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Abstract – We use random matrix theory to study the spectrum of random geometric graphs,
a fundamental model of spatial networks. Considering ensembles of random geometric graphs we
look at short-range correlations in the level spacings of the spectrum via the nearest-neighbour and
next-nearest-neighbour spacing distribution and long-range correlations via the spectral rigidity
Δ3 statistic. These correlations in the level spacings give information about localisation of eigen-
vectors, level of community structure and the level of randomness within the networks. We find
a parameter-dependent transition between Poisson and Gaussian orthogonal ensemble statistics.
That is the spectral statistics of spatial random geometric graphs fits the universality of random
matrix theory found in other models such as Erdős-Rényi, Barabási-Albert and Watts-Strogatz
random graphs.

Copyright c© EPLA, 2017

Introduction. – Many physical systems can be stud-
ied using graph models consisting of pairs of nodes con-
nected together via links or edges [1]. From information
flow in communications and transport infrastructures, to
social interactions, biological organisms and semantics, a
varied array of systems can all be modelled and stud-
ied in terms of complex networks [2] (see ref. [3] for an
introduction).

One way of studying these systems is to randomly gen-
erate or synthesize graph topologies which reproduce the
interesting features or structure one is interested in. These
models can be studied analytically or ensembles created
which can be analysed numerically either directly or fed
into larger simulation software packages. Several random
graph models have been created for this purpose such
as the Erdős-Rényi (E-R) random graph model [4], the
Barabási-Albert scale-free network model (B-A) [5], the
Watts-Strogatz small-world network model (W-S) [6] and
the random geometric graph (RGG) [7–9] which we focus
on here (see fig. 1).

Recently, spectral graph theory has provided the ve-
hicle with which random matrix theory (RMT) can be
applied to study statistics of the graph spectrum. Like
in traditional spectroscopy, one can then infer structural
properties of complex networks. Many types of random
graph models have been analysed, however, the ubiqui-
tous and fundamental class of geometric graphs which are

Fig. 1: A random geometric graph. Here we have illustrated a
random geometric graph which consists of 103 nodes uniformly
distributed onto the two-dimensional unit torus (blue discs).
These nodes are connected by edges (black lines) when they
are within a range of 0.1 of each other.

the simplest models of spatial networks [10] has yet to be
studied using the RMT framework.

A geometric graph is a spatially embedded network
in which all nodes have a well-defined location within a
given geometric domain. Thus, geometry structures the
network while greatly affecting its connectivity proper-
ties. Indeed, many real-world networks such as trans-
portation networks, the Internet, mobile phone networks,
power grids, social networks and neural networks all have
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a fundamental spatial element to them (see [10] for a sur-
vey). In this first foray into the spectral properties of ge-
ometric graphs using RMT, we specifically focus on the
well-studied unit-disk RGG model [7–9]. It is already
known that the spectrum of RGGs is very different from
the other random graph models mentioned above in that
the appearance of particular sub-graphs gives rise to multi-
ple repeated eigenvalues [11,12]. This in turn causes sharp
peaks to appear in the adjacency matrix spectral density
(see fig. 2). Whilst the appearance of the sharp peaks has
been studied, the remaining part of the spectrum remains
largely unexplored. RMT will allow us to study the spec-
trum of RGGs and compare with previous results related
to other models.

RMT has been applied to a variety of complex net-
works. Graph matrices (e.g., adjacency, Laplacian) are
first extracted from empirical data or generated from
prescribed algorithms. These are then analysed by looking
at the inter-eigenvalue distances (so-called level spacings).
In ref. [13] RMT was applied to the study of biological
networks where the spectrum of a yeast protein-protein
interaction network and a yeast metabolic network were
studied. Remarkably, the statistics of the level spac-
ings were very similar to those of matrices whose entries
are Gaussian-distributed random variables; the Gaussian
orthogonal ensemble (GOE) statistics of RMT. After in-
troducing a modular structure via the removal of partic-
ular edges in these biological networks, the level spacing
statistics changed from GOE to being Poisson distributed.
Following this discovery, E-R random graphs were anal-
ysed in ref. [14]. In E-R random graphs each node is con-
nected to every other with a given probability p. GOE
statistics were observed for highly connected E-R graphs
experiencing a transition to Poisson statistics for smaller
values of p. Since these numerical discoveries, a local
semi-circle law, which states that the spectral density of
GOE matrices is close to Wigner’s semicircle distribution
on scales containing just more than one eigenvalue, has
been proven for E-R graphs under the restriction pN → ∞
(with at least logarithmic speed in N) [15]. The latter was
also used to prove the presence of GOE statistics in the
level spacings of E-R graphs under these conditions [16].
In fact, the RMT framework has been useful in manifold
applications, ranging from differentiating between cancer-
ous and healthy protein networks [17], to studying An-
derson localisation in complex networks [18,19]. Further
use of RMT in complex networks has focused on the uni-
versality properties of these GOE statistics across differ-
ent random graph models [20–24]. An overview of the
relationship between complex networks (with specific ref-
erence to biological networks) and random matrix theory
can be found in ref. [25]. E-R, B-A and W-S have all
been studied and similar GOE statistics have been found
despite the fact that the spectral densities themselves are
very different [26].

In this paper we apply for the first time the RMT frame-
work to geometric graphs. We first describe the model,

Fig. 2: (Colour online) Here we illustrate the adjacency matrix
spectral density calculated from an ensemble of 104, 103 node
RGGs with connection radius 0.1 (a) and 0.3 (b). We note the
sharp peak in the spectrum at −1 caused by the appearance of
particular symmetric motifs in RGGs.

then provide background to aid in the understanding the
RMT framework that we will employ. This is subsequently
applied numerically to investigate the short-range correla-
tions in the level spacings via the nearest-neighbour spac-
ing distribution (NNSD) and the next-nearest-neighbour
spacing distribution (nNNSD) of the spectra. These short-
range correlation statistics encode information about com-
munity structure, connectivity and localisation which has
applications to the Anderson metal insulator transition in
networks [19]. We then look at the spectral rigidity in or-
der to investigate the long-range correlations of the RGG
spectra via the Δ3 statistic. These long-range correlations
and the Δ3 statistic give a measure of the amount of ran-
domness in the connections [22,27].

Model. – In a RGG the nodes are distributed ran-
domly throughout a given domain and the edges are
determined by the locations of the nodes, see, for example,
refs. [8] and [9] for introductions. RGGs find partic-
ular use in modelling spatial networks such as wire-
less networks [28–31], epidemic spreading [32–34], city
growth [35], power grids [36] and protein-protein inter-
action networks [37] for example. There has also been
recent interest in studying the properties of RGGs like
synchronisation [38,39], consensus dynamics [40], connec-
tivity properties [41] and spectral properties [11,12].

We study RGGs on the unit torus by uniformly dis-
tributing N nodes in the unit square and connecting them
with an edge when they are within a given range r of each
other, using periodic boundary conditions. See fig. 1 for
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an illustration of a particular realisation with r = 0.1. We
then extract the N × N adjacency matrix A of the RGG
which has entries aij = 1 when there is a connection be-
tween nodes i and j and zero otherwise. A is a type of
Euclidean random matrix which are often studied in ran-
dom matrix theory (RMT) [42]. An N × N Euclidean
random matrix has entries aij which are given by a de-
terministic function f(xi,xj) of the locations xi,xj of N
randomly distributed points. In our RGGs we have

f(xi,xj) :=

{

1, ||xi − xj || ≤ r,
0, ||xi − xj || > r.

(1)

The resulting adjacency matrix A when using eq. (1) is
real and symmetric hence its spectrum consists of real
eigenvalues λi, i = 1, . . . , N and λ1 ≤ λ2 ≤ . . . ≤ λN . We
study A as the spectrum of a network encodes valuable in-
formation about the underlying topology [43]. In refs. [11]
and [12] it is noted that the ensemble-averaged spectral
density ρ(λ) of RGGs consists of sharp peaks at integer
values (in ref. [11] the related graph Laplacian is studied)
caused by the appearance of particular subgraphs whose
nodes have the same adjacencies called symmetric motifs
(see fig. 2 for an illustration of this). This phenomenon
is not commonly found in non-spatial network models. In
ref. [11] they refer to these peaks in the spectral density
as the discrete part and the remainder as the continuous
part. Here we statistically analyse the continuous part of
the spectral density using RMT.

As the parameter r is varied the properties of the RGG
change also. On a microscopic scale the mean degree of
the nodes is proportional to r2 whilst macroscopically the
graph can be disconnected for small r and connected as
r increases. As r increases further every node will con-
nect to every other and the RGG becomes the complete
graph with trivial spectrum (N − 1)1, (−1)N−1. We look
at a range of values of r from relatively small (0.03) and
likely to contain many disconnected components to rela-
tively large (0.4) and likely to consist of one connected
component in order to assess how variation of this param-
eter affects the spectral spacing statistics. See fig. 4(b)
below for how the probability of obtaining a single con-
nected component (Pfc) depends on r.

Random matrix theory. – Wigner first developed
RMT to study the statistics of eigenvalue spectra of com-
plex quantum systems, see refs. [44] and [45] for reviews
and introductions to the subject. It has since been ap-
plied to many other types of complex systems [44]. In
order to analyse the statistics the spectrum has to be un-
folded to create a constant level density [44,45]. Examples
of the spectral densities which we will be unfolding are
illustrated in fig. 2. To unfold the spectrum we firstly
consider the spectral function which for a given energy E
is defined as

S(E) =
N

∑

i=1

δ(E − λi). (2)

Fig. 3: (Colour online) Cumulative spectral density. Here the
cumulative mean spectral function is illustrated (blue), calcu-
lated from an ensemble of 104, 103 node RGGs with connection
radius 0.1 along with the cumulative spectral density of a single
RGG (red).

The corresponding cumulative spectral function counts
how many eigenvalues there are less than or equal to E

η(E) =

∫ E

−∞

S(x)dx =

N
∑

i=1

Θ(E − λi). (3)

The unfolded eigenvalues are then defined in terms of the
cumulative mean spectral function

λi = 〈η(E)〉|E=λi
, (4)

where 〈. . .〉 signifies a mean value. An analytical form of
〈η(λ)〉 is often unobtainable so we use an ensemble average
to calculate the mean and then perform the unfolding. See
fig. 3 for an illustration of 〈η(λ)〉.

Once a spectrum has been unfolded we can look at the
spacing statistics. The nearest-neighbour spacings are de-
fined as

si = λi+1 − λi. (5)

Due to the unfolding process the expected value of 〈s〉 is
unity irrespectively of the spectral density ρ(λ), but the
NNSD P (s) is not unique. For an uncorrelated sequence of
points the spacings distribution follows the Poisson statis-
tics, i.e.,

Ppo(s) = e−s. (6)

In the case of GOE statistics there are correlations be-
tween eigenvalues. A good approximation to the NNSD of
GOE matrices is given by the Wigner surmise

PGOE(s) ≃
π

2
se−

πs2

4 . (7)

Equation (7) is exact in the case of 2 × 2 matrices and
provides a good approximation for larger matrices (see
ref. [45], fig. 1.5). The Brody distribution was introduced
as a way of interpolating between the two distributions [46]

Pβ(s) = (β + 1)αsβe−αsβ+1

, (8)

where

α = Γ

(

β + 2

β + 1

)β+1

, (9)
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Fig. 4: (Colour online) Nearest-neighbour spacings of unfolded
eigenvalues. Here the NNSD is numerically calculated from an
ensemble of 104, 103 node RGGs and illustrated for a range
of connection values in (a) along with the Brody distribution
fit (lines) and with the NNSD for Poisson and GOE statistics.
In (b) we show the best fit parameter β to the NNSD for a
range of r values showing the transition from Poisson (β = 0)
to GOE (β = 1) (blue dots) along with the probability of full
connectivity Pfc calculated from ensembles of 104 RGGs (green
stars).

with Γ() the Gamma function. β = 0 corresponds to the
Poisson statistics, eq. (6), whilst β = 1 to the Wigner
surmise, eq. (7). We stress that there is no physical sig-
nificance to the parameter β in the Brody distribution
but it has been noted that it captures the transition from
Poisson to GOE statistics rather well [47]. Furthermore,
the Brody distribution is frequently used in the study of
complex networks to measure the transition between and
mixture of GOE and Poisson statistics [14,18,21–23,48].
Hence we use it here for comparison.

Nearest-neighbour spacings. – We calculated the
NNSD P (s) from an ensemble of RGGs at various values
of the connection radius r. To obtain P (s) we firstly cal-
culate the spectrum of an individual RGG. This is then
unfolded to remove the system specific effects and the si

are extracted. This process is performed for an ensemble
of RGGs to obtain P (s), see ref. [49] for an error analy-
sis of these statistics. We then fit the Brody distribution
of eq. (8) to P (s) and interpret the fit parameter β as a
measure of similarity to either GOE or Poisson statistics.

Table 1: In this table is the best parameter fit for β of
eq. (8) to the numerically obtained nearest-neighbour spacing
distribution as a function of connection radius r along with
the standard error and corresponding χ2 statistic. Also re-
ported is the Kolmogorov-Smirnov statistic of the numerically
obtained next-nearest-neighbour spacing distribution tested
against eq. (11) along with the corresponding p value.

r β χ2 KS value p value
0.03 0.052 ± 0.005 0.064 0.192 0.000
0.04 0.198 ± 0.006 0.050 0.151 0.000
0.05 0.696 ± 0.008 0.029 0.060 0.000
0.06 0.862 ± 0.006 0.013 0.031 0.000
0.07 0.912 ± 0.005 0.010 0.023 0.000
0.08 0.931 ± 0.004 0.007 0.014 0.000
0.09 0.937 ± 0.004 0.006 0.010 0.000
0.1 0.942 ± 0.004 0.005 0.008 0.000
0.2 0.955 ± 0.002 0.002 0.004 0.155
0.3 0.957 ± 0.002 0.002 0.001 0.989
0.4 0.958 ± 0.002 0.001 0.002 0.916

We firstly note that there appears a sharp peak at zero
in the NNSD of RGGs. This is not due to a degeneracy
caused by disconnected components, as it appears for con-
nected RGGs. Rather this is caused by the multiplicity of
−1 in the spectrum as discussed earlier (fig. 2(a)). We re-
move this peak and calculate the NNSD. This is illustrated
for a range of r values in fig. 4(a) along with the Brody
distribution fit. Table 1 contains the standard error of
the best-fit estimate along with the χ2 statistic. For small
values of r the mean degree of the vertices is also rela-
tively low. At r = 0.03 the mean degree is less than three.
Hence it is highly likely that the RGGs consist of many
isolated components (communities) and the spectrum will
consist of the union of independent spectra. Correspond-
ingly we see very few correlations in the NNSD illustrated
by low β at low r values. As r increases the mean degree
increases quadratically. The isolated components merge
until the graph consists of a single connected component.
The probability of obtaining a fully connected RGG at a
given r value (Pfc) was calculated numerically and is also
illustrated in fig. 4(b). We see that as Pfc transitions from
zero to one, we observe a transition from Poisson to GOE
statistics in the NNSD.

In ref. [13] GOE statistics in the NNSD of a com-
plex network is interpreted as indicative of a lack of
modular or community structure, Poisson statistics be-
ing found in highly modular networks. Furthermore, the
NNSD is also studied in terms of the Anderson metal-
insulator transition of localised to extended eigenstates in
complex networks. GOE statistics are characteristic of
extended eigenstates whilst Poisson statistics indicate lo-
calisation [19]. In RGGs for small r the eigenstates will
be localised on the disconnected components.

An additional statistic used to study complex net-
works [21] is the next -nearest-neighbour spacings of the
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Fig. 5: (Colour online) Next-nearest-neighbour spacings of un-
folded eigenvalues. Here the nNNSD P (s2) is calculated from
an ensemble of 104, 103 node RGGs for a range of connection
values. Also illustrated is the nNNSD for GOE statistics.

unfolded eigenvalues s2 where

si
2 = (λi+2 − λi)/2, (10)

and their distribution P (s2). The factor of two in eq. (10)
again ensures a mean spacing of unity. The nNNSD of the
GOE is given by the NNSD of the Gaussian symplectic
ensemble of random matrices (GSE) which is well approx-
imated by (see ref. [45])

PGSE(s1) ≃
218

36π3
s4
1e

−
64
9π

s2
1 . (11)

We similarly calculated P (s2) for an ensemble of RGGs
which can be seen in fig. 5. We again observed a peak
at zero caused by the discrete peak in the spectral den-
sity. After removal of this peak we see that the nNNSD
of RGGs fits very closely to that of the GOE statistics for
large r (well connected) given by eq. (11) but we observe a
transition away from this as r is decreased and the RGGs
become disconnected. Table 1 captures this transition via
the Kolmogorov-Smirnov (KS) statistic where we observe
a sharp drop in the p value between 0.3 and 0.2. GOE
statistics have been found in the nNNSD of N = 2000
mean degree 20 (connected) non-spatial (E-R, scale-free
and small-world) networks [21].

Spectral rigidity. – So far we have only looked at
short-range correlations in the spectra via the NNSD and
nNNSD. We will now look at the Δ3 statistic, intro-
duced in ref. [50], which measures long-range correlations.
Δ3(L, x) measures the least-square deviation of the un-
folded spectral staircase function η to the line of best fit
over the interval [x, x + L],

Δ3(L, x) =
1

L
min
A,B

∫ x+L

x

(

η(λ) − Aλ − B
)2

dλ, (12)

where η counts how many unfolded eigenvalues there are
less than or equal to a given value

η(E) =
N

∑

i=1

Θ(E − λi). (13)

The average over non-intersecting intervals of length L
〈. . .〉x is then the spectral rigidity Δ3(L),

〈Δ3(L, x)〉x = Δ3(L). (14)

For full correlation where all the spacings are equal, such
as that of the harmonic oscillator, the so-called picket

fence spectrum, there is no dependence on L,

Δ3(L) =
1

12
. (15)

Meanwhile, a fully uncorrelated random sequence gives
Poisson statistics in the spacings. In this case there is
linear dependence on L given by

Δ3(L) =
L

15
. (16)

GOE statistics sit between these two cases with a loga-
rithmic dependence on L. For large L

Δ3(L) ≃
1

π2

(

ln(2πL) + γ −
5

4
−

π2

8

)

, (17)

to order 1/L [50], where γ is Euler’s constant. A use-
ful technique for evaluating Δ3(L, x) has been developed
in [51] and outlined in [52] for an experimentally obtained
sequence. This involves first shifting the interval [x, x+L]
so that its centre is at the origin, i.e., for all the unfolded
eigenvalues λi, λi+1, . . . , λi+n−1 we shift them (and relabel
for convenience),

λ̂j = λi−1+j −

(

x +
L

2

)

, (18)

we then have the following

Δ3(L, x) =
n2

16
−

1

L2

⎛

⎝

n
∑

j=1

λ̂j

⎞

⎠

2

+
3n

2L2

⎛

⎝

n
∑

j=1

λ̂2
j

⎞

⎠

−
3

L4

⎛

⎝

n
∑

j=1

λ̂2
j

⎞

⎠

2

+
1

L

⎛

⎝

n
∑

j=1

(n − 2j + 1)λ̂j

⎞

⎠.

(19)

Using eq. (19) we evaluate Δ3(L), being careful not to
sample the discrete peaks in the spectral density (this cre-
ates large jumps in the staircase function). See fig. 6 for
an illustration of Δ3(L) for a range of r values. We see
that the RGGs follow the GOE statistics up to some value
L0 and then deviate towards Poisson statistics, with the
value of L0 depending on r. The larger r gives larger
L0. In ref. [21] they find very good agreement between
the Δ3 statistic of the E-R random networks they study
and the GOE statistic for large values of L, which is to
be expected given the results in refs. [15] and [16] on the
similarity between GOE and well-connected E-R graphs.
Whilst for the scale-free and small-world networks they
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Fig. 6: (Colour online) Spectral rigidity of RGGs. Here is
illustrated the spectral rigidity, calculated from an ensemble
of 103, 103 node RGGs with r = 0.05, 0.06, 0.07, 0.08, 0.1,
0.15, 0.2, 0.4 (red circles, orange thin diamonds, blue diamonds,
green triangles (up facing), red triangles (down facing), orange
pentagons, blue dots, green stars, respectively). Also illus-
trated is the result predicted by GOE statistics (black line),
Poisson statistics (green dashed line) and the even spacing of
the picket fence spectrum (dot-dashed black line).

find good agreement up to certain values of L but then
they see deviations towards Poisson statistics as we have
observed here in RGGs. Indeed in ref. [22] they show how
the value of L0 is related to the amount of community
structure within the network by analysing networks con-
structed from randomly connected E-R networks. Fur-
thermore in ref. [27] the value L0/N is interpreted as a
measure of the amount of randomness in the connections
of the network. This amount of randomness is defined in
terms of the randomness introduced via a rewiring proba-
bility in regular degree networks. The higher the rewiring
probability, the larger L0.

Summary. – Here we have numerically analysed the
spectrum of the adjacency matrices of spatial networks by
looking at the random geometric graph model using a ran-
dom matrix theory framework. We analysed two statistics
which look at short-range correlations in the level spacings
of the spectrum; the nearest-neighbour distribution and
the next-nearest-neighbour distribution. We also anal-
ysed the spectral rigidity via the Δ3 statistic which looks
at long-range correlations. These statistics give insight
into localisation, community structure and randomness in
complex networks.

Firstly we found that the relatively common appearance
of certain symmetric motifs in random geometric graphs
appear as a peak at 0 in the nearest-neighbour distri-
butions. We also found that despite the deterministic
connection function used (eq. (1)) random geometric
graphs are statistically very similar to certain types of
random graph which have been studied like the Erdős-
Rényi random graphs, Barabási-Albert scale-free networks
and the Watts-Strogatz small-world networks [21] in that
the statistics display a parameter-dependent transition

between the Gaussian orthogonal ensemble of random ma-
trices for high r values and closer to Poisson statistics for
low r values. In terms of network structure these results
are indicative of the connectivity transition from many
isolated components at low r values to a single connected
component at high values of r. This transition has also
been interpreted in terms of the level of randomness in
the connections of random graphs [27]. Furthermore, in
terms of Anderson localisation it is seen in the transition
from localised to delocalised eigenstates [19].

The connection function we have studied given by
eq. (1) is fundamental to the study of random geomet-
ric graphs [8] but there are other, more general, random
connection functions that one can study [41]. Future work
will investigate these connection functions and look at how
the additional randomness is reflected in particular in the
Δ3 statistic. For this it will also be important to capture
the transition between and mixing of random Poisson and
correlated Gaussian orthogonal ensemble statistics. We
saw how this transition was captured by the often used
Brody distribution, eq. (8), so this could possibly provide
a good starting point. Generalising the results in refs. [15]
and [16] could also potentially give analytical answers to
these questions. Furthermore, it will be interesting to
study the spectral properties of other types of networks
such as self-similar [53] or even multiplex networks [54,55]
using RMT.
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