Identifying fine population structure using genomic scale data

Daniel Lawson Heilbronn Institute for Mathematical Research School of mathematics University of Bristol

dan.lawson@bristol.ac.uk

<u>Work with:</u> Garrett Hellenthal Daniel Falush Simon Myers

www.paintmychromosomes.com

Talk outline

- 1 Ancestry Overview
- 2 Previous population model motivation (STRUCTURE)
- 3 Summary Statistic approaches
- 4 ChromoPainter ancestry summary model
- 5 FineSTRUCTURE population model
- 6 Applications and benefits

Outline: The process

Step 1: SNPs are converted to similarity matrices Step 2: Analyse the population structure

Ancestry process

Daniel Lawson, University of Bristol dan.lawson@bristol.ac.uk Each generation randomly chooses parent
Red individuals ancestors to those sampled
Take limit N→∞

keeping N/T constant • Rate of *coalescence* between pairs $\rightarrow 1$ • Lots known about this *Coalescent Tree* distribution.

Ancestry process with recombination

Daniel Lawson, University of Briston dan.lawson@bristol.ac.uk • Probability ρ of getting DNA from two parents

- Creates a graph structure
- Coalescence rates unchanged...
- But now a birth/death process
- Easily simulated but few analytical results

Ancestral Recombination Graph

Hein, Schierup and Wiuf 'Gene Genealogies, Variation and Evolution', OUP 2005

Ancestral Recombination Graph -Summary

Ancestral Recombination Graph (ARG) model
 backwards in time, ignore unobserved ancestors

is equivalent to the

- Forwards in time model
 - Random mating, within known size populations
 - No selection
- Inference under the ARG is impossible for reasonable datasets
- But when recombination is large, each SNP is independently drawn from a random tree

Genetic drift

Present populations 'Independent drift' of SNP distribution

Kimura derived exact distribution for this case... (nasty)
Wright studied a related model, leads to Beta distribution of SNP frequency

$$p_k \sim \text{Beta}(p_0, \nu)$$

• Normal distribution approximation exists... simpler to handle covariance effects

$$p_k \sim \mathcal{N}\left(p_0, \sigma^2 p_0(1-p_0)\right)$$

STRUCTURE(AMA) Model

 $\begin{aligned} x_{il} | q_i, \mathbf{p}_l \sim \operatorname{Binom}(p_{q_i l}) \\ \text{(SNPs depend on pop SNP frequency)} \\ p_{kl} \sim \operatorname{Beta}(\beta_l) \\ \text{(Pop SNP frequency drifts independently)} \\ \beta_l \sim P(\beta_l) \\ \text{(Some ancestral frequency model)} \end{aligned}$

 $\mathbf{q}, K \sim \mathrm{DP}(\alpha, G_0)$ (Some prior on assigning individuals to populations) p is a vector of length K
The Dirichlet Process prior is for K and the number of individuals in each population
STRUCTURE* uses a different prior for q, K

13/43

- Pella & Masuda 2006
- STRUCTURAMA (Huelsenbeck & Andolfatto 2007)

Daniel Lawson, University of Bristol dan.lawson@bristol.ac.uk

*Pritchard, Stephens and Donnelly, Genetics, 155:945-959, 2

Extension to large datasets

- Lots of latent parameters (SNP frequencies, etc) makes MCMC slow and sticky for large datasets
- Also, deal with correlations between SNPs
- Return to model?
- Start with summary statistic approaches

Clustering

• K clusters (which should be inferred) • Find 'best' assignment of individuals into populations • 'Best' is some score, potentially using: Raw Data (Direct) Y_{il} Dimensionality Distances between X_{ii} V_{id} reduction points (Similarity-(Spectral/PCA) based) $L \times N$ $N \times N$ $D \times N$ Daniel Lawson, University of Bristol $L \gg N \gg D$ 15/43dan.lawson@bristol.ac.uk

Pairwise summary statistics

Allele Sharing distance/Identity by state
Edit distance/Norm' distance e.g. L1, L2Count the number of shared
SNPs
$$\sum_{l} |Y_{il} - Y_{jl}|$$
Covariance $\sum_{l} (Y_{il} - f_l) (Y_{jl} - f_l)$ PCA uses the covariance $\sum_{l} \frac{(Y_{il} - f_l) (Y_{jl} - f_l)}{f_l(1 - f_l)}$ EIGENSTRAT use this normalisation
to do PCA

Daniel Lawson, University of Bristol dan.lawson@bristol.ac.uk

16/43

 $\bullet \bullet \bullet \bullet \bullet$

Dimensionality reduction

How many dimensions?

• MAP (Minimum Average Partial <u>Correlation), Velicer 1976</u>

- Remove largest eigenvalue
- Compute (partial) correlation between remaining eigenvectors and the data (accounting for previous eigenvectors)
- Repeat
- Tracy-Widom Distribution (TW 1994, Patterson et al 2006)
 - Theoretical distribution of the EVs of an *L* by *N* matrix (*L* is the (effective) number of SNPs)
 - Remove biggest EV if bigger than some quantile
 - Repeat

• Parallel Analysis (Horn 1965)

• Simulate many matrices the same shape, with the same mean and variance as the data

N

• Keep all components bigger than some quantile of the simulated values

Clustering: MVN

Multivariate Normal ("Soft K-Means", implemented by MCLUST in R)
Infer mean and variance for each cluster
BIC model selection for *K*(*Alternatives: K-means, UPGMA, etc*)

The coancestry matrix

• (unlinked) coancestry matrix:

$$Y_{ij} = \sum_{l=1}^{L} \frac{x_{il} x_{jl}}{\sum_{j \neq i} x_{jl}} + \frac{(1 - x_{il})(1 - x_{jl})}{\sum_{j \neq i} (1 - x_{jl})}$$

- To O(N), Coancestry matrix is a rotation of the (EIGENSTRAT PCA) eigenvector matrix
 - If SNPs are uncorrelated
 - and the number of individuals is large
- To O(N), Coancestry matrix is a *sufficient statistic* for the STRUCTURE likelihood
 - If additionally, drift is small

Local genealogies

ChromoPainter 'Coancestry' similarity matrix
Unlinked limit: normalised allele sharing

Time to MRCA with haplotype 1

See: Li and Stephens, Genetics 165:2213-2233, 2003

1.1

1.24

0.52

0.52

0.06

0.01

0.06

0.08

0

0.09

Haplotype 1

Li and Stephens Hidden Markov Model

Closest haplotype ('painting')

Switches occur at constant rate ρgl (Scaled Genetic distance)
Mutations occur at constant rate θ
Can efficiently infer X₁..._L (painting)
And X_l|X_{l-1} (switches, the number of 'chunks')

Similarity measures of simulated data

FineSTRUCTURE Population structure model

Individuals exchangeable within populations

$$x_{ab} = \sum_{i \in a, j \in b} x_{ij}$$

• Populations donate chunks independently at a characteristic rate P_{ab}

$$p(X|P) = \prod_{a,b=1}^{K} \left(\frac{P_{ab}}{\hat{n}_{b}}\right)^{x_{ab}}$$
Population assignment
Number of individuals to donate from
population

Coancestry matrix

Probability of a partition

• Dirichlet Process prior for partition η :

 $\eta \sim \alpha^K \prod_{k=1}^K \Gamma(\hat{n}_k) \qquad \{P_1, \cdots, P_K\} | \eta = \prod_{b=1}^K G_0$

• Rows of P_{ab} (i.e. G_0) are Dirichlet (containing hidden biological parameters)...

• ... so conjugate, and we integrate out P_{ab}

• No individual/population level parameters

Additional results

- To O(N), FineSTRUCTURE likelihood is equivalent to the STRUCTURE* likelihood
 - *if SNPs are uncorrelated,*
 - -drift is weak,
 - -genotyped SNPs are not very rare
- Empirically, with linkage model we do better.

*Pritchard, Stephens and Donnelly, Genetics, 155:945-959, 2000 Calculations due to Simon Myers

More details

- MCMC based Bayesian inference
- Post-processing step for a tree relating populations
 Identify & merge close relatives first
- Infer *K*: Structure bar plots don't make sense
- New ways to visualise results needed...

HGDP dataset

650K SNPs on 938 individuals from 53 pops (5-45 inds/pop)

website: http://hgdp.uchicago.edu/ (picture from Cvalli-Sforza (2005) Nat Rev Genet)

Slide courtesy of GH

MAP tree: whole world HGDP data

Other uses

- Other quantities:
 - Matrix L_{ij} of the length of haplotype chunks
 - Matrix M_{ij} of mutations on haplotype chunks
 - $-P(X_{l+d} = b | X_l = a)$ Correlation between 'origin' of SNPs as a function of genetic distance
- Applications
 - Population inference
 - Identifying groupable individuals (e.g for GWAS, demographic inference, other modelling)
 - ... Haplotype-based association studies?
 - Admixture dating

Admixture dating

- Expected length of haplotypes between populations halves each generation
- Exponential tract length distribution

Brahui-Yoruba 95/5% admixture (30 gens)

Former Mongolian Empire

Daniel Lawson, University of Bristol dan.lawson@bristol.ac.uk

Slide courtesy of GH

Personal genomics (e.g. 23andMe)

(Sharing approx 250K SNPs)

- http://fennoscandia.blogspot.co.uk (~200 Scandanavian individuals)
- http://www.harappadna.org (~700 South Asian individuals)
- http://dodecad.blogspot.co.uk (~400 Balkans/West Asia individuals)
- http://eurogenes.blogspot.co.uk (~500 European individuals)
- http://magnusducatus.blogspot.co.uk (~100 Lithuanian individuals)

Summary statistics (requiem)

• FastIBD (Browning & Browning 2011) is another useful linked summary statistic • Different features to ChromoPainter • If you know the correct number of PCA components to retain, you can do very well with PCA and simple models • But it goes very wrong in some (real) circumstances • New linked approaches will be developed • ChromoPainter/FineSTRUCTURE pipeline is a lot more robust than model-free alternatives

Further info

 ChromoPainter/FineSTRUCTURE software/code/info:

www.paintmychromosomes.com

- Includes GUI: Windows/Linux/Mac (cmd line only)
- ChromoPainter/FineSTRUCTURE publication: Lawson et al 2012 PLoS Genetics
- Summary statistics review: Lawson & Falush 2012 An. Rev. Hum. Genet. (to appear)
- Admixture dating paper in preparation
- POBI paper in preparation
- 'Admixture' model in the works

Acknowledgements:

fineSTRUCTURE

Garrett Hellenthal (Oxford) (CP algorithm, admixture dating)

Simon Myers (Oxford) (theory, admixture dating)

Daniel Falush (Max Planck Institute) (CP/FS concept)

- Peter Green (Bristol) Grant, support
- Bluecrystal HPC facilities @ Bristol
- <u>www.paintmychromosomes.com</u>

(Individual labels not shown)

FastIBD (Browning and Browning 2011)

- Alternative linked model: Identify *r* closest segments of DNA for each pair of individuals
- Genetic lengths of each are related to time since common ancestor
- Similarity measure: sum of the genetic lengths found for each pair
- Somewhat heuristic, has some tuning parameters, but empirically works well

Comparison of clusterings

Weak Biological Model for prior

'Correct' Ancestral Recombination Graph for the limit of large populations at large time with simple population structure

Posterior evaluation

- MCMC update of hyperparameters and partitions
- Partition moves:
 - Move an individual
 - -Merge
 - Split
 - -Merge and resplit
- Merge/split 'nearly Gibbs' move:

$$p(q_{m};a,b) = p(q_{1}) p(q_{2}|q_{1}) \cdots p(q_{m}|q_{1:m-1})$$

$$p(q_{m}=a) \approx \hat{n}_{a} \int F(x_{m}|P_{m}) dH_{$$

(Not exact as the 'unsplit' population interacts with the remaining dataset)

Simple case: Pella and Masuda Canadian J. Fish. Aquatic Science 63:576-596, 2003 Daniel Lawson, University of Bristol dan.lawson@bristol.ac.uk

51/43

Clustering into k clusters

- Find "similar" individuals l∈ [1, L]
 Three main approaches:

 Cluster on raw data Y_{il}
 Cluster on similarity matrix X_{ij}
 Cluster on dimensionality reduced version of data, e.g. MDS/PCA/SVD V_{id}
 d ∈ [1, D]
 - Recall: $L \gg N \gg D$ O(k) = O(d)?
- Lowest dimension description usually best...
 Raw data approach terrible here (without good model)

The future – Admixture model

- Pure population structure is not correct recent mixing leads to admixture
 - Seek conjugate mixture model for individuals
 - Hierarchical Dirichlet Process!
 - Interpretation: Pure populations created by drift, we see mixtures
- Better model:
 - Allow drift and admixture to both occur in real time
 - Requires more sophisticated model, can we keep conjugacy?

53/43

-(Matrix Coalescent* results available)

Daniel Lawson, Initichlet diffusion treas and Conceptetics, 161:1641-1650, 2002 dan.lawson@bristol.ac.uk **Neal, in J. M. Bernardo, et al. (ed.), Bayesian Statistics 7, pp. 619-629, 2003

Comparison of linked methods

Posterior evaluation: building block

• Sample from posterior $p(q_m; a, b) = p(q_1) p(q_2|q_1) \cdots p(q_m|q_{1:m-1})$

Metropolis-Hastings proposal for a split:
 – Random individuals creates population *a* and *b* from *c*

– Move rest from *c* with probability

 $p(m;a) \propto \hat{n}_{a} \int F(x_{m}|p_{m}) dH_{<m, S(p_{m})} \\ \approx n_{a} \frac{P(S_{a}, \{i=1, \cdots, m\}) P(S_{c}, \{i=1, \cdots, m\})}{P(S_{a}, \{i=1, \cdots, m-1\}) P(S_{c}, \{i=1, \cdots, m-1\})}$

(Not exact as the 'unsplit' population interacts with the remaining dataset)

Daniel Lawson, University of Bristol

dan.lawson@bristol.aExdact case: Pella and Masuda Canadian J. Fish. Aquatic Science 63:576-596, 200

55/43

Probability of a partition

Rows of P_{ab} are Dirichlet – Conjugate to multinomial, sum to 1 – Weak prior

Compute posterior incrementally due to conjugacy

$$p(x_a|q) = \prod_{m \in a} \int F(x_m|P_a, q) dH_{$$

$$dH_{\langle m, S_a}(P_a) = Dirichlet(P_a; \{\beta_{ab} + x_{\langle m, b}\}_{b=1, \cdots, K})$$

(Idea: add each individual, update Dirichlet posterior, use as prior for the next individual)

Final model

• Posterior

$$p(\eta|X) \propto \alpha^{K} \prod_{a=1}^{K} \Gamma(\hat{n}_{a}) \frac{\Gamma(\beta_{a})}{\Gamma(x_{a}+\beta_{a})} \prod_{b=1}^{K} \frac{\Gamma(x_{ab}/c+\beta_{ab})}{\Gamma(\beta_{ab})\hat{n}_{b}^{x_{ab}}}$$

• Prior for hyperparameters

$$\beta_{ab} = \begin{cases} \gamma V_b & \text{if } a \neq b \\ \gamma (1 + \delta) V_b & \text{if } a = b \\ Prift \text{ due to mutation} & \text{Ancestral dot} \end{cases}$$

Ancestral donation frequency

 $\gamma = (1 - F)/F$ \blacksquare Drift in allele frequency

Posterior visualisation

- Too many populations!
- Pairwise coincidence matrix
- Create MAP (maximum a posteriori) tree from MAP partition
- Show partition split posterior support
- (Population summary of data matrix *X*)

Comparison of linked methods

