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Motivation

For Large datasets

I “Statistics doesn’t work” – estimates get worse as we get
more data! (for linear compute)

I Simple analytics can extract many useful features
I e.g. PageRank [Page 1999], K-medians clustering, etc

I Informative in practice - and still hard to get working!

I Exploit averaging over lots of data

I But many interesting quantities are subtle...

I or local, so we only have a small amount of data about them

I Always a place for models closer matching reality
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Example applications

I 1. Genetics: Model-based clustering for ‘all the genomes in
the world’

I (2. Cyber security: finding timing coincidences in event
processes a large graph)

I ... In both cases we have a complex model per pair of objects

I but can use a simpler model to find out whether they are at
all ‘close’

I Linked by use of a similarity model

I Other applications exist
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Similarity: a worked example

p(D|S)p(S |Q)p(Q)

Data
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I Compare N items about which we have a large amount of
data D (trivial extension: to M = O(N) other items).

I Similarity S(i , j) is computationally costly to evaluate

I S structured by a model Q
I i.e. Similarity model p(D|S) separates the data D from the

structure model p(S |Q)
I If rows of Q sum to 1 this is a mixture model

I if only 1 element is non-zero it is a partitioning
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Random or convenience filtering

I See ‘big data’1 as better sampling of ‘data’
I Why not throw away elements from D?

I Convenience sampling - what can we actually measure?
I Systematic sampling - retain every n-th data point
I Simple random sampling - retain fraction p
I Stratified sampling
I etc

I For example:
I Use L′ � L
I Use N ′ � N

I Inference shouldn’t get worse with more data!

1: Big data: any data that can’t be processed in memory on a single high spec computer
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Emulated Likelihood Models (ELMs)

Fundamental idea: Replace p(D|S , θ) in

p(D|S , θ)p(θ)p(S |Q, φ)p(Q, φ)

using S∗ computed and S† emulated similarities, s.t. S = S∗ ∪ S†:

p̂(D|S , θ) = p(D|S∗ ∪S†, θ) =

∫
p(D|S∗ ∪S†, θ, ψ)p(S†|S∗, ψ)dψ

I Sij is costly to compute, and needed for S |Q
I But are highly structured (e.g. clusters)

I So can emulate Sij rather than computing

I Choose S∗ to be approximately sufficient for p(D|S , θ)
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The oracle

Which NT elements S∗ of S should we evaluate?
Natural solution using oracle knowledge of the true S .

I Use a loss function L(S∗)

I Seek argminS∗(T )L(S∗(T ))

I Choices for L might be:
I KL divergence between the true and the emulated posterior
I A loss based on model usage (e.g. is the clustering correct?

Control the false positive rate, etc)

I Choose T based on acceptable loss
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Building blocks of a real Emulated Likelihood Model

The oracle is too costly. We instead must:

I Iteratively choose the next Sij to add to S∗

I From a limited set produced by a restriction operator R(S∗)

I Construct an estimator L̂ for L
I Decide on the next point to evaluate using

argminSijE
(
L̂(S∗ ∪ Sij)|S∗

)
I We can consider different histories to evaluate performance

I Stopping rule: convergence of L̂
L̂ can be implicit from R, if it returns points ordered by E(L̂)
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The emulator

‘Machine learning’ emulator with the usual caveats:

I Rarely optimal, rarely unbiased

I Prediction error estimated using online cross validation
I Respects computational constraints:

I L� N: Consider O(N2 + LN) algorithms
I N � L: Consider O(LN) algorithms
I Massive data: Consider O(LNα + N) algorithms with α < 1.
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Fast finestructure - outline
Emulator:

D

D'

S* S

S' S†

[N,L]

[N,L'] [N,N] [N,N]

[N,T] [N,N]

Thinning model
Parameters

Simple model
parameters

Emulator model
parameters

Decision model
parameters

θ

Empirical
Bayes

S becomes the data for inferring Q:[
p(D|Ŝ , θ̂)

]
p(S |Q, φ)p(Q, φ)
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Fast finestructure - decision and emulation

I Decision R: Choose item to evaluate i∗t
using the point most distant to all
evaluated points

I We are evaluating S∗ in entire rows

I Emulation: Predict S†·i : mixture model
S∗i = MM(S∗i∗), and regression on

Ŝij = LM(S∗ij , S
′
ij)

I Implicit loss function L:
I Minimise the maximum prediction error
I Finds outliers and clusters
I S∗ form convex hull of S
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Fast finestructure - in practice

I Computation of S costs O(N2L′ + NT 2L)� O(N2L)

I Current datasets: L = 10, 000, 000, N = 5000, L′ = 10, 000
T = 100, predicted saving ratio is 100

We can save up to factor 10000 by reducing T , the cost of the linearised

model on the reduced dataset. L will not grow beyond this, but N will -

can introduce an emulation step for S ′
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Fast finestructure - Parallel MCMC algorithm

A parallel tempering algorithm for when MCMC parallelises poorly

I Evaluate the unlinked model S ′

I Master node: perform MCMC clustering to find Q̂t using Ŝt ,
when there are t rows S∗t computed

I Worker nodes compute S∗·i in the order chosen by the master

I Stopping rule: posterior distribution of Q̂ converges
I No new information added when increasing t
I (Or if the MCMC is slower than the evaluation of S , sometime afterwards)
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Emulated Likelihood Models for general Bayesian problems

General emulation for big (but not so big) problems

p̂(D|S , θ) =

∫
p(D|S∗ ∪ S†, θ)p(S†|S∗, θ, ψ)dψ

I i.e. Can use θ to emulate S†(θ) - e.g. regression in (S , θ)
space

I Gaussian Process for Sij(θ) is a natural choice

I If S† is an unbiased estimator of S∗ this is a pseudo-marginal
approach (and hence targeting the correct posterior)
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Discussion

I Goal: Approximate answers to the right questions using exact
answers to the wrong questions

I Machine learning is increasingly important for large datasets

I Statistical modelling still has a place
I Proposed the Emulated Likelihood Model:

I Full statistical modelling
I Machine learning algorithms used for the calculation
I Statistical estimation of parameters is retained but

approximated
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