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Abstract

We develop a cluster expansion for the probability of full connectivity of high den-

sity random networks in confined geometries. In contrast to percolation phenomena at

lower densities, boundary effects, which have previously been largely neglected, are not

only relevant but dominant. We derive general analytical formulas that show a persis-

tence of universality in a different form to percolation theory, and provide numerical

confirmation. We also demonstrate the simplicity of our approach in three simple but

instructive examples and discuss the practical benefits of its application to different

models.

1 Introduction

Percolation is a phase-transition phenomenon in large random networks whereby at a critical

value ρc of a parameter such as density that controls the connection probabilities, the

largest connected component (cluster) of the system experiences a sudden change from

being independent of system size (microscopic) to being proportional to it (macroscopic).

For example in infinite systems with densities ρ < ρc (sub-critical), all clusters are finite
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almost surely while for ρ > ρc (super-critical), any given node is in an infinite cluster with

positive probability. As with other statistical phase transitions, in the thermodynamic limit

of large system size, the percolation density ρc is very much independent of the size and

shape of the system and in general of the microscopic details of the model leading to the

phenomenon of universality. Percolation theory does not, however, address the question

of when finite systems are fully connected, that is, the probability of the entire system

comprising a single cluster. Here we develop a theory of the latter, showing that boundary

effects are crucial for understanding this problem, and demonstrate a general formalism for

calculating their contributions.

The well developed theory of percolation [1] finds its historic roots in the early 1930s

in studies by physicists and chemists concerned with nucleation and condensation of gases

into liquids as well as clustering of interacting particles and colloids. The theory of per-

colation was then initiated in 1957 in order to study random physical processes such as

fluid flow through disordered porous media [2]. A more general mathematical approach

was formulated soon thereafter in 1959 in the form of random graphs [3] using the famous

Kolmogorov zero-one law in probability theory to state that given a infinite graph with

connections chosen randomly and independently, the existence probability of an infinite

cluster is either zero or one. A wealth of different models and approaches as well as out-

standing open problems can be found in [4]. The exact statistical mechanical formalism of

continuum percolation on a lattice-free basis was eventually formulated in the late 1970s [5]

and has been extensively applied in a wide variety of settings as the theory provides useful

information on cluster statistics (for a review article see [6]).

The triumph of percolation theory and statistical physics [7] in describing particle clus-

tering in liquids [8], gases [9, 10] and colloids [11], was also successfully adopted in studies

of electrical conductance in disordered media. These have included investigations of trans-

port in carbon nano-tube networks [12] and metallic insulation in composite materials [13].

The concept of quantum percolation and its connections with the quantum Hall effect [14]

as well as phenomena such as spontaneous magnetization [15] are but a few of the many

recent theoretical advancements. Moreover, percolation theory has gone beyond physical

sciences to topics such as network modeling. These include interpreting (self)-organization

processes of complex networks, such as those displayed by functionally related proteins

[16]; the spread of forest fires [17, 18], epidemics [19, 20, 21], computer [22] and phone [23]
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Figure 1: (Color online) A single high density realization is shown with N = 450, 500 and 600 nodes

(represented as balls) randomly placed inside a cubed domain of side L = 10. Lighter colors indicate a

higher probability of being in the largest connected component; note that isolated nodes (darker colors) are

concentrated at the edges and corners at higher densities.

viruses; industrial and economic sectors [24]; and social groups of people [25, 26, 27].

The current work is primarily motivated by the recent adaptation of percolation theory

in wireless communications and multihop relay networks. These consist of a number of

communication devices (nodes) which can pass messages to each other without the need of

a central router. Multihop relay networks can therefore achieve good and reliable coverage

and connectivity over a large area even when some nodes are moved or deactivated. Most

models of such systems are closely related or derived from studies by probabilists under the

topic of random geometric graphs or networks [28]. Percolation theory, both on a lattice

and in the continuum has thus been previously applied to random networks by engineers to

identify and analyze power management techniques [29, 30], network resilience [31], efficient

relay placement [32], coverage and connectivity in wireless sensor networks [33] (a direct

adaptation of [10]), and the information theoretic capacity of networks [34].

A major weakness of the theory which is immediately evident in the current context is

that many networks, although large, are not of infinite size and are often confined within

a finite region. Therefore infinite (or ‘giant’) clusters and critical percolation densities no

longer make sense in the usual thermodynamic limit. Instead, the more suited notion of

full connectivity (also called connectivity threshold, originally posed in [3]), is addressed,

typically in some asymptotic regime.

Here we consider a fixed connectivity scale r0 so that nodes placed randomly in a

3



Figure 2: (Color online) Five equally spaced cross sections of the average connectivity (averaged over 100

different realizations) inside a cubed domain of side L = 10 with node density ρ = 0.5. The outer plots

correspond to opposite faces of the cube. The same color scheme as in Figure 1 is used with light and dark

colors indicating good and bad connectivity respectively. It is clear that corners, edges and faces of the cube

constitute critical regions where full connectivity is lost with maximum probability.

domain V ⊂ Rd are connected with probability given by a function H(r/r0) of the distance

r between them; see the next section for more details. The number of nodes N and domain

volume V (i.e. area for d = 2), and hence the density ρ = N/V are allowed to vary while

keeping the overall shape fixed. Other conventions such as fixing V while varying ρ and r0

(dense network model), and fixing ρ while varying V and r0 (extended network model) are

used in the literature, but are equivalent in the absence of other scale-dependent physical

effects [35]. Since r0 is fixed in our work we often set it equal to unity.

Asymptotic results for full connectivity consider ρ → ∞, with V constant or scaled

as a function of ρ. Since the probability of any given node being disconnected decays

exponentially with ρ, a limit where V grows exponentially with ρ is almost invariably used

in the literature. This has the effect that boundaries become largely insignificant, with a

few exceptions such as for higher order connectivity (k-connectivity) or higher dimensions

[36]. Here we point out that realistic networks require a very high connection probability

(hence large ρ) but do not have exponentially large volumes. So in practice finite size and in

particular boundary effects are extremely important. Here we allow V to remain constant

or to scale as a power of ρ.

The importance of boundary effects is illustrated in Figure 1, which shows a single

realization of (from left to right), 450, 500 and 600 nodes (represented as overlapping

balls) placed randomly inside a cubed domain, with each ball colored according to the

total probability of it connecting to any of the other N − 1 nodes surrounding it. We

assume here an exponentially decaying (with distance) connection probability function (see
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equation (19)). Notice that isolated, and hence hard to connect, nodes (black) are in this

case near corners, edges or faces of the cubed domain. Averaging over 100 such realizations

and producing density plots of cross-sections of the cubed domain (see Figure 2) clearly

demonstrates that these are critical regions where full connectivity is lost with maximum

probability, even though there are many more nodes in the bulk than on the boundaries. To

leading order in the high density limit, the probability of obtaining a fully connected network

is controlled by the probability of a single isolated node. Lower density corrections to this

are due to two, three and larger isolated clusters of nodes. This observation has formed

the basis of our recent work [37], where we presented a new cluster-expansion approach

to analyzing connectivity in confined geometries. This approach allowed for a consistent

analysis and inclusion of the local geometric boundary effects leading to a general closed-

form analytical formula for calculating the probability of full connectivity Pfc.

The current paper complements our previous results [37] by providing additional details

of our approach in a more general setting, extends them with further calculations of second

order correction terms, and also demonstrates the inaccuracy of conventional bulk models

in the current setting through three simple, yet instructive example network confinements

(disk, square and wedge) which are numerically confirmed for both probabilistic and sharp

(unit-disk type) pair connectedness functions. The structure of the paper is as follows: In

section 2, we derive a high density cluster approach which we then expand up to second

order in subsections 2.1, 2.2 and 2.3 assuming a homogeneous system. In subsection 2.2

we also explain our scaling regime in more detail and in 2.3 we identify a key difference

between probabilistic and sharp pair connectedness functions which is only apparent in

higher order terms involving small isolated clusters of 2 or more nodes. We then compute

the overall probability of a fully connected network for a given exponentially decaying

connectivity function in subsection 2.4. In section 3, we lift the homogeneity assumption

and consider boundary effects explicitly illustrating their importance for any connectivity

probability function H(r) that decays suitably fast. We then work through three examples

(subsections 3.2, 3.3 and 3.4) for the previously given connectivity function and provide

plots of comparisons with numerical simulations. These examples lead to the construction

of a general formula for the overall probability of a fully connected network in subsection

3.5. Finally in section 4 we summarize and conclude with a short discussion.
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2 A cluster expansion approach

In this section we develop a high density connectivity model based on a cluster expansion

approach which is able to produce closed-form analytical results in some generality. We

assume a homogeneous network and perform the expansion up to second order and comment

on the third and higher order corrections. First however we need to set the stage and define

some useful quantities.

Consider N randomly distributed nodes with locations ri ∈ V, a convex subset of Rd,

where i = 1, 2, . . . N , according to a uniform density ρ = N/V , where V = |V| and | · |

denotes the size of the set using the Lebesgue measure of the appropriate dimension or

the cardinality of a finite set. We assume that nodes i and j are directly connected with

probability H(rij), often written just Hij where rij = |rj−ri| is the distance between i and

j.

We may also consider a more general setting, as follows: Rd could be replaced by a

Riemannian manifold Md with volume element derived from its metric tensor. The direct

connection distance function rij may or may not be given by geodesic distance derived from

the metric tensor. The convexity assumption is then replaced by the statement that this

distance function is a metric in the mathematical sense, i.e. symmetric, non-negative, zero

only when the nodes coincide, and satisfying the triangle inequality.1 One example of a

non-Euclidean manifold is the surface of a sphere and is discussed along with its curvature

effects in section 2.4. Otherwise we will use only Euclidean space Rd.

We define the average of an observable O over all possible configurations as

〈O〉 =
1

V N

∫
VN

O(r1, r2, . . . , rN )dr1dr2 . . . drN . (1)

We also need notation to define the relevant graphs. Let S = {1, 2, 3, . . . , N}. A graph g =

(A,L) consists of a set A ⊆ S of nodes, together with a collection L ⊆ {(i, j) ∈ A : i < j}

of direct links, that is unordered distinct pairs of nodes. As a slight abuse of notation we

write (i, j) ∈ g to denote that (i, j) is an element of the set of links L associated with the

graph g. We write GA for the set of graphs with nodes in A, and GAj for the set with nodes

1If the convexity assumption is relaxed it is a semi-metric function, i.e. the triangle inequality may not

be satisfied. For example, rij is effectively infinite if there is an obstacle blocking the path of a wireless

signal, but adding a node k that avoids the obstacle may permit indirect connection between i and j, thus

in this case rij > rik + rkj . We defer the treatment of obstacles to a future paper.
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in A and largest connected component (cluster) of size j with 1 ≤ j ≤ |A|.

The probability that two nodes are connected or not leads to the trivial identity:

1 ≡ Hij + (1−Hij). (2)

Multiplying over all links with nodes in a set A expresses the probability of all possible

combinations. This can be written as

1 =
∏

i,j∈A;i<j

[Hij + (1−Hij)] =
∑
g∈GA

Hg, (3)

where

Hg =
∏

(i,j)∈g

Hij

∏
(i,j) 6∈g

(1−Hij). (4)

The sum in equation (3) contains 2|A|(|A|−1)/2 separate terms. Setting A = S, this can be

expressed as collections of terms determined by their largest cluster:

1 =
∑
g∈GSN

Hg

︸ ︷︷ ︸
Pfc(r1,...rN )

+
∑

g∈GSN−1

Hg + . . .+
∑
g∈GS1

Hg

︸ ︷︷ ︸∏
i<j(1−Hij)

.

(5)

For a given configuration of node positions ri ∈ V, assuming that the nodes are pair-

wise connected with independent probabilities Hij , the first term in equation (5) is the

probability of being fully connected Pfc(r1, . . . rN ). The average of this quantity over all

possible configurations Pfc = 〈Pfc(r1, . . . rN )〉 is the overall probability of obtaining a fully

connected network and is our desired quantity of interest. Hence, rearranging equation (5)

allows us to obtain expressions for Pfc in a consistent way while keeping track of correction

terms.

2.1 Zeroth order approximation

In the very high density limit of ρ → ∞, the right hand side of equation (5) is dominated

by the first term

Pfc ≈ 1, (6)

and hence the network is fully connected with probability one. The approximation symbol

is used here and from now on to indicate that higher order terms are being ignored.
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2.2 First order approximation

The first order approximation is obtained when the second term in equation (5) is expanded

out explicitly. This takes into account all the ways of having an N − 1 cluster of nodes.

Thus the overall probability of a fully connected network is

Pfc ≈ 1− 〈
∑

g∈GSN−1

Hg〉

= 1− 〈

 N∑
℘=1

∏
j 6=℘

(1−Hj℘)


 ∑
g∈GS\{℘}N−1

Hg


︸ ︷︷ ︸

≈1

〉

= 1−N〈
N−1∏
j=1

(1−HjN )〉

= 1− N

V N

∫
VN

N−1∏
j=1

(1−H(rjN ))dr1 . . . drN

= 1− N

V

∫
V

(
1− 1

V

∫
V
H(r1N )dr1

)N−1

drN ,

(7)

since all nodes are identical and therefore the sum over ℘ can be factored out.

Assuming that the network is homogeneous (i.e. there are no boundary effects and

therefore the system is symmetric under translational transformations) allows for the change

in variables r = r1 − rN so the integrals decouple and we get

Pfc ≈ 1−N
(

1− 1

V

∫
V
H(r)dr

)N−1

= 1−Ne−ρ
∫
V H(r)dr

[
1 +

1

N

(
ρ

∫
V
H(r)dr−

(
ρ
∫
V H(r)dr

)2
2

)
+O

(
ρ4

N2

)]
,

(8)

for N large.

At this point we are in a position to discuss the various scaling limits and approximations

appearing in the theory. Until now we have assumed only that the probability of full

connectivity is high, which is reasonable for typical applications such as wireless networks.

This means that ρVH is large where VH =
∫
V H(r)dr is the effective connectivity volume

associated with H(r). Increasing N and V at constant ρ will however decrease Pfc due to

the factor of N in front of the exponential. We see that at fixed Pfc, system size scales

exponentially with density. While this is a popular scaling in the literature, it has the effect
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of hiding boundary effects, which in the current scaling regime as we will see are indeed

very important. Alternatively we can increase ρ while keeping V fixed. For this purpose,

and for any scaling in which V/ρ decreases, we must use the first line in equation (8) as

the second line clearly does not converge. However it is also advantageous to assume V/VH

is large, for example to separate effects due to the range of direct connections which is

proportional to V
1/d
H , and effects due to the finite extent of the whole system. In this case,

so for any scaling where V is between linear and exponential in ρ, we can use the simpler

second line of equation (8). We will take the latter approach unless otherwise stated.

2.3 Second order approximation

The second order approximation involves enumerating the N − 2 cluster terms, together

with the first approximation of the G
S\{℘}
N−1 term in equation (7) such that

Pfc ≈ 1− 〈
∑

g∈GSN−1

Hg〉 − 〈
∑

g∈GSN−2

Hg〉. (9)

We first examine the first approximation of the GSN−1 term thus including all possible ways

of getting an N − 2 cluster in a N − 1 node network:

〈
∑

g∈GSN−1

Hg〉 = 〈
N∑
℘=1

∏
j 6=℘

(1−Hj℘)
∑

g∈GS\{℘}N−1

Hg

︸ ︷︷ ︸
≈1−

∑
g∈GS\{℘}

N−2

Hg

〉,
(10)

and

〈
∑

g∈GS\{℘}N−2

Hg〉 =
1

2
〈
N−1∑
`=1

∏
j 6=`

(1−Hj`)
∑

g∈GS\{℘,`}N−2

Hg

︸ ︷︷ ︸
≈1

〉.
(11)

In this way we avoid double counting of different decompositions of subgraphs. Expanding

equation (10) out we have

〈
∑

g∈GSN−1

Hg〉 = 〈
N∑
℘=1

∏
j 6=℘

(1−Hj℘)− 1

2

 N∑
℘=1

(N−1)terms︷ ︸︸ ︷∏
j 6=℘

(1−Hj℘)
∑
`6=℘

(N−2)terms︷ ︸︸ ︷∏
j 6=`,℘

(1−Hj`)

〉
= N〈

N∏
j=2

(1−H1j)−
N(N − 1)

2

(1−H12)

N∏
j=3

(1−H1j)(1−H2j)

〉,
(12)
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since all nodes are identical.

We now consider the last term in (9). There are two possible ways of getting an N − 2

cluster. These correspond to having two isolated nodes and one large N − 2 cluster, or

having a small 2-node cluster and a large N − 2 cluster. Hence, adding these two (disjoint)

possibilities together we have that

〈
∑

g∈GSN−2

Hg〉 = 〈

∑
℘<`

∏
j 6=℘

(1−Hj℘)
∏
j 6=℘,`

(1−Hj`)


 ∑
g∈GS\{℘,`}N−2

Hg


︸ ︷︷ ︸

≈1

〉

+ 〈

∑
℘<`

H℘`

∏
j 6=℘,`

(1−Hj℘)(1−Hj`)


 ∑
g∈GS\{℘,`}N−2

Hg


︸ ︷︷ ︸

≈1

〉,

=
N(N − 1)

2
〈(1−H12)

N∏
j=3

(1−H1j)(1−H2j)〉

+
N(N − 1)

2
〈H12

N∏
j=3

(1−H1j)(1−H2j)〉,

=
N(N − 1)

2
〈
N∏
j=3

(1−H1j)(1−H2j)〉,

(13)

due to the identity of equation (2).

Putting it together we find a clear sum of zeroth, first and second order terms:

Pfc ≈ 1−N〈
N∏
j=2

(1−H1j)〉 −
N(N − 1)

2
〈H12

N∏
j=3

(1−H1j)(1−H2j)〉 (14)

This is our most general result, allowing any dimension, region, and suitably decaying

function H(r). Assuming that the network is homogeneous as before gives

Pfc ≈ 1−N
(

1− 1

V

∫
V
H(r)dr

)N−1

− N(N − 1)

2V

∫
H(r)

(
1− K(r)

V

)N−2

dr (15)

where

K(r1) = V −
∫
V

(1−H(r2))(1−H(r12))dr2 (16)

is a quantity that remains bounded as V increases. For sufficiently large V (see (8) above)

we can approximate this as

Pfc ≈ 1−Ne−ρ
∫
V H(r)dr − ρN

2

∫
V
H(r)e−ρK(r)dr. (17)
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2.4 The H(r) function and connectivity on a sphere

Translational invariance is unlikely to be a good assumption in practice, except if the nodes

are situated on the surface of some n-sphere Sn ⊂ Rn+1 with n ≥ 1 such that the system

is symmetric under rotations about the origin. Here, we consider the realistic case of n = 2

for a specific connectivity function related to wireless communication networks, which is

exponentially decaying with distance.

The information outage probability Pout for a single-input single-output (SISO) Rayleigh

fading link model2, is given by [38]

Pout = Pr
(
log2

(
1 + SNR× |h|2

)
< x

)
= Pr

(
|h|2 < 2x − 1

SNR

)
,

(18)

where h is the channel transfer coefficient, x is the minimum outage rate threshold, and the

signal-to-noise ratio (SNR) ∝ r−η where r is the dimensionless distance between connected

nodes (relative to the signal wavelength), and η is an environment dependent decay param-

eter3. The random variable |h|2 is typically drawn from a standard exponential distribution.

Therefore the connectivity probability function can be written as

H(r) = 1− Pout = e−βr
η
, (19)

with β typically a small dimensionless constant, and is plotted in Figure 3 for β = 0.01 and

different values of η. Notice that as η →∞ the connectivity is no longer probabilistic and

converges to the interesting case of the popular unit disk model where connections have a

fixed range of r0 = β
− 1
η .

The surface element on a sphere of radius R is R2 sin θdθdφ in the usual spherical

coordinates. First we use the Euclidean distance in R3 between two nodes, given in terms

of the angle they subtend at the center: d(r1, r2) = |r12| =
√

2R
√

1− cos θ12. Setting η = 2

(corresponding to propagation in free space) and locating one node at the pole θ = 0 we

2Other link models can also be considered. These may include single-input multiple-output (SIMO),

multiple-input single-output (MISO), and multiple-input multiple-output (MIMO) (see also [39]).
3Typically η = 2 corresponds to propagation in free space but for practical reasons it is often modeled

as η > 2 for cluttered environments.
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Figure 3: The probability of connecting a distance r from a node is plotted for η = 2, 3, 4, 5, 6, form right

to left, using β = 0.01.

therefore have that ∫
S2

H(r)dr =

∫ 2π

0

∫ π

0
e−2βR2(1−cos θ)R2 sin θdθdφ

=
π

β

[
1− e−4βR2

]
≈ π

β
,

(20)

when βR2 (proportional to V/VH above) is large.

If instead geodesic (great-circle) distance is considered rather than Euclidean we have

d(r1, r2) = Rθ and hence∫
S2

H(r)dr =

∫ 2π

0

∫ π

0
e−β(Rθ)2

R2 sin θdθdφ

=
π

β

[
1− 1

βR2

(
1

6
+
e−βπ

2R2

2π2

)
+O

(
1

β2R4

)]
≈ π

β
,

(21)

again when βR2 is large. In this limit we see that the curvature (R-dependent) effects

become small for both distance functions. It is thus possible to approximate the neighbor-

hood of each node by a flat Euclidean metric, more generally for other smooth manifolds

Md, assuming a sufficiently fast decay of H(r).

Since the dominant contribution of
∫
V H(r1)H(r12)dr1 is when nodes 1 and 2 are close to

each other (i.e. when d(r1, r2)� R), we adopt the above approximation in order calculate
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K(r2) using polar coordinates

K(r2) =

∫
S2

H(r1) +H(r12)−H(r1)H(r12)dr1

≈ 2
π

β
−
∫
R2

H(r1)H(r12)dr1

= 2
π

β
−
∫ ∞

0

∫ 2π

0
r1e
−β(2r2

1+r2
2−2r1r2 cos θ)dθdr1

= 2
π

β
−
∫ ∞

0
2πr1e

−β(2r2
1+r2

2)I0(2βr1r2)dr1

= 2
π

β
− π

2β
e−β

r22
2 ,

(22)

where I0(x) is the modified Bessel function of the first kind, r1 and r2 are the distances of

the two nodes from the origin and θ the angle between them. Finally, we may evaluate∫
S2

H(r)e−ρK(r)dr ≈
∫
R2

H(r)e−ρK(r)dr

= e
− 3πρ

2β

(
2

πρ
+O(ρ−2)

)
,

(23)

by expanding the exponential in equation (22) around r2 = 0 as this is near the main

contribution to the integral. Altogether, according to equation (17) this gives

Pfc ≈ 1−Ne−ρ
π
β − N

π
e
− 3πρ

2β , (24)

to leading order.

Note that the above calculation can of course be performed for general η > 0 and n-

sphere. The general case is excluded for the sake of brevity, however one case that provides

some insight is the “unit-disk” model, corresponding to the limit η → ∞ with β scaled so

that β−1/η approaches a limit, r0. We then have

H(r) =

 1 r ≤ r0

0 r > r0

(25)

leading to ∫
S2

H(r)dr ≈
∫
R2

H(r)dr = 2πr2
0 (26)

for either metric (actually it is exact for the Euclidean metric). We then calculate on R2

for r2 < 2r0

K(r2) = 2πr2
0 +

r2

2

√
4r2

0 − r2
2 − 2r2

0 arccos
r2

2r0

= πr2
0 + 2r0r2 −

r3
2

12r0
+ . . .

(27)
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expanding for small r2 as this leads to the main contribution to Pfc. The latter comes to

Pfc = 1−Ne−πr2
0ρ

[
1 +

π

4r2
0ρ

+ . . .

]
(28)

where the last term is the second order contribution.

We now make an important observation. From equation (24) we notice that in the high

density limit the second order term in our expansion of Pfc has exponent of order ∼ −3πρ
2β

and hence is exponentially smaller than the first order term. This is due to the probabilistic

nature of the connections, two nodes need more excluded volume on average to be isolated

than a single node. For the unit disk model, however, the two nodes can be very close with

a probability that is an algebraic function of their mutual distance, requiring roughly the

same excluded volume, and leading to a second order effect which differs from the first only

by an algebraic function. Hence, the probability that two nearby nodes are isolated from

the rest is much less for a probabilistic pair connectedness function than for a sharp one.

We expect that this key difference also applies for small isolated clusters consisting of 3 or

more nodes.

This means that higher order effects appear to be important mostly for the unit disk

model. For the probabilistic model which is more realistic for applications such as wireless

networks, we are justified to use only the first order results for the discussion of boundary

effects in confined geometries; to this we now turn.

3 Boundary effects

In this section, we lift the homogeneity assumption and consider the first and second order

approximations of Pfc only to discover that contrary to popular belief and practice, bound-

ary effects matter. This is a central observation of the current work, which we detail and

discuss in the following subsections.

3.1 Inhomogeneous first and second order approximations

Returning to the first order equation (7) but no longer assuming homogeneity gives

Pfc ≈ 1− N

V

∫
V

(
1− 1

V

∫
V
H(r12)dr1

)N−1

dr2

= 1− ρ
∫
V
e−ρ

∫
V H(r12)dr1

(
1 +O(N−1)

)
dr2,

(29)

14



for large N . This equation was recently given in [35] (equation (8)) with V scaled expo-

nentially with ρ thus ignoring any boundary effects. Recall that for this approximation we

only require that V � ρ or equivalently V �
√
N . This is a key difference from previous

percolation approaches.

Similarly, from equations (12) and (13), one can show that the second order approxi-

mation of Pfc becomes

Pfc = 1− ρ
∫
V
e−ρ

∫
V H(r12)dr1dr2 −

N(N − 1)

2V 2

∫ ∫
V
H(r12)

(
1− K̂(r1, r2)

V

)N−2

dr1dr2

≈ 1− ρ
∫
V
e−ρ

∫
V H(r12)dr1dr2 −

ρ2

2

∫ ∫
V
H(r12)e−ρK̂(r1,r2)dr1dr2,

(30)

where

K̂(r1, r2) = V −
∫
V

(1−H(r13))(1−H(r23))dr3, (31)

and in the last step of (30) we have ignored terms of order ∼ N−1 since N is also assumed

to be large.

Equation (29) suggests that in the high density limit, the probability of having a single

N − 1 connected cluster is dominated by nodes which are situated in “hard to connect”

regions of the available domain V. This is because the outer integral in (29) is dominated by

contributions where the integral in the exponential is small, for example at corners, edges

and faces. The second order corrections in (30), as expected from our calculations in section

2.4, are of secondary importance and do not offer further insight. It is important to note that

our approach here contradicts the usual universality scenario found in statistical mechanics

and emphasizes the dominant importance of boundaries (and in particular corners). We

stress here that this observation does not depend on using Euclidean distance and is valid

in any geometry and any dimension where the lack of connectivity is due to a situation

involving a single disconnected node and an N − 1 cluster.. In such a case, the outage

probability will be dominated by situations where that node has a small volume in range.

Returning to the general Rayleigh fading link model of equation (19) we now demon-

strate the above observation in a straight forward way. Suppose that r2 is situated some-

where on the boundary of the network domain V ⊂ Rd. Since direct connectivity is expo-
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nentially decaying, we may separate the dr1 integral and extract its leading order behavior

∫
V
H(r12)dr1 ≈

(∫ ∞
0

rd−1e−βr
η
dr

)(∫
dΩ

)
=

Γ
(
d
η

)
ηβ

d
η

ω, (32)

where Ω = 2π
d
2

Γ( d2 )
is the full solid angle in d dimensions and ω ∈ (0,Ω) is the solid angle

available from r2. In the case of η = 2 the gamma functions cancel and equation (32)

simplifies to
(
π
β

) d
2 ω

Ω . As disused before, scaling β = r−η0 we recover the popular unit-disk

model in the limit of η →∞, allowing for direct comparison with the probabilistic case of

(19) and other earlier results. For example, if η = d then equation (32) gives rd0/d which is

also what the unit-disk model gives.

In general we expect that the outer integral in (29) will have contributions from bound-

ary regions as in (32), with a term of the order of exp(−ρω
∫
H(r)rd−1dr) for the smallest

ω, for example the pointiest corner, dominating Pfc at high density. It is clear from this

argument that connectivity is indeed dominated from regions which are hard to connect

and is controlled by the solid angle available to them.

The above observation has brought forward a radically different understanding of con-

nectivity in confined geometries, namely that full connectivity is dominated by the critical,

hard to connect areas such as corners, edges and faces. Furthermore, this suggests the de-

composition of the probability of a fully connected network Pfc into a sum of contributions

due to boundary objects with different solid angles. In order to obtain a more in-depth

understanding of this novel idea we now embark into a more detailed investigation by con-

sidering a few example domains. Through these examples, the boundary effects will become

clear thus leading to the main result of this section; a general formula (see equation (46))

for Pfc.

3.2 Example 1. Disk (η = 2)

We start with a circular domain dR ⊂ R2 of radius R. Using a Euclidean metric, the

distance between two nodes is given by d(r1, r2) = |r12| =
√
|r1|2 + |r2|2 − 2|r1||r2| cos θ.

Hence, for the case of η = 2 we must first evaluate∫
dR

H(r12)dr1 =

∫ R

0

∫ 2π

0

(
r1e
−β(r2

1+r2
2−2r1r2 cos θ)

)
dθdr1

= 2π

∫ R

0

(
r1I0(2r1r2β)e−β(r2

1+r2
2)
)

dr1,

(33)
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where I0(x) is the modified Bessel function of the first kind. Unlike the ordinary Bessel

function, which is oscillatory for real arguments, I0(x) is exponentially growing. When r2

is close to the center (i.e. r2 ≈ 0) we have that e−βr2I0(2r1r2β) = 1 + O(r2
2) so that the

integral becomes:

2π

∫ R

0

(
r1I0(2r1r2β)e−β(r2

1+r2
2)
)

dr1 =
π

β

(
1− e−βR2

)
+O(r2

2) ≈ π

β
, (34)

where we have assumed that βR2 � 1. Notice that this is the same assumption made

in equations (20) and (21) and will be consistently used throughout our calculations.

Otherwise, if r2 is not near the center of cR, we have the asymptotic relation I0(x) =

ex√
2πx

(
1 +O(x−1)

)
so that the integral becomes:

2π

∫ R

0

(
r1I0(2r1r2β)e−β(r2

1+r2
2)
)

dr1 = 2π

∫ R

0

(
r1

e2r1r2β

√
4πr1r2β

e−β(r2
1+r2

2)

)
dr1

≈
√
π√
β

∫ R

0
e−β(r1−r2)2

dr1

=
π

2β

(
erf
[√

β(R− r2)
]

+ erf
[√

βr2

])
,

(35)

since the main contribution of this integral comes from r1 ≈ r2. Matching the two solutions

for small and large r2 we obtain a nice approximation to equation (33)∫
cR

H(r12)dr1 ≈
π

2β

(
erf
[√

β(R− r2)
]

+ 1
)

=
π

2β
f(r2).

(36)

In order to make progress, we approximate f(r) by

f̃(r) =

c1, for 0 < r < a,

c2 −m(r −R), for a ≤ r < R,
(37)

where c1 = 2erf
[√
βR2
]
≈ 2, c2 = erf

[√
βR
]
≈ 1, m = 2

√
β√
π

(
1− e−βR2

)
≈ 2

√
β√
π

when
√
βR � 1 and a is their intersection approximating the location of the effective turning

point of f(r).
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Figure 4: Left: (Color online) A plot of Pfc(ρ) in a disk dR of area A = 200 (β = 1) (solid red) compared

with the prediction of equation (8) (dashed) and a numerical simulation (black). Right: The dashed curves

show the contributions from the bulk (blue) and boundary (purple) term in equation (38) on a log-linear

scale. The full curves are plots of Pout(ρ) with dark red and black corresponding to theory and numerical

simulation.

The outer integral in equation (29) can now be approximated to give

Pfc = 1− ρ
∫
dR

e
−ρ
∫
cR

H(r12)dr1dr2

≈ 1− 2πρ

∫ R

0
re
−ρ π

2β
f̃(r)

dr

= 1− πR2ρe
−ρπ

β

(
1−

√
π√
βR
− 2
√
β

ρ
√
πR

+O(R−2)

)
− 2πR

√
β

π
e
− π

2β
ρ
(

1−
√
β

ρ
√
πR

+O(R−2)

)
.

(38)

It is clear from equation (38) that Pfc is composed of a bulk term and a boundary term

with coefficients characteristic of the area and perimeter of cR, with corrections due to the

curvature of the boundary which vanish as R → ∞. Moreover, Pfc is dominated by the

boundary term in the high density limit. This can be seen on the right panel of Figure 4,

and that this transition occurs at ρt ∼ 2β
π ln

√
π

2
√
β
R as R→∞.

The left panel of Figure 4 shows an encouraging comparison with a numerical Monte

Carlo simulation. Nodes are randomly placed within a circular disc of area A = 200 and are

connected with probability H(rij) (β = 1). The error at lower densities is of course expected

as the theory developed above is only a first order approximation to Pfc. Nevertheless, the

agreement with simulations substantially improves at high densities but is also good in

mid-densities. Hence, equation (29) provides a useful path which one may take to predict,

control, or even optimize and set benchmarks for achieving full network connectivity.
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3.3 Example 2. Square (η = 2)

We now consider a square domain sL of side L. The integral in the exponent of (29) can

be evaluated exactly in Cartesian coordinates for η = 2 to give∫
sL

H(r12)dr1 =

∫ L
2

−L
2

∫ L
2

−L
2

(
e−β((x1−x2)2+(y1−y2)2)

)
dx1dy1

=
π

4β
h(x2)h(y2),

(39)

where h(x) =
(

erf
[√

β (L−2x)
2

]
+ erf

[√
β (L+2x)

2

])
. Due to symmetry, we need only consider

the positive quadrant of sL i.e. when x2, y2 ∈ [0, L2 ]. Hence h(x) ≈
(

erf
[√

β (L−2x)
2

]
+ 1
)

and may be further approximated by f̃(x) with R replaced by L/2 (see equation (37)) such

that ∫ L
2

0

∫ L
2

0
e
−ρ π

4β
h(x)h(y)

dxdy ≈
∫ L

2

0

∫ L
2

0
e
−ρ π

4β
f̃(x)f̃(y)

dxdy. (40)

Note however that it is crucial that the quadratic x2y2 term is not included in the expansion

of h(x2)h(y2) as it is of higher order. Performing the integrals and multiplying by four we

obtain a result

Pfc = 1− L2ρe
−π
β
ρ (

1−O(L−1)
)
− 4L

√
β

π
e
− π

2β
ρ (

1−O(L−1)
)
− 16β

ρπ
e
− π

4β
ρ
, (41)

assuming that
√
β L2 � 1. Note that the above calculation can naturally be extended in a

straight forward way to include for general η > 0 and higher dimensional d > 0 orthotopes

(hyper-rectangles) of non-equal sides.

As expected, Pfc in equation (41) is composed of a bulk term, a boundary and a corner

term with coefficients characteristic of the corresponding volume of the relevant object (e.g.

area, perimeter, number of corners) and is dominated by the corner term in the high density

limit. This is illustrated on the right panel of Figure 5 while the left panel of Figure 5

shows another encouraging comparison with numerical simulations. We also notice that

there exists a parameter window ρ1 ≤ ρ ≤ ρ2 with ρ1 ∼ 2β
π ln

√
π

4
√
β
L and ρ2 ∼ 4β

π ln
√
π

4
√
β
L,

where the edges of the square provide the dominant contribution to Pfc. Note however

that ρ1 and ρ2 are only rough estimates of the transition points as they require L → ∞

but only depend logarithmically on L. Finally, the 16 in the last coefficient arises from the

number of corners (4) multiplied by a factor. We turn to the calculation of this factor in

more generality in the next subsection.
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Figure 5: (Color online) Left: A plot of Pfc(ρ) in the square domain sL of area A = 200 (β = 1) (solid

red) compared with the prediction of equation (8) (dashed) and a numerical simulation (black). Right: The

dashed curves show the contributions from the bulk (blue), the boundary (purple) and the corner (yellow)

term in equation (41) on a log-linear scale. The full curves are plots of Pout(ρ) with dark red and black

corresponding to theory and numerical simulation.

3.4 Example 3. Wedge: General angle (η > 0)

In order to understand corner effects better, we now consider for general η > 0 a wedge

wϑ ⊂ R2 of angle ϑ ∈ (0, π). We are concerned here only with the region close to the origin.

At distances much larger than the connectivity range the wedge could be truncated to form

a circular sector. We ignore the bulk, boundary and two right angled corner contributions

to Pfc, and concentrate on the middle corner term which we denote by Cd(ϑ) for d = 2.

Note that this approach applies for general geometries containing non-right angles.

The distance between two nodes is now given by d(r1, r2) =
√
|r1|2 + |r2|2 − 2|r1||r2| cos(θ1 − θ2)

with angular positions θ1,2 ∈ (0, ϑ). Following the arguments of section 3.1, we expect that

to leading order C2(ϑ) is when r2 is situated near the central corner i.e. when r2 ≈ 0. Hence

we expand H(r12) about the corner in polar coordinates such that to leading order∫
wϑ

H(r12)dr1 = lim
R→∞

∫ ϑ

0

∫ R

0
r1e
−βrη1

(
1 + ηβrη−1

1 r2 cos(θ1 − θ2) +O(r2
2)
)

dr1dθ1

=
ϑΓ
(

2
η

)
+ r2Γ

(
1
η

)
(sin θ2 − sin(θ2 − ϑ))

ηβ
2
η

+O(r2
2),

(42)
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Figure 6: (Color online) The contribution from a corner of angle ϑ (blue) for ρ = β = 1 and η = 2. Also

shown are the three asymptotic regimes (see equation (44)) of ϑ→ 0, π
2
, π shown in purple, yellow and green

respectively.

and hence

C2(ϑ) = lim
R→∞

∫ ϑ

0
ρ

∫ R

0
r2e
−ρ
(
ϑΓ( 2

η )+r2Γ( 1
η )(sin θ2−sin(θ2−ϑ))

ηβ
2
η

+O(r2
2)

)
dr2dθ2

=
β

2
η e
−ρ

Γ( 2
η )

ηβ
2
η
ϑ

ρ sinϑΓ (1 + η−1)2 .

(43)

Reassuringly in the case of a square with η = 2 we have that 4C2(π2 ) = 16β
ρπ e

− π
4β
ρ

as in

equation (41). Furthermore, from (43) we identify three main regimes as follows

C2(ϑ) =


4β
πρϑ −

2
π +O(ϑ), for ϑ� 1,

4β
πρe

−πρ
4β − 2

πe
−πρ
4β
(
ϑ− π

2

)
+O((ϑ− π

2 )2), for ϑ ≈ π
2 ,

4βe
−πρ
2β

πρ(π−ϑ) + 2e
−πρ
2β

π +O(π − ϑ), for π − ϑ� 1,

(44)

for the case of η = 2 and are illustrated in Figure 6. Finally, C2(ϑ) has a minimum at

ϑmin = π − arctan
2β

ρ
(45)

Physically, the picture shown in Figure 6 makes sense in the following way: the contri-

bution to Pfc from a ϑ angled corner is maximum for ϑ � 1 as expected due to the high
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probability of an isolated node. This contribution decreases monotonically as ϑ is increased

until ϑ > ϑmin. At this point our approximations become invalid since the leading expo-

nent now tends to ∼ −πρ
2β as ϑ → π which is the same as that of the perimeter term in

equation (41), i.e. the corner turns into an edge of infinite length and thus C2(ϑ) diverges.

Notice however that at very high densities ϑmin → π.

3.5 A General formula

In high-dimensional domains V ⊂ Rd (d ≥ 3), boundary effects are due to intersections of

hyperplanes which the above examples and techniques can generalize to account for. As a

result Pfc can be expressed as a sum of contributions due to objects of different codimension

i = 0, 1, . . . d (with i = 0 corresponding to the bulk/volume term)

Pfc ≈ 1−
d∑
i=0

∑
ji

ρ1−iGjiVjie
−ρωjiH, (46)

where d ∈ N is the space dimension, Gji is a geometrical factor for each object j of codimen-

sion i while Vji is the corresponding d− i dimensional volume of the object with solid angle

ωji ∈ (0,Ω) andH =
∫∞

0 rd−1H(r)dr. It is clear that for i = 0 and 1, the second sum in (46)

contains only one term. The remaining one dimensional integral is easily computed for typ-

ical connectivity functions Hij (also see [39]). Corrections due to curved hyper-surfaces

are expected to give algebraic corrections as in (38). Note however that Gji is Hij depen-

dent while Vji is not. In the case of H(r) = e−βr
2

we find for example for d-dimensional

hyper-rectangles where all hyperplanes meet at right angles Gji = 2i(i−1)
(
β
π

) i(d−1)
2

while

for the unit-disk model with range r0 we find Gji = 2i(i−1)/V i
d−1, where Vn =

πn/2rn0
Γ(n/2+1)

is the volume of an n-dimensional sphere of radius r0. These two cases are compared in

Figure 7 for a cube of side L = 7.

The above formula is a high density expansion giving the probability of achieving a

fully connected network of nodes in confined geometries. For all practical purposes (d ≤

3) equation (46) can account for most interesting (from an engineering point of view)

domains in which a network may be deployed. Furthermore, its closed and simple format

emphasizes the logical decomposition of the domain into objects of different full connectivity

importance. This is illustrated in Figure 8 comparing two circular sectors (d = 2) of angles

ϑ1 = π/4 and ϑ2 = 3π/4 but of equal perimeters V11 = 70. Notice that the density at
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Figure 7: Left: (Color online) Comparison of Pfc(ρ) from theoretical predictions of (46) (dashed curves)

with direct numerical simulation (jagged line) of two random graphs inside a cube of side L = 7 for the unit-

disk connectivity function with r0 = 1 (blue) and the probabilistic Rayleigh fading link model with η = 2

(red). Right: The corresponding Pout(ρ) is plotted on a log-linear scale emphasizing the good agreement

between theory and simulations as well as the difference between the two models.

which the numerical simulation results become distinct (ρ ≈ 3) in the left panel of Figure 8

is also where the corner term of cR1,ϑ1 overtakes the common perimeter term (shown in

black) in the right panel of Figure 8.

It is useful to compare the various boundary contributions for a given geometry. For

example, in the case of the square, equation (41), the terms for bulk, edges and corners differ

in their exponential, so that in the limit of high density, they could only be comparable if

the size of the system (L or V ) is growing exponentially with density. Setting the corner

and edge terms equal, we find for example

V =
16β

πρ2
e
πρ
2β (47)

which quickly becomes very large. At smaller volumes for a given density, the corners

dominate the full connection probability.

4 Conclusion

In this paper we have attempted to understand how boundary effects can influence full

connectivity in confined geometries. Based on the fact that at very high densities the

probability of full connectivity Pfc is simply the complement of the probability of a single

isolated node, we have developed a cluster expansion approach which classifies terms with
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Figure 8: (Color online) Left: Comparison of Pfc(ρ) from theoretical predictions of (46) (solid curves) with

direct numerical simulation (black) of two random graphs inside circular sectors cR1,ϑ1 (blue) and cR2,ϑ2

(red) using β = 1 and η = 2. The sectors are of equal perimeters V11 = 70 but with ϑ1 = π/4 and ϑ2 = 3π/4.

The dashed curves correspond to conventional wisdom (i.e. the bulk contribution of equation (8)). Right:

The corresponding Pout(ρ) is plotted on a log-linear scale emphasizing the good agreement between theory

and simulations.

respect to their largest connected component. Assuming a homogeneous system and aver-

aging over the available space of the domain, we extract the leading and next-to-leading

order behavior of Pfc as is given in equations (8) and (17) respectively. Although our ap-

proach can be consistently expanded to obtain even higher order corrections to Pfc, using

an exponentially decaying connectivity test-function4 (equation (19)), we showed that cor-

rection terms are exponentially small. This is because nodes are ‘connected in probability’

(in this case exponentially) rather than in an all-or-nothing way.

The first main result of this paper follows from lifting the homogeneity assumption to

obtain equations (29) and (30), which confirm our initial observation, namely, that in the

high density limit, Pfc is dominated by nodes which are situated in “hard to connect” re-

gions, characterized by their solid angle. Using (19) we then instructively worked through

three example domains (disk, square and wedge) in order to reach our second main result,

a general formula for Pfc (equation (46)). The closed and simple format of (46) emphasizes

the logical decomposition of the domain into objects of different full connectivity impor-

tance, according to their codimension. Finally, a comparison of our theoretical predictions

with direct numerical simulations, in a variety of settings, has demonstrated that con-

ventional percolation models are not sufficient for an accurate description of full network

4This was taken from a standard Rayleigh fading link model (also see [39]).
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connectivity at high node densities.

In summary, full connectivity at high node densities is dominated by local geometric

boundary effects such as corners, edges and faces. These contributions have universal prop-

erties, distinct but complementary to those of previous percolation approaches, which are

typically limited to bulk effects or use a scaling that removes boundary terms (see [35]).

As a result, our findings bring forward a radically different understanding of connectivity

in confined geometries while also providing useful formulas for the probability of full con-

nectivity, crucial for the design of reliable wireless mesh networks [40]. Moreover, sufficient

quantitative detail is available for analyzing and determining system parameters in order

to mitigate boundary effects (see [39]). Conversely, boundary effects can be harnessed to

avoid full connectivity. Such approaches can be useful in physically important models such

as the spread of forest fires [18], epidemics [21], or mobile phone viruses [23], given details

of a specific model for connectivity. Finally, one may also consider the inverse problem of

“connecting the shape of a drum” [41] to characterize unknown domains containing random

networks. More generally, boundary effects are of major interest in the statistical mechan-

ics of systems with very small structures such as in conducting carbon nanotubes [42] or

very large and highly connected social and financial networks [26, 27] where the geometry

is likely to be dynamic.
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