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Abstract—Network connectivity is usually addressed for convex
domains where a direct line of sight exists between any two trans-
mitting/receiving nodes. Here, we develop a general theory for the
network connectivity properties across a small opening, rendering
the domain essentially non-convex. Our analytic approach can
go only so far as we encounter what is referred to in statistical
physics as quenched disorder making the problem non-trivial.
We confirm our theory through computer simulations, obtain
leading order approximations and discuss possible extensions and
applications.

I. INTRODUCTION

Wireless ad hoc and sensor networks [1] have attracted
much attention in recent years as they do not rely on a
pre-existing system infrastructure, such as central routers or
access points. Instead communication devices, here referred
to as nodes, can relay messages to one another in a multi-hop
fashion, thus achieving good coverage and connectivity over
large areas. Modern applications of wireless ad hoc and sensor
mesh networks can be found inter alia, in swarm robotics [2]
deployed in hazardous locations such as factories, mines and
disaster areas [3], laptops, power distribution (“smart grid”)
technologies [4], vehicles for road safety [5], and underwater
sensor networks [6].

Achieving smooth functionality of a network in the form
of good connectivity, whilst simultaneously minimizing eco-
nomic, computational and energy costs is a difficult task,
addressed from a physical layer’s perspective by the theory of
random graphs [7] and complex networks [8]. Here, networks
are modelled by a collection of nodes randomly distributed in
a region of space, pairwise connected with a relative position
dependent probability. The network’s connectivity properties
can then be characterized via a plethora of methods and
measures such as for example various clustering statistics, net-
work modularity measures, node importance and correlations
between degrees of neighbouring nodes. Of particular interest
in dense networks is the optimal number of nodes necessary
to maintain full connectivity with certain probability [9].

A theory for predicting the probability Pfc with which a
random network is fully connected in confined convex spaces
was recently developed in [10] and [11]. There, it was shown
that Pfc is strongly influenced by the details of the domain
boundary and in fact is asymptotically dominated by the lack
of connectivity near the sharpest interior corner. The main
result was a general analytic formula facilitating the design
and analysis of reliable wireless mesh networks [12].

Fig. 1: Clustering of a random network formed in a square domain of side
L = 10 at density ρ = 2. A hard vertical wall with a keyhole opening
of width w = 1 splits the domain into two equal parts thus hindering full
connectivity.

In this paper, we extend this theory to non-convex domains
and in particular to domains involving a small keyhole type
opening as shown in Fig. 1. The notion of the keyhole
problem in wireless communications was introduced in [13],
and has since been extensively studied from the antenna
propagation perspective and the relevant channel distributions
[14]. Instead, here we focus on the network aspect of the
keyhole problem and explain why this system exhibits semi-
quenched disorder, a feature common in spin glass systems
(e.g. disordered magnets with frustrated interactions) [15]. As
our main contribution, we derive a general formula for the
probability of two sub-networks to connect through a small
opening. We confirm our results using computer simulations
and furthermore obtain leading order asymptotic expansions in
closed form. To the best of our knowledge, together with the
recent works of [16], our results constitute the first analytic
approach to network connectivity in non-convex domains.

The paper is structured as follows: In Sec. II we describe the
keyhole problem set-up and define the relevant parameters and
observables. In Sec. III we recall how the probability of full
connectivity is calculated in convex domains and in Sec. IV we
reduce the problem of full network connectivity to that of the
existence probability of a bridging link between sub-domains.
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In Sec. V we obtain leading order analytic approximations
to this probability and in Sec. VI discuss why the system
exhibits quenched disorder and thus derive our main result,
a general formula for the probability of two sub-networks to
connect through a small opening. In Sec. VII we confirm our
results through computer simulations and discuss asymptotic
limitations and difficulties due to the many length scales
associated with the problem at hand. Finally, some concluding
remarks are given in Sec. VIII.

II. DESCRIPTION OF THE PROBLEM

In its simplest form, the problem set-up involves a domain
V ⊂ R

2 of area V which is split into two convex sub-domains
A,B ⊂ V , containing NA and NB nodes respectively. The
two domains are separated by a hard straight wall containing
a small keyhole opening of width w (see Fig. 1). For reasons
to be discussed later, we assume that the keyhole is located
sufficiently away from the remaining borders of A and B. The
node locations ai ∈ A and bj ∈ B for i ∈ [1, NA] and j ∈
[1, NB] are chosen at random from a uniform distribution with
density ρA,B = NA,B/VA,B where VA,B is the corresponding
volume of the sub-domains.

After deployment of the nodes, communication links be-
tween pairs of nodes are established with probability H(r),
where r is the relative distance between the pair. We maintain
physical relevance by adopting a specific pair connectedness
function H(r) derived from wireless communication the-
ory [17] and applicable to ad hoc and sensor networks. In par-
ticular, we use a Rayleigh fading model (thus incorporating the
effects of small scale scattering) where the information outage
probability Pout due to a single-input single-output (SISO)1

system is given by Pout = Pr
(
log2(1 + SNR × |h|2) < x

)
,

where x is the minimum outage rate threshold, SNR ∝ r−η

is the signal to noise ratio and η is the path loss exponent2.
Finally, h is the channel transfer coefficient and |h|2 is mod-
elled as an exponentially distributed random variable. Hence,
the connection probability between two nodes a distance r
apart can be expressed as

H(r) = 1− Pout = e−βrη , (1)

where β sets the characteristic connection length r0 = β−1/η .
It is worth noting that in the limit of η → ∞, the connection
between nodes is no longer probabilistic and converges to the
well studied case in geometric graph theory [7], the unit disk
model with an on/off connection range at the limiting r0.

Figure 1 shows a typical realization of a random network
in a square domain of side L = 10 with w = 1 at a density
of ρA = ρB = 2 using β = 1 and η = ∞. We observe that
two large connected components (clusters) are formed, one in
each sub-domain, with smaller ones forming near some of the
corners. In this paper, we will investigate the probability of

1For multiple input multiple output (MIMO) systems the total channel gain
through a keyhole is modelled by products of random variables [14].

2Typically η = 2 corresponds to propagation in free space but for cluttered
environments it is observed to be η > 2.

Fig. 2: Close-up of the keyhole opening showing a node ai in sub-domain
A and its associated connection region B̂(ai) ⊂ B. The dashed circle simply
illustrates that the keyhole is sufficiently isolated from any other boundary
elements of the domain V .

achieving a fully connected network denoted by P
(V)
fc for a

given pair of densities ρA and ρB.

III. FULL CONNECTIVITY IN SUB-DOMAINS

In [11], it was shown that the probability of a spatially
confined random network being fully connected Pfc is dom-
inated by local boundary effects due to “hard to connect to”
regions. Thus, contrary to the expected universal features of
large networks, full connectivity is governed by local and not
global features of the network domain. Through the use of
a cluster expansion, often used in statistical physics, it was
shown that for arbitrary convex domain V ⊂ R

d

Pfc = 1− ρ

∫
V
e−ρ

∫
V H(r12)dr1dr2, (2)

where r12 = |r1 − r2| is the relative distance between
nodes with position coordinates r1, r2 ∈ V . For fast decaying
connectivity functions H(r) (as in Eq. (1)), the outer integral
in (2) can be approximated by a sum over separate boundary
objects of different co-dimension i = 0, 1, . . . d (with i = 0
corresponding to the bulk/volume term)

Pfc ≈ 1−
d∑

i=0

∑
ji

ρ1−iGjiVjie
−ρωji

∫ ∞
0

rd−1H(r)dr, (3)

where d ∈ N is the space dimension, Gji is a geometrical
factor for each object j of co-dimension i while Vji is the
corresponding d−i dimensional volume of the boundary object
with internal solid angle ωji ∈ (0, 2πd/2/Γ(d/2)).

Equation (3), suggests that to a good approximation network
connectivity is the sum of its parts. For example, using η = 2
in (1) we have that a random network of N nodes confined in
a convex n-gon of area V1, perimeter V2 and interior angles
Ω = {ω1, ω2 . . . ωn}, will be fully connected with probability

Pfc = 1−V1ρe
−π

β ρ −V2

√
β

π
e−

π
2β ρ −

n∑
i=1

4βe−
ωi
2β ρ

ρπ sin(ωi)
,

(4)

where ρ = N/V1. Therefore, for the keyhole set-up of Sec. II,
it follows that full connectivity in each sub-domain P

(A)
fc and

P
(B)
fc is given by (4). Notice that at high densities ρ, the term

with the sharpest corner min(Ω) will dominate Pfc.
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IV. FULL CONNECTIVITY

If both sub-domains are fully connected, and at least one
“bridging” link exists through the keyhole opening, then the
combined network is also fully connected. Thus we may write

P
(V)
fc = P

(A)
fc P

(B)
fc X, (5)

where X is the probability of at least one bridging link
between the two sub-domains. As with the simplification of (2)
into (3), the assumption of statistical independence between
the three events in (5) is justified due to the fast decaying
H(r). For w sufficiently small, no node in A is likely to
influence the connectivity properties of nodes in B, and vice
versa. Writing P

(V)
fc as in (5) is particularly helpful when

performing computer simulations as calculating X is typically
much faster than calculating P

(V)
fc (see Sec. VII).

Noting that the probability of at least one bridging link is
just the complement of no bridging links, we have that

X = 1− 〈〈
NA∏
i=1

NB∏
j=1

(1− χijHij)〉B〉A, (6)

where Hij = H(|ai − bj |) and χij equals 1 if a “line of
sight” exists between nodes ai and bj , and is zero otherwise.
The angled brackets in (6) represent a spatial average over all
possible node configurations within each sub-domain

〈O〉C =
1

V NC
C

∫
CNC

O(c1, c2, . . . , cNC )dc1dc2 . . . dcNC , (7)

with C = A,B, and c = a, b, respectively. Note that the order
in which the average in (6) is performed is not important.

V. LEADING ORDER APPROXIMATION

The crudest approximation of X can be obtained by assum-
ing that all spatial integrals in (6) separate such that

X ≈ 1− (1− 〈〈χijHij〉B〉A)NANB

= 1− exp
(
−ρAρB

∫
A

∫
B
χijHijdbjdai

)
,

(8)

where we have assumed that NA, NB 
 1 and have used the
fact that (1− x)N = e−Nx in the limit of N → ∞. We shall
be using this approximation throughout our analysis.

In Eq. (8) we can identify 〈〈χijHij〉B〉A as the probability
of a randomly selected pair of nodes to form a bridging link.
We now calculate the integrals in (8) for a soft connectivity
function H(r) with η = 2. In doing so H(r) is a Gaussian
function thus rendering the mathematics tractable. For every
node ai = (xi, yi), there is a line of sight connection region
B̂(ai) ⊂ B (see Fig. 2). Hence we have that

∫
B χijHijdbj =∫

B̂(ai)
Hijdbj . In Cartesian coordinates, we get∫

B̂(xi,yi)

Hijdbj =

∫ ∞

0

∫ u+

u−
e−β((xi−xj)

2+(yi−yj)
2)dyjdxj

=

√
π

2
√
β

∫ ∞

0

e−β(xi−xj)
2
(
erf(

√
β(u+ − yi))

+ erf(
√
β(yi − u−))

)
dxj ,

(9)

where u± = (yi ∓ w/2)xj/xi ± w/2 are as seen in Fig. 2.
Setting the upper integration limit of dxj to infinity in an
otherwise finite domain V , is justified by the exponentially
decreasing integrand function.

The change of variables (x̂i, ŷi, x̂j) = 1/
√
β(xi, yi, xj)

simplifies the expression in (9) whilst a further change of
variable ẑj = −x̂j/x̂i eliminates the x̂i dependence in the
argument of the error functions. We may now change the order
of integration and perform the x̂i integral over the negative real
line first to obtain

erf
[
(1 + ẑj)(ŷi +

√
βw
2 )

]− erf
[
(1 + ẑj)(ŷi −

√
βw
2 )

]
2(1 + ẑj)2

, (10)

which is an even function in ŷi. Integration in ŷi ∈ (−∞,∞)
gives

√
πw/(2(1 + ẑj)

2β3/2) and finally integration in ẑj ∈
(0,∞) leads to the immense simplification of∫

A

∫
B
χijHijdbjdai =

√
πw

2β3/2
, (11)

and hence that

X ≈ 1− exp

(
−ρAρB

√
πw

2β3/2

)
. (12)

Indeed, Eq. (12) offers a decent approximation of X at low
densities and for w 
 1. This is confirmed in Fig. 4 where
we compare against computer simulations of X . We postpone
discussing the accuracy of (12) for Sec. VII.

For a hard connectivity function H(r) with η = ∞ and
connectivity range r0, the sector angle of B̂(ai) is given in
polar coordinates by φi = −w cos θi/ri+O(w2) (see Fig. 2).
Hence we have that∫

B
χijHijdbj ≈ φi

2π

(
πr20 − πr2i

)
, (13)

where we have approximated B̂(ai) by an annular sector with
radii ri < r0. Integrating over A we have that∫ 3π/2

π/2

∫ r0

0

ri
φi

2
(r20 − r2i )dridθi =

2r30w

3
. (14)

Notice that substituting r0 = β−2 into (14) gives the correct
scaling as in (11). The pre-factor however 2/3 <

√
π/2 ≈

0.886 suggests that connectivity through small openings is
better for soft connectivity functions H(r).

VI. SEMI-QUENCHED DISORDER

Equation (8) suffers from the unphysical assumption of
uncorrelated node positions. That is, if one node in B is
situated very close to the keyhole opening, then almost all
nodes in A will have an increased probability of connecting
to it and vice versa. Thus, Eq. (8) fails to capture this feature
of the network as it assumes that the node positions of the
selected pair under investigation are independently chosen at
each check. In statistical physics, this situation resembles that
of annealed disorder where random variables are allowed to
evolve with time.

The opposite of annealed disorder is quenched disorder.
Here, random variables do not evolve with time, i.e. they
are quenched or frozen. This can be understood best for hard
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Fig. 3: Overlapping sectors of radius r0 = 1 due to nodes in A. The union of these sectors intersected with A defines the cumulative connection region⋃
i B̂(ai). Note that some nodes are too far away from the keyhole opening and so do not contribute to

⋃
i B̂(ai). For larger openings (left) the cumulative

connection region is dominated by the nearest node to the keyhole, while for smaller openings (middle) the cumulative connection region defines a complicated
region. For very small openings (right), there is very little overlap between sectors.

connectivity functions H(r) i.e. when η = ∞. For a particular
realization of the NA node positions in sub-domain A, the
union of all connection regions

⋃
i B̂(ai) forms a cumulative

connection region and grows with NA (see Fig. 3). Since nodes
in B are uniformly distributed, the probability of no bridging
links is equal to (1− |⋃i B̂(ai)|/VB)NB , and so on average

X = 1−
(
1− 〈|⋃i B̂(ai)|〉A

VB

)NB

, (15)

where 〈|⋃i B̂(ai)|〉A is the average area of the cumulative
connection region due to all possible spatial configurations of
nodes in A.

For small openings relative to the typical node connection
range r0, the cumulative connection region

⋃
i B̂(ai) is a

complicated object (see Fig. 3.b.) leaving little hope in ob-
taining an expression for its expected area in closed analytic
form. Nevertheless, Eq. (15) provides further insight into the
problem as it suggests that only nodes in one of the two sub-
domains are quenched; the system is semi-quenched. Therefore
we may simplify (6) to obtain our main result

X = 1− 〈
NA∏
i=1

〈
NB∏
j=1

(1− χijHij)〉B〉A

= 1−
(

1

VA

∫
A
e−ρB

∫
B χijHijdbj dai

)NA

,

(16)

where we recognize the term in the final brackets as the
probability of node i not connecting with any of the NB nodes
in B. Note that Eq. (16) is symmetric under A ↔ B and is
also valid for higher dimensional domains.

VII. COMPUTER SIMULATIONS AND DISCUSSION

In this section we verify Eq. (16) through direct numerical
integration using standard routines and comparing with com-
puter simulations. The computer code written in C++ uses
Monte Carlo methods to estimate X for different densities.
At each run, an array of NB randomly chosen coordinates
in B is initiated. A random point is then generated in A,
and is “checked” against all points in the array. The check is
successful if the point in A has a line of sight and a connection
link according to H(r) with at least one of the points in B.

This is repeated up to NA times, or until a successful check.
Thus, the worst case computational cost is O(NANB). Note
that an initial sorting of the array in ascending node-to-opening
distance order, would typically offer a significant overall speed
up due to the increased likelihood of a successful check.

The simulation results are shown in Fig. 4 using solid
markers for different values of w = {0.01, 0.05, 0.1, 0.2}
using η = 2, β = 1 and ρA = ρB in a square domain of
side L = 10 as in Fig. 1. Numerical integration of Eq. (16)
is shown using solid curves, and is seen to be in very good
agreement with the computer simulations thus verifying the
semi-quenched nature of the keyhole system set-up.

The leading order prediction of Eq. (12) is shown in
Fig. 4 using dashed curves. As expected, this approximation is
adequate at low densities ρ and small openings w, but worsens
when increasing either ρ or w. Indeed, if the distance dn of
the nearest node to the opening is much larger than w then
dn ≈ ρ−1/2 and there is little to no overlap between connec-
tion regions (see Fig. 3.c.) and the independence assumption
in Eq. (8) is reasonable. To estimate the critical density ρc
at which (12) begins to diverge we set ρc = ρA = ρB, and
require 1−X = O(1), (e.g. X = e−1) giving ρc ∼

√
β3/2/w.

VIII. CONCLUSION

In this paper we have investigated the connectivity prop-
erties of random networks in non-convex domains, and in
particular when two networks in convex sub-domains may
communicate through a small opening. We have shown that
the connectivity properties of the complete network is a
product of three independent events, the connectivity of each
sub-network and X , the probability that a communication
link exists between them. Furthermore, we have shown that
whilst both sub-networks have nodes randomly distributed
in space, connectivity across the complete network exhibits
semi-quenched disorder as only nodes in one of the two
sub-domains are frozen random variables during the link
formation process. We have benefited through this reduction
substantially, and have obtained general expressions for X (see
Eq. (16)) and confirmed them through computer simulations.

Further to the semi-quenched nature of the system, it seems
clear that the keyhole problem is a challenging one due to the
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Fig. 4: Comparison of numerical integration of (16) (solid curves), with
computer simulations (solid markers), and the crude approximation of (12)
(dashed curves) for different values of w = {0.01, 0.05, 0.1, 0.2} using η =
2, β = 1 and ρA = ρB in a square domain as in Fig. 1.

number of length scales involved. We have the typical size
of system which is about

√
V , the typical connectivity range

r0 = β−1/η , the typical distance between neighbouring nodes
in two dimensions ρ−1/2, and finally the width of the opening
w. Hence, asymptotic methods requiring significant separation
between each of the scales makes further analysis a formidable
challenge. For example, even when w
r0 there are a priori
three possible regimes: a) ρ−1/2≤w, b) w<ρ−1/2<r0, and c)
ρ−1/2 ≥ r0. Note that in physical systems, more length scales
may become relevant, e.g. the signal wavelength. Nevertheless,
we have obtained leading order analytic expressions for X (see
Eq. (12)) valid up to densities ρc ∼

√
β3/2/w.

Familiar physically relevant settings where the above the-
ory may be applicable are wireless networks in residen-
tial, business or industrial buildings. Here, scattered devices
form a machine to machine communication network whose
functionality can be disrupted by the topological features of
the confining space, e.g. doorways and windows. Perhaps a
more suitable application derives from ad hoc networks with
minimal configuration requirements and quick deployment
rates, often used for emergency situations like natural disasters
or military conflicts. Here, the connectivity through small
openings may correspond to that through narrow pathways,
gaps and cracks encountered, e.g. in post earthquake urban
environments, underground tunnels, or even inside the hu-
man body [18]. Indeed, modern swarms of small robots can
communicate, sense, collaborate, fetch and carry [19]. These
technological advancements lend themselves to search and
rescue operations in hazardous environments [20] and also
to non-invasive medical diagnostics and treatments by so
called “nanobots” [21]. On the theoretical side, we expect our
results to lead to further insight and understanding on network
connectivity in non-convex domains.
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