Towards running complex models on big data Working with 'all the genomes in the world' without changing the model (too much)

Daniel Lawson

Heilbronn Institute, University of Bristol

2013

イロン 不良 とうほう うほう

1/17

Motivation

For Large datasets

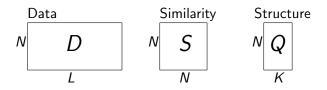
- "Statistics doesn't work" estimates get worse as we get more data! (for linear compute)
- Simple analytics can extract many useful features
 - e.g. PageRank [Page 1999], K-medians clustering, etc
- Informative in practice and still hard to get working!
- Exploit averaging over lots of data
- But many interesting quantities are subtle...
- or local, so we only have a small amount of data about them
- Always a place for models closer matching reality

Example applications

- I. Genetics: Model-based clustering for 'all the genomes in the world'
- (2. Cyber security: finding timing coincidences in event processes a large graph)
- In both cases we have a complex model per pair of objects
- but can use a simpler model to find out whether they are at all 'close'
- Linked by use of a similarity model
- Other applications exist

Similarity: a worked example

p(D|S)p(S|Q)p(Q)



- Compare N items about which we have a large amount of data D (trivial extension: to M = O(N) other items).
- Similarity S(i,j) is computationally costly to evaluate
- ► S structured by a model Q
- ► i.e. Similarity model p(D|S) separates the data D from the structure model p(S|Q)
 - If rows of Q sum to 1 this is a mixture model
 - if only 1 element is non-zero it is a partitioning

Random or convenience filtering

- See 'big data'¹ as better sampling of 'data'
- ▶ Why not throw away elements from *D*?
 - Convenience sampling what can we actually measure?
 - Systematic sampling retain every n-th data point
 - Simple random sampling retain fraction p
 - Stratified sampling
 - etc
- For example:
 - ► Use L' ≪ L
 - Use $N' \ll N$
- Inference shouldn't get worse with more data!

1: Big data: any data that can't be processed in memory on a single high spec computer

Emulated Likelihood Models (ELMs)

Fundamental idea: Replace $p(D|S, \theta)$ in

 $p(D|S,\theta)p(\theta)p(S|Q,\phi)p(Q,\phi)$

using S^* computed and S^{\dagger} emulated similarities, s.t. $S = S^* \cup S^{\dagger}$:

$$\hat{p}(D|S, heta) = p(D|S^* \cup S^\dagger, heta) = \int p(D|S^* \cup S^\dagger, heta,\psi) p(S^\dagger|S^*,\psi) d\psi$$

- S_{ij} is costly to compute, and needed for S|Q
- But are highly structured (e.g. clusters)
- So can emulate S_{ij} rather than computing
- Choose S^* to be approximately sufficient for $p(D|S,\theta)$

The oracle

Which NT elements S^* of S should we evaluate?

Natural solution using oracle knowledge of the true S.

- Use a loss function $\mathcal{L}(S^*)$
- Seek $\operatorname{argmin}_{S^*(T)} \mathcal{L}(S^*(T))$
- Choices for L might be:
 - KL divergence between the true and the emulated posterior
 - A loss based on model usage (e.g. is the clustering correct? Control the false positive rate, etc)
- Choose T based on acceptable loss

Building blocks of a real Emulated Likelihood Model

The oracle is too costly. We instead must:

- Iteratively choose the next S_{ij} to add to S^*
- From a limited set produced by a restriction operator $\mathcal{R}(S^*)$
- Construct an estimator $\hat{\mathcal{L}}$ for \mathcal{L}
- ► Decide on the next point to evaluate using $\operatorname{argmin}_{S_{ij}} \mathbb{E}\left(\hat{\mathcal{L}}(S^* \cup S_{ij}) | S^*\right)$
 - We can consider different histories to evaluate performance
- Stopping rule: convergence of $\hat{\mathcal{L}}$

 $\hat{\mathcal{L}}$ can be implicit from \mathcal{R} , if it returns points ordered by $\mathbb{E}(\hat{\mathcal{L}})$

The emulator

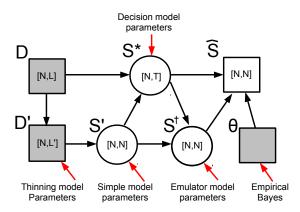
'Machine learning' emulator with the usual caveats:

- Rarely optimal, rarely unbiased
- Prediction error estimated using online cross validation
- Respects computational constraints:
 - $L \gg N$: Consider $O(N^2 + LN)$ algorithms
 - $N \gg L$: Consider O(LN) algorithms
 - Massive data: Consider $O(LN^{\alpha} + N)$ algorithms with $\alpha < 1$.

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

9/17

Fast finestructure - outline Emulator:



S becomes the data for inferring *Q*:

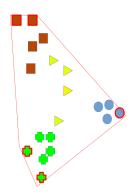
$$\left[p(D|\hat{S},\hat{\theta})\right]p(S|Q,\phi)p(Q,\phi)$$

10 / 17

э

Fast finestructure - decision and emulation

- Decision R: Choose item to evaluate i^{*}_t using the point most distant to all evaluated points
- We are evaluating S^* in entire rows
- Emulation: Predict S[†]_i: mixture model S^{*}_i = MM(S^{*}_i), and regression on Ŝ_{ij} = LM(S^{*}_{ij}, S^{*}_{ij})
- ► Implicit loss function *L*:
 - Minimise the maximum prediction error
 - Finds outliers and clusters
 - S* form convex hull of S



Fast finestructure - in practice

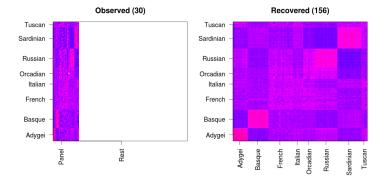
- Computation of S costs $O(N^2L' + NT^2L) \ll O(N^2L)$
- Current datasets: L = 10,000,000, N = 5000, L' = 10,000
 T = 100, predicted saving ratio is 100

We can save up to factor 10000 by reducing T, the cost of the linearised model on the reduced dataset. L will not grow beyond this, but N will - can introduce an emulation step for S'

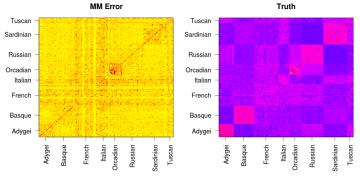
Fast finestructure - Parallel MCMC algorithm

A parallel tempering algorithm for when MCMC parallelises poorly

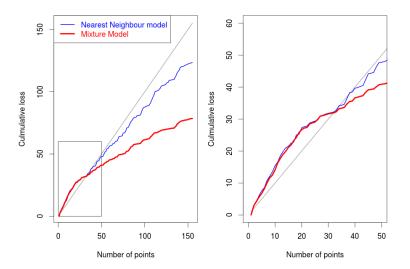
- Evaluate the unlinked model S'
- Master node: perform MCMC clustering to find \hat{Q}_t using \hat{S}_t , when there are t rows S_t^* computed
- Worker nodes compute S_{i}^* in the order chosen by the master
- Stopping rule: posterior distribution of \hat{Q} converges
 - No new information added when increasing t
 - (Or if the MCMC is slower than the evaluation of *S*, sometime afterwards)



MM Error



2 14 / 17



Emulated Likelihood Models for general Bayesian problems

General emulation for big (but not so big) problems

$$\hat{p}(D|S, heta) = \int p(D|S^* \cup S^{\dagger}, heta) p(S^{\dagger}|S^*, heta, \psi) d\psi$$

► i.e. Can use θ to emulate S[†](θ) - e.g. regression in (S, θ) space

• Gaussian Process for $S_{ij}(\theta)$ is a natural choice

► If S[†] is an unbiased estimator of S^{*} this is a pseudo-marginal approach (and hence targeting the correct posterior)

Discussion

- Goal: Approximate answers to the right questions using exact answers to the wrong questions
- Machine learning is increasingly important for large datasets
- Statistical modelling still has a place
- Proposed the Emulated Likelihood Model:
 - Full statistical modelling
 - Machine learning algorithms used for the calculation
 - Statistical estimation of parameters is retained but approximated