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ABSTRACT

Summary: Multi-locus sequence typing (MLST) is a widely used
method of characterization of bacterial isolates. It has been applied
to over 50,000 isolates in over 50 different species. Here we present
a coalescent method to jointly simulate MLST data and the clonal
genealogy that gave rise to the sample.

Availability and Implementation: SImMMLST was implemented in
C++ and Qt4 for the graphical user interface. It is distributed
under the terms of the GNU General Public License. Source
code and binaries for Windows and Linux are available from
http://go.warwick.ac.uk/SImMLST. A user guide and a technical des-
cription of the algorithm are provided with the program.

Contact: X.Didelot@warwick.ac.uk

1 INTRODUCTION

Multi-locus Sequence Typing (MLST) was introduced by Maide
etal.(1998) as amethod of characterization of bacterial isslten
a given species. It relies on the sequencing of several keaping
gene fragments of 400-500bp each to determine the type sbaié.
MLST was originally proposed for the typing of isolateshéisse-
ria meningitidis(Maidenet al, 1998), but has since been applied to
over 50,000 isolates from over 50 different species (Urwid ®lai-
den, 2003; Maiden, 2006). MLST results can easily be shamdd a
compared between laboratories (Urwin and Maiden, 2003) ca@
routinely made available on the http://pubMLST.org/ wébkiosted
by the University of Oxford, the http://www.mlst.net/ weteshosted
by Imperial College and the http://web.mpiib-berlin.mgeymist/
website hosted by the Max Planck Institute.

The ability to simulate MLST under a neutral model is useful t
make interpretations about sampled datasets, for exaropteer
the values of evolutionary parameters (Fraseal., 2005; Fearn-

headet al., 2005), to analyze the role played by selection (Buckee
et al,, 2008),to apply Approximate Bayesian Computing methods

(Marjoramet al,, 2003; Wilsonet al., 2009),or to test methods of
genealogical inference (Falustal,, 2006; Didelot and Falush, 2007;
Turneret al,, 2007). For this last task, it is necessary to simulate th
clonal genealogy (Guttman, 1997) that gave rise to the datee
as the data itself.
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Several methods of MLST simulations have been describeuidef
Both Fraseet al. (2005) and Faluskt al. (2006) used a forward in
time approach which required to simulate a whole populatiather
than just a sample) and to wait until equilibrium is reacheelarn-
headet al.(2005) used the backward in time (coalescent) simulation
program MS (Hudson, 2002) to generate a single large geregficn
which contained the MLST loci at a large (10kbp) distancefane
another. Here we present a more efficient method to simul&t®™
data.

2 MODEL

The basic model we assume is the coalescent with gene camvers
(Wiuf and Hein, 2000). This model is similar to the populaal
scent with recombination (Hudson, 1983), but assumes thanw
two cells recombine, the resulting genome is identical &t ti the
receiver except for a (small) contiguous fragment which esfinom
the donor. Since this is how recombination takes place inebac
ria (be it through conjugation, transformation or trangéhrg), the
coalescent with gene conversion is the appropriate modsihta-
late MLST data. We follow Wiuf and Hein (2000) in assumingttha
gene conversion event is equally likely to be initiated atmint on
the genome and that the length of an import is geometricaslyie
buted with paramete¥, which is consistent with empirical evidence
(Falushet al,, 2001; Fearnheaet al., 2005; Jolleyet al.,, 2005).

3 ALGORITHM

Wiuf and Hein (2000) proposed an algorithm to simulate alsing
locus under the coalescent with gene conversion. Here wanext
their algorithm in three respects. First we perform muiits simu-
lation by using the result from Didelot and Falush (2007).@ghat
the starting point for a recombination éstimes more likely to be
at the beginning of a locus than it is to be at a site within ai$oc
Second we only simulate the ancestral material (Hudsor8,29®2)
of each lineage for efficiency, thatis the positions whiahacestral
to at least one individual in the sample. We use rejectionpiiam
to ignore any recombination event that does not split thesinal
material of a lineage into two non-empty subsets. Third wetlyp
simulate the clonal genealogy (Guttman, 1997) with the.dBite
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Fig. 1. Genealogical history for a simulated sample of three issland two
loci. Each locus is represented by a box, in which the aralastaterial is in
grey. The clonal genealogy is in bold.
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clonal genealogy is obtained by tracing the lineage thdtésréci-
pient at each recombination event. Correct simulation efdional
genealogy requires to allow it not to carry any ancestralemiait
unlike other lineages as described above.

Fig. 1 illustrates the working of our algorithm for a sample o
three isolates and two genes. The ancestry of the samplacisdr
back in time until all isolates find a common ancestor at a#ssi
The clonal genealogy is represented in bold on Fig. 1. Therskc
isolate is the result of a recombination in which a fragmenthe
second gene was imported, and the first gene of the first ésolas
imported from above the clonal root. Recombination alloiffecent
gene fragments to have different genealogies: althoudgtesn2 and
3 are the most closely related in the first gene, isolates 12zae
the most closely related in the inserted fragment of thersggene.

Our algorithm is compatible with any population dynamicsdaio
by simple rescaling of the timescale in the ancestry grapiffii@Gs
and Tavare, 1994) and we allow specification of any pieceaipe-
nential or constant dynamics through the use of programnaegs
similar to those of MS (Hudson, 2002). Data is then generbhted
adding mutations as a Poisson process on the ancestry ghégph.
use the mutational model of Jukes and Cantor (1969) by defauil
our program can be used in conjunction with seq-gen (Randaiit
Grass, 1997) to simulate a wide range of other models.

4 CONCLUSION

SimMLST jointly simulates MLST data and the clonal relasbips
between isolates. It outputs the MLST data in the flexibleceded
Multi-Fasta Alignment (XMFA) format, and the clonal genegy in
the Newick format. SImMLST can also be used in conjunctiothwi
the graph-drawing package DOT (Gansatal., 1993) to represent
the full genealogical history of a sample (as shown in Fig. 1)

SImMLST is more efficient than previous methods becausdyt on
simulates the recombination events that had an impact odatee
not those that fall out of the sequenced regions or out ofrtbestral
material of alineage. Itis therefore optimal in the sizehefancestral
graphs that it generate to simulate the data. Like all coalgsbased
methods, the time and memory requirements of SIMMLST irsgea
much faster than linearhyith the overall recombination rate Yet it
can support values gf up to several thousands, which is more than
recorded in the MLST of any bacterial species (Fearntetaal.,
2005; Jolleyet al, 2005; Fraseet al., 2005; Didelot and Falush,
2007).

The high efficiency of SImMMLST is useful in order to infer evo-
lutionary parameters from simulations, which typicallguees to
generate thousands of datasets with a wide range of panamiéis
also required to generate larger datasets (in the numberoesced
sites) than MLST, wherg will be higher. Assuming a per-site
recombination rate similar to that observed in MLST data Nor
meningitidis SIMMLST can generate datasets up to a few hundreds
of Kbp. An approximation to the coalescent with gene-cosioer
process would however be required to simulate whole gendares
frequently recombining species.
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