant. Excluding these directions, we deflné) . . .
the time evolution in a reduced\6- 2-dimensional space, in and none directly along the flowhich contains a compo

which pairing appears exactly. nent ofe, in position space Now, the equations of motion

The GIK equations of motion in an external field take In 6N-dimensional space may be written as
the form given in Eq(27), whereF is the total force given as dq dgp . N¢°
a sum of interparticle forceB;,; and the external fieldey;. a=p, T ;1 f-eq, (58)
Transforming these equations to remove the mass, wging
=qm;, pi =pi /\Jm;, and F =F/ Jm; then removing the wheref=—V ¢. If we choose, the unit vectors to have equa-
primes, gives tions of motion
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f-el eldt

-f-eleodt

FIG. 4. The basis vectors for one particle in three dimensions are parallel

transported along the trajectory.

e=—f-eg (59)
then the basis remains orthonormal as forialsee Fig. 4
The perturbed trajectoryg(,p’) is given by

3N-1 3N-1

a'=q+ 2, doe, p'=p+ X opie (60)
with equations of motion

do’ _ odp’ UG

FTaLE W—; f-eq. (61)

Heref’ is the value off at the perturbed coordinates,
3N—-1

f'=f+ > 8q;Vf (62)
=1

G. P. Morriss and C. P. Dettmann

submatrix is symmetric. To prove the conjugate pairing rule
we need the symplectic eigenvalue theotefi which we
outline below.

Definition 1: The T matrix is infinitesimallya symplec-
tic if

TI+IT=—aJ, (66)
where
0 |
=0 -

Definition 2: The L matrix is globally x symplectic if
ulTIL=1. (68)

If we consider K(t)=LT(t)JL(t), note that K(t)
=—aK(t). Solving forK, given thatK(0)=J, we find that
M is related toa by

,u=exp( fota(s)ds).

Theorem: a-symplectic eigenvalue theorem.

If matrix M satisfiesaMTIJM=J for some finitea, and
if xis an eigenvalue dfl, then (ya) ! is also an eigenvalue
of M.

PROOF:

We note that ify is an eigenvalue oM, then deti/
—x=0, andMT has the same eigenvalues Ms The de-
terminant of a product is equal to the product of the deter-
minants and defj=1. Therefore

de(M— x1)=0=de{M"IM—yM'J)=0
=defa 1J—yMTJ)=0
=def((ax) 11=MT)xJ)=0
=det(ay) H1-MT)=0
=dei(M —(ay) I)=0.
QED

Applying this result toM =LTL, wherea= u?, we find that
for each eigenvalug;>1, there is anothery®y) 1. The

and thee' are new(arbitrary) unit vectors perpendicular to Sum of the logarithms of this pair of eigenvaluesLdi is

p’. We choose the orthonormal dét=1,...,(3N—1)]:

&=p', €=6—0pi&. (63)
Then to first order is
80 = op; ,
q; = op; 64)
3N-1

Spj== 3, (ViV;e+(f-e)(F-e))o0,—adp;.

From these equations, the infinitesimal evolution matrix MYy all

be read off as

T:(nj —Ial>’

where each of the elements aré\(3 1) X (3N—1) subma-
trices. O is the zero matrix and the identity matrix. The
crucial point in the derivation is that from E¢64) the M

(65

t
2N t+2N_t=In X+|n(M2X)—1=—2f a(s)ds, (69
0

which is clearly independent of which pair of eigenvalues we
chose.

t
Ae+HA_= —1/tf a(s)ds=—{a);.
0

(70)

This result applies to any trajectory segment, no matter how
if the comoving basis set is used. Finally, we take the
t—oo limit. The result is that any pair of Lyapunov expo-
nents(except the trivial zergssum to—{a);. An important
corollary is that, if there is an invariance in the equations of
motion leading to a zero exponent, the conjugate exponent is
not zero as in the Hamiltonian case, bufa), . This proof is

valid for any number of particles moving in a potential
which may contain both external terms and interactions be-
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tween the particles. There is still no proof of conjugate pair- N 2 N N 2

ing for sLLOD dynamics where it was first observed numeri-  He=2, —+®;(q)— > CizF=2, —— +d(q).

cally. Indeed, now there is a suggestion that conjugate =1 2m =1 =1 2m

pairing does not hold exactly f@LLoD.? 7D

It is clear that the designation internal and external is not

necessary as the two terms may be grouped together to give

a single potentiadp. If we introduce an isokinetic thermostat

this remains the case, but an isoenergetic thermostat distin-
The NoseHamiltonian equatiori31) is written with vari-  guishes between the two, conserving the sum of the kinetic

ables @,,s,ps,A) which satisfy conjugate pairing with energy andb;,;. The response variable is the color current

each pair summing to zero. However, the equations of moeensity

tion may be written in terms of the physical variables N

(q,p,¢,t) as Eqgs.(42) and(43). In this form, it is apparent 3 :i 2 o7

that ¢ acts like the Gaussian multiplier. In this representa- zve

tion the equilibrium distribution is canonical in the system

variables wherg+1=3N. We note that the Lyapunov ex- Scaling so that the magnitude of the momentum vector is one

ponents may depend on the variables used to define trves

D. Pairing of Lyapunov exponents for NIK dynamics

(72)

phase space if the equations relating different coordinate sys- d d N
tems involve exponential functions of time. The total phase- G_ 9o 0 = 2 D

. L. . i Fi—ap;, «a F-pi, (73
space contraction, which is given by minus the sum of the dt dt i=1

Lyapunov exponents, is proportional to the averagesof where the total force i;=—d®/dq;. In these variables,

which is nonzero for a nonequilibrium steady state. Since th?he total kinetic energy is normalized to 1/2. Now we come

sum of the exponents is less than zero, it is clear that th . o
ponents - . ?o the central result, a one parameter family of Hamiltonians
exponents are quite different from the Nosdues. In fact, it R/vhich generate these equations of mofdn:

has been shown that the conjugate pairing rule holds for NI
thermostaté$* Numerical simulations also suggest that the 1 N
conjugate pairing rule holds for isoenergetic Gaussian ther-  Hp(q,m\) =5 eFHLP@ n‘iz—z elB-be@ (74
mostats(GIE). =1

From this Hamiltonian the equations of motion are

d oH

IV. HAMILTONIAN FORMULATION OF THE GIK Y gi=—=eP" V¥ =(ePm)ef?, (75)
THERMOSTAT o

One of the most surprising results is that there is ai o JH
Hamiltonian formulation of the GIK thermostat. Related to d\ ™ 4
this is a variational formulation in terms of geodesic motion 1 9®
in a curved space. The existence of a Hamiltqnian permits a == 5% BVl (B4 1)e2‘1’2 wiz—(,B— 1)].
correspondence to be made between Gaussian thermostated Qi '
systems, and other Hamiltonian dynamical systems, so that (76)

both can be treated on a similar footing. This permits state-

ments to be made about the conservation of phase volum¥Ve are now free to choose the connection between Hamil-
and the symplectic structure of phase space, for thermostaté@nian variables(q,m,\) and physical variablesg(p,t).
systems. An obvious question is how the phase volume corfFduation(75) suggests a particular choice

servation of a Hamiltonian system is reconciled with the fact

that thermostats cause phase-space contraction on the aver- —=ef® and p,=e®s,. (77
age, leading to steady multifractal distributions and entropy

production in a nonequilibrium system? The apparent contrag; a5 the physical kinetic energy is equal to WS,
diction is resolved by noting the distinction between physical— 1 3nd hence the conserved value of the Hamiltonian is
and canonical momentan analogy with a charged particle zero. Combining this with Eq76) gives the GIK equations

in a magnetic field Phase-space volume is conserved wheny mation (73).

written in terms of canonical momenta, but these areé not  The phase-space contraction factor in the canonical vari-
simply proportional to the physical momenta. ables is, of course, unity. Thus for the simplest case0 in

Consider the color conductivity algorithm — for \yhich the physical and canonical times are the same, the
self-diffusion’ where there areN particles, in periodic constant phase-space element is

boundary conditions, interacting via a short-range potential

®,.,. Half of the particles have a positive color chamgeand dI'=d3Nqd®N78(H—E)

half have the opposite chargec, which only interacts with N

the external coIor_fieIdF. The Hamiltonian for thigunther- :Ze—(sN—1)<D(q(t))d3qu3Np5( Z piz—l) , (79)
mostatedl system is i=1
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with E=0. From this the physical phase-space contraction

factor [in the variables(g,p)] is seen to be ex3N

—1)A®) whereAd is the change inb(q(t)) between two

different coordinate sets corresponding to two different

times. This is easily shown to be the time integral of the O
phase-space contraction rat 3N— 1)« obtained directly

from the equations of motion. Also the nonequilibrium Ka-

wasaki distribution functioff can be derived from Eq78).

The value of B is completely arbitrary, and does not
affect the equations of motion, however, there are three par-
ticular values ofg in which the canonical variables have a FIG. 5. The Lorentz gas showing the “central” scatterer and the surround-
simple interpretation. Hamiltonians with differeftare not  ing hexagonal boundary which tiles the plane.
related by any of the usual types of canonical transformation,
since the time variables differ in each case.

(1) For 8= —1, the Hamiltonian reduces to kinetic plus compact submanifold. In our case, enforcing periodic bound-
potential energy. The thermostated equations are thudfy conditions results in abrupt changesdnat the bound-
equivalent to a potential problem with zero total energy. Al-aries, so that the global symplectic structure is not preserved.
ternatively, any system of particles with purely attractiveClearly the imposition of periodic boundary conditions
forces and zero total energy can be represented in terms 8feaks the global symplectic structure, as a multifractal at-
GIK thermostated dynamics. tractor appears. Nonetheless, it is still valid to view a peri-

(2) For =0, the canonical and physical times are theodic system as a local symplectic Hamiltonian system where
same, so this is the most natural form in which to derive thé?hase space becomes a compact manifoidvided that the
thermostated dynamics. momentum is bounded

(3) For =1, the Hamiltonian is a quadratic form.

V. THE LORENTZ GAS

N
1
Ho (0, mN)=—e22@> 22 1 79 . . ,
p-1(G M) 2 21 Poe 79 The Lorentz gas is a simple model of electrical conduc-

) o . tion in a periodic solié® and has been studied as a low-
Ignoring the constant, we see that GIK dynamics is equivagmensional example of a nonequilibrium steady stafee
lent to a g?odesm in a curved space with megt¢, thatis 46| consists of a single point particle wandering through a
Hg(a,7)=20""(a)m,m,. Hp=1 is equivalent to geodesiC yianqgylar lattice of fixed hard scatterefsee Fig. 5 The
motion on configuration space with a metric given by wandering point particle experiences an external fielith

N the negativex direction, and a GIK thermostat. The equa-
ds?=e 2> do?. (80) tions of motion are
=1
. . . . . ).(:px’ bx:Fx_E_a’pxr (82)
The trajectory followed between two points in configuration ,
space has extremal length with respect to the above metric. ¥Y=Py: Py= Fy—apy, (82)
That is, for any two points in configuration space, the trajec- |, _ p-F—ep,. (83)

tory followed by the system is a minimum value §fls
among all trajectories from one point to the other. Occasionlt iS convenient to write the momentum vector @s
ally it may be only a local minimum, or evefor sufficiently = (Px.Py) =p(cosé,sin 6) as its magnitude is fixed by the
pathological ®) a maximum. We have also incidentally GIK thermostat. The only free variable in the momentur is
proved that the dynamics is time reversible, as there is nés€e Fig. 6, and from Eqgs.(81) and (82) its equation of
preferred direction along a geodesic. Thus we have showmotion is #= e sin 6. Integrating over a time intervalAt
that the GIK thermostat is intimately related to more conven-=t;—tp, in the absence of a collision, gives
tional dynamical systems, augmenting the link which has P P t—t
. . . 0 0

already been made between quadratic Hamiltonians and geo- tar(— =tar< —) exp( .
desic motion in a curved manifofd. 2 2 €

The one particle problem also has direct relevance ta’he equations of motion for andy can be parametrized by
some other systems, for which the thermostated dynamics i& and are given by
exact. For example, the above form of the metric is equiva-
lent to Fermat’s principle for light passing through glass with
a refractive indexn=exp(—ex). In addition, the=—-1

d
P B —
form of the Hamiltonian is that of an electron moving in a
potential V=1 exp(—2ex) with a total energy of zero. o 5
() DAY

(84)

Another important point relates to boundary conditions.
For an equilibrium system, periodic boundary conditions
may be used without affecting the symplectic structure of the
equations of motion. All that happens is thl@tbecomes a FIG. 6. Specifying the thermodynamic state point for the Lorentz gas.
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WL ~to T om0n 0 o

X_X°+E|n(sin 00), y—yo+(T , (85 . F %0 02,0305 ;
where a subscript zero indicates the initial value of the vari- [ —
able. In this form it is straightforward to see that the Lorentz 25 ~ o > -
gas described by the equations of moti@4) and (85) is y ! > o ™~ ]
equivalent to two particles with equal masses, in triangular 2 F~. \ \ ]
boundary conditions, subject to an external field and GIK : \ ]
thermostat. 1.5 F Y “ \ ]

As the free motion of the wandering particle is analytic, E '-' | / ]
a complete trajectory can be specified by noting the phase I . B
point after each collision. The position of the wandering par- > ,/ / / ]
ticle can be specified byx(y) =r(cos¢,sin¢), andr=1 on 0.5 :',l S // ]
the scatterer surfadghe Poincaresurface of section so the [/ .~ Lo —"
complete phase point is specified G#,6). In this picture the 0 0 05 15 Y
time evolution of the Lorentz gas is given by the mapping
which moves the phase point from one collision to the next. X

From F_Ig. 6 we use a scatterer spacmg:_d—Za_ FIG. 7. Wandering particle trajectories for the nonequilibrium Lorentz gas
=0.236 which is small enough to ensure a finite horizonwith different values of the initial momentum angfeat a field ofe=1.

(that isw=4#3 —2). We first consider the Lorentz gas as a

geodesic problem to help give a more intuitive understandinghe Euler—Lagrange equation gives ex?+ e=0 which has

of the Hamiltonian formulation outlined previously, and to a solutionx=cot 6. Or in Cartesian variables this reduces to

explore new techniques for numerical and possibly experigq. (85). Notice thaté and 6, must have the same sign,

mental investigation of the nonequilibrium Lorentz gas.  therefore they differ by at most. Also the total length of a
path can be written as (dYe™ 0 sin gy(cot §,—cot 6).

A. The Lorentz gas as a geodesic problem B. Symbolic dynamics

For a single particle moving in two dimensions underthe A very useful technique for obtaining a coarse-grained
influence of a constant fielf= —ex (or potential®=ex)  description of a trajectory is to label each piece of trajectory
and GIK thermostat, the metric is between two collisions using the relative position of the sec-

d?=e2%(dx2+ dy?). (86) ond scattered’ If the last collision was with the central scat-

] o o terer in Fig. 8, we assign a label to the free flight according
Notice also that the Hamiltonian is cyclic i so the con- g the next scatterer. For a finite length of trajectory its sym-
jugate momentum is conservet,=e”“p,. This is not at  polic code provides a coarse-grained description, but for a
all obvious from the equations of motidB2). We consider  periodic orbit the symbolic code uniquely specifies the orbit

the trajectory between two points which differ only by a (for a two-dimensional hyperbolic system
separation in the/ direction. The intermediate points have

larger values ok because lengths as defined by the metricC. Periodic orbit expansions
are smaller for larger values of (see Fig. 7. First we ob-
serve that there is a maximuynseparation, so that if the
separation is larger than/e, then no trajectory exists. This
happens because the initial and final value® af Eq. (85)
can differ by at mostr. In the limit asAy— m/e the total

length of the path from a point to infinity along tixedirec-
tion is finite,
o0 o e_EXO
S, OC:J' ds:f e “dx= (87)
o X0 X0 €
so the shortest path between the two points witteparation
equal tom/e consists of two straight lines projecting from
the two end points in the-x direction.

To set up the general geodesic problem we write the path
lengthS as a function of the initial and final coordinates and
find the extremal path. The path length is given by

X y .
S=f ds=f f(x,x,y)dy. (88
0 0

. . . .. FIG. 8. Symbolic dynamics; each free flight leaving the central scatterer is
Herex is a function ofy, as the reverse is not necessarily japejed according to the next scatterer that it hits. The symbol 18 corre-

true. The integrand is given Hyx,X,y) =e~ *(x?>+1)¥2 so  sponds to a second bounce on the same scatterer.

We consider the Lorentz gas as the mapping of the Poin-
caresection itself from which we want to extract the classical
averages of some phase variable. To construct a measure that
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FIG. 10. The convergence of the conductivity from the periodic orbit ex-
pansion results in Table 1. The odd—even effect in the raw data can be
removed using a convergence enhancing technique such as the shanks trans-

formation (Ref. 34.

o

FIG. 9. The length 2 periodic orbits for the Lorentz gas and their equilib- o .
rium stabilitiesA7=In A. For S A7=1.3486; forL, A7=3.4334; forT, Lyapunov numbers we call stability weights, and the most

A7r=3.0983: and folV, A+ =4.6348. unstable orbits are least probable, so have the smallest
weight, while the least unstable orbits have the highest
weight. The advantage of this approach is that the same ar-

is valid at equilibrium(zero field, and also away from equi- 9uments_give both the equilibrium and nonequilibrium

librium, we use periodic orbits. These techniques have reaveraggé o . o

cently been developed and applied to systems with few de- 10 illustrate the periodic orbit expansions in Fig. 9 we

grees of freedord® 3! For a mapping the measure of a cell 9Ve all of the length 2 periodic orbits for the Lorentz gas.

C, can be written &8 There are four topologically distinct orbifsS,L,T,V}, the
full 24 orbits consist of rotations and reflections of
Cu) = lim AL 89 {S,L,T,V}. Notice Fhat ther_e are two types of periodic orbit§;
wC s o0 po%t:s of H ! 9 those that are strictly periodic returning to the same point

period n in Cy {S,L} and those whose periodicity relies upon the triangular

where ITA; ! is the product of the expanding Lyapunov lattice {T,V} which return to the same relative position in a
numbers. Using this measure for a system with only ondlifferent cell. Clearly the sefS,L} cannot contribute to a
expanding direction, the classical average of a phase variabtrrent, whereas the sgT,V} do contribute.
B is A typical periodic orbit expansiofPOE) calculation, as
AL q in Table I, enumerates all of the periodic orbits to some
(B)= lim Zicp A JoB(s)ds (90) Iength and constructs a sequence of approximations _to_ the
- EiePnTiAfl ’ classical average. From this sequence we extract the limit as
_ the length of the orbits approaches infinity. In practical terms
where 7; is the period of théth orbit andf;B(s)ds is the  we are limited to some maximum orbit length, and the expo-
contribution of the th periodic orbit to the averag®,, is the  nential proliferation of orbits with length can make the esti-
set of periodic orbits of length. The symbolic dynamics is mation of the average difficulisee Fig. 1D
used to enumerate the set of periodic orbits. It is possible t The bifurcation diagram
give a physical motivation based on the idea that because thé& 9

periodic orbits are dense in the attractor, each orbit repre- For the Lorentz gas, the behavior of the attractor in the

sents the typical behavior of a group of finiteonperiodi¢  (¢,6) phase space can be studied, but to look at the behavior
orbits with the same symbol sequence. The inversas a function of field it is more convenient to eliminate one

TABLE I. A typical result from a periodic orbit calculation for the nonequilibrium Lorentz gas at a field of
€=0.005. Notice the exponential profileration of orbits and the slow convergence of the periodic orbit averages
to the “exact” simulation resultsp? is the potential contribution to the pressure.

n No. of orbits Ly [ Shanks p*v A ) Shanks
2 24 0.3769 0.5429 1.4052
3 64 0.0902 0.2130 0.6455 2.0751 1.8233
4 98 0.3051 0.2077 0.5527 1.6716 1.8465
5 232 0.1269 0.2028 0.6325 1.9803 1.8691
6 674 0.2589 0.2105 0.6301 1.8065 1.9050
7 1902 0.1825 0.2078 0.6527 2.0339 1.9491
8 5343 0.2203 0.2019 0.6565 1.8987 1.9468
9 14138 0.1845 0.1967 0.6578 1.9724 1.9535

10 31475 0.2030 0.6771 1.9434

Exact 0.1978 0.1978 0.6608 1.9625
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(048)

04 106)
4 [ P S B P R

A 2 2.1 2.2 2.3 24 2.5
€

4 FIG. 13. The initial¢ value for the periodic orbit¢0 4 8 and(0 4 10 6
which converge to the same initial condition as that for the elligtid0) at
€e=2.3.

brief description of each region and then concentrate on the
crisis ate=2.2 and the emergence of the elliptic region at
e=2.3.

& [e] Stable orbits: Foe>2.629, there is a stable orbit of

length 2 with symbol sequendd 8). As the field is lowered

FIG. 11. The symmetrized{@_: 0) b_ifurcatiorj diagram for the Lorentz through e~2.629 024 33 the curvature of the free flights
gas mappind (¢, 6) as a function of fields, projected onto thé,6) plane. lessen until symmetric glancing collisions occur. The most
Above €~2.629 02 there is a single line which is the sta@leB) length 2 . > o .
orbit, which then becomes a stable length 8 orbit. After that there are chaoti§table outcome consists of three copies of the original orbit
bands interspersed with periodic windows. The separated feature<at 2.3 introducing only two new collisions, and is the stable length
<2.46 is one example of a neutrally stable elliptical orbit (4 “10) eight orbit with symbol sequenc(é 68410648 Thereis
also evidence of a transition to a stable length 16, and then a
stable length 32 orbit, particularly from the Lyapunov expo-

of these variables. If we project the full Poincarection in ~ nent results in Fig. 12 N
(¢,6) onto thed axis we can observe the way a projection of  [c] In the elliptic region 2.3<¢<2.46 there are two ini-
the attractor behaves as the field varies, see Fig. 11. A simildal conditions for the(4 10 periodic orbit. One is a hyper-
picture is obtained by projecting onto thg axis, so the bolic fixed point, the other is a neutrally stable point with

choice of projection is not critical. two zero(i.e., complex Lyapunov exponents. The neutrally
The essential features of the bifurcation diagram for theStable(4 10 orbit is the “center” of the elliptic region. The
Lorentz gas are emergence of thig4 10 orbit, and thus the elliptic region,
. . can be considered as the collision of a family of hyperbolic
[a] Ergodic region 0<e<2.2, fixed points(see Fig. 13 of which (0 4 8 and(0 4 10 6 are
[b] Crisis €=2.2 and €=2.34, the first two members, to form the neutrally stalle10).
[c] Elliptic region 2.3<e<2.46, The end of the elliptic region can be considered as the col-
[d] Complex 2.407<e<2.52, lision between the hyperboli@ 10) orbit and the elliptiq(4
[e] Stable orbits 2.52<e. 10) orbit. The existence of the elliptic region signals a break-

gown in the ergodicity of the Lorentz g¥sas the phase
Space is decomposable into two separate regions in which
grajectories remain for all time.

[b] At aboute=2.2 the attractor suddenly changes from
a space filling object to one with a much smaller support.
At this point the attractor and repeller become disjoint
objects®® Such a transition has been termed a cri6ial-
though this transition should be observed as a sudden change
in the value of capacity or box counting dimensibg, from
two to something smaller, the numerical difficulties in calcu-
lating Dy make this a poor indicator of the position of the
transition®® The information dimensiorD; and Kaplan—
Yorke dimensionDyy change smoothly through the transi-
tion, indicating that the attractor is multifractal, but giving no

There is overlap between the elliptic and complex region a
this value of the spacing, but at other values of the spacin
the ergodic and elliptic regions overldpWe now give a

Y)Y A SR R indication of a transition, see Table II.
248 252 256 261 265 In order to find a better indicator of the crisis we return
€ to the symbolic dynamic description of a generic trajectory.
FIG. 12. Lyapunov exponents for stable periodic orbits. At the crisis point the symbolic dynamics reduces suddenly
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TABLE II. Information dimensionD, and Kaplan—Yorke dimensioDy 30 T T
near the crisis. S Y /ff
25F — 2 v i

: Y s [

Field 2.1 2.15 2.2 2.25 2.3 wk ..., 6 -

D, 1.45 1.37 1.30 1.25 1.22 % g5 el l
Dgy 1.451 1.381 1.321 1.270 1.221 E N b

10 | oo

st 4

from ten symbols to fivésee Fig. 14 with the probability of O
observing some symbols becoming z¢see Fig. 15 o 05 b sz 23

By studying the symbolic dynamics the following order
parameters all give consistent indications of the position of
the crises.

(1) Above the crisis a generic trajectory never has more
than one segment opposite the field direction, we term this %
mesoscopic irreversibility.

(2) The disappearance of the symbols 0 and 5 and 7.

(3) The disappearance of backward collisions, where the
backward collision is defined in Fig. 16.

25
E. The dynamical partition function
0.3
The partition function has a dual role in statistical me- : ' '
. ) . N . 0.25 F —13 3
chanics, it normalizes the distribution function, and also gen- : — 14
erates the thermodynamic properties, as, for example, 02 F T
% 015 L E
d :
p=KT — In Z.(N,V,T). (91 01F M E
v 3 (AP ]
0.05 DA E
A dynamical partition function for the Lorentz gas has been 0 & EARITR -
proposed® by connecting the normalization factor in the 0 : e 2
'I;I?UES average formula with the canonical partition funCtIon'FIG. 15. () Percentage probability of even symbols 0, 2, 4(B.Percent-

age probability of odd symbols 1, 3, &) Percentage probability of extra
symbols 13, 14, 18.

ZgV)=1lim ZMW(V)=lim > 7 expg—7\). (92
n—oo nﬂwiEPn

. » ) ) . F. Analytic expressions for the Lyapunov humbers
We observe that this partition function has the dimensions of

time, but this is analogous to the classical partition function ~We have already seen that the evolution of the Lorentz
for an N-particle system which has the units of action to thegas can then be written as a mapping from surface of section
Nth power(the semiclassical partition function has no units, 0 surface of section. We can calculate the stability matrix
as# sets a minimum length scaleThis characteristic time for & trajectory or orbitl,q,; by considering products of free
unit required to make the dynamical partition function alourefIight stability matrices and collision stability matric&s.
number can be expected to set a minimum time scale. Théhus

value of this minimum time scale only affects thermody-

n n
namic functions by at most a constant. Cheffiavas re- . . .
cently shown that the partition function formula is exact for ‘J°fb”_iﬂl ‘J'V'(')_il:[l Je(1)Je (D), (93
the Lorentz gas, and that the time corresponds to the mean
time between collisions. where the collision stability matrix is
2 10 Field
w Backward Forward
A/ 6 6 \
8 - > 4 X X

-«

FIG. 14. At the onset of the crises=2.2, the possible symbol sequences
are restricted. FIG. 16. The definitions of backward and forward collisions.
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observed irreversibility in this microscopically reversible
(94)  system is due to the different stability weights assigned to
forward and backward periodic orbits, but these stability
weights are derived from the microscopieversible dy-
namics. This result can be generalized to many particle color

0 1

Jc(1)=(

and the free flight stability matrix is

Je(1) conductivity system&! Ruellé’? has recently proposed for-
in o . B mulas for the entropy production rate for Gaussian thermo-
s!n o Cog 1~ by) — € sin 6) M stated systems and can sometimes prove that the entropy
| sin 8o cos ¢y~ bo) cos ¢1— 6p) production is positive.
1 sin(6;—6;) cos o~ 0)
€ Sin 0o oS by — ) cos( ¢~ 6o) VI. CONCLUSIONS
(95)

We have shown how deterministic thermostating mecha-
Given the trajectory details,f(,¢;) at the beginning of the nisms have developed from the arbitrary inclusion of a
free flight, andg; at the end, the Lyapunov numbeks and  gampinglike term in the equations of motion, to a set of
A, can be calculated as the eigenvalues &fJomd ™  methods based on firm mechanical foundations, which ex-
The determinant o, can be calculated from the determi- tract energy from nonequilibrium systems to achieve a
nants of the constituent matrix factors. Thus for a periodicsteady state, or change ensembles in equilibrium systems, or
orbit move from THeenin (constant fielgl to Norton (constant
, curren) ensembles away from equilibrium. The linear and

n n .
sin 6/ _ , .
de(Jom =11 det@r(i)detdo) =[] — = (96)  nonlinear response theory of these thermostated systems is
=1 i=1 SIn 6y also well developed.
The x displacement for théth free flight isAx;=x;—X;_ Since the first demonstration that thermostated systems
= (1/e)In(sin §/_y/sin _;) so the total displacement for a €xhibit phase-space contractidon averagg and that the
periodic orbitAx is nonequilibrium distribution(or measurg is multifractal;
. these systems have been studied as dynamical systems using
the usual tools, Lyapunov exponents and generalized dimen-
eAx=3 eAx;=In(de{dond). 97) yap P g

=4 sions. One of the most important results from this work is the
conjugate pairing rule for Lyapunov exponents. Although
Therefore the Lyapunov exponent sum ru&x=(\i  not valid in general, the conjugate pairing rule demonstrates
+\ i) 7; is obeyed for individual periodic orbits. that the thermostating mechanism acts democratically on all
G. Positivity of the conductivity pairs of degrees of freedom. This result is related to that of
Gaspard for open systerffs.

) For the Lorentz gas in an gxtgrnal f'e‘ld there is a very Thermostated nonequilibrium systems are dissipative,
simple argument based on periodic orbit theory that ShOWﬁnd have until now been considered as non-Hamiltonian sys-

that the transport coefficient, in this case the conductivity, is[ems Now that a class of thermostated nonequilibrium sys-
strictly non-negative. The average conductivity from the P€tems have been shown to be Hamiltonian, to have a gener-

riodic orbit expansion is given by alized symplectic structure, and to satisfy a generalized
13icp AXiAi_l symplectic eigenvalue theorem, their status is equivalent to

L(€)=— lim = —"——+. (98)  that of the well-studied case of Hamiltonian systems. A fur-

€ Zicp, T\ ther consequence of this is a variational principle for the

At every level in the expansion there are two classes of pedlicroscopic dynamics which can be regarded as an exten-

riodic orbits: those withAx, =0, and those for which\x, ~ Sion of Hamilton’s principle. _ 3
#+0. Each orbit withAx; #0 has a time reverse, with exactly The application of these techniques to the nonequilib-

n—o

opposite displacement\x_;=—Ax;. The contribution to rium Lorentz gas iIIustrates_ their use. For this s_yster_n we
the average conductivity for each time reverse pair of orbitd"@pP out the range of behavior as the field varies, identifying
is the major generic transitions in such nonequilibrium sys-
tems. The periodic orbit expansion is used to calculate aver-

—eAxi(A; = AT =~ eAx (e MTi—eMim) ages, and several resulisuch as the non-negativity of the

conductivity) are shown to be simple consequences of the
periodic orbit approach. Indeed studies of the application of
=—eAx(1—e A 1, (99  cycle expansions to the Lorentz gas have also led to im-
provements in cycle expansion methods, as, for, example
with the introduction of stability orderingy.

=Ax;e MN7i(1—eNiTr-D7i)

where the last equality follows from Lyapunov exponent
sum rule for individual periodic orbits. AsA;’
=exp(—\.7) is positive, and—eAx;(1—e*X) is never
neg_a_tlve all contributions to the average Con_d_uctl\_nty ar_e 1D, J. Evans and G. P. MorrisStatistical Mechanics of Nonequilibrium
positive, and hence the average conductivity itself is |iquids(Academic, London, 1990

positive’® (that is, in the same direction as the fieldhe 2W. G. Hoover, “Molecular dynamics,” Lect. Notes Phy258 1 (1986.
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