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Talk outline

1 Ancestry Overview
2 Previous population model motivation 

(STRUCTURE)
3 Summary Statistic approaches
4 ChromoPainter ancestry summary model
5 FineSTRUCTURE population model
6 Applications and benefits
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Genetics data

Genome position – O(106 - 9)
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Outline: The process

SNPs O(106 - 9)

Step 1: SNPs are converted to similarity matrices
Step 2: Analyse the population structure

Populations
O(102 - 3)

Step 2: 
Clustering

Step 1:
Similarity 
matrix

Individuals
O(103 - 4)
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Ancestry process

Time

Present

● Each generation 
randomly chooses parent
● Red individuals 
ancestors to those 
sampled
● Take limit

keeping           constant
● Rate of coalescence 
between pairs
● Lots known about this 
Coalescent Tree 
distribution.
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Ancestry process with recombination

Time

Present

● Probability      of 
getting DNA from two 
parents
● Creates a graph 
structure
● Coalescence rates 
unchanged...
● But now a birth/death 
process
● Easily simulated but 
few analytical results
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Ancestral Recombination Graph
Time towards 
present

Hein, Schierup and Wiuf  'Gene Genealogies, Variation and Evolution', OUP 2005
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 Ancestral Recombination Graph - 
Summary

● Ancestral Recombination Graph (ARG) model 
– backwards in time, ignore unobserved ancestors

is equivalent to the
● Forwards in time model

– Random mating, within known size populations
– No selection

● Inference under the ARG is impossible for reasonable 
datasets

● But when recombination is large, each SNP is 
independently drawn from a random tree
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Genetic drift

Ancestral
Population

Present populations
 'Independent drift' of SNP distribution

Mutation

● Kimura derived exact 
distribution for this case... (nasty)
● Wright studied a related model, 
leads to Beta distribution of SNP 
frequency

● Normal distribution 
approximation exists...      
simpler to handle covariance 
effects

Some SNP distribution
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STRUCTURE(AMA) Model

●     is a vector of length
● The Dirichlet Process 

prior is for      and the 
number of individuals in 
each population

● STRUCTURE* uses a 
different prior for

*Pritchard, Stephens and Donnelly, Genetics, 155:945-959,  2000

● Pella & Masuda 2006
● STRUCTURAMA (Huelsenbeck & Andolfatto 2007)

(SNPs depend on pop SNP frequency)

(Pop SNP frequency drifts independently)

(Some ancestral frequency model)

(Some prior on assigning individuals to 
populations)
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Extension to large datasets

● Lots of latent parameters (SNP frequencies, etc) 
makes MCMC slow and sticky for large datasets

● Also, deal with correlations between SNPs
● Return to model?
● Start with summary statistic approaches
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Clustering

● K clusters (which should be inferred)

● Find 'best' assignment of individuals into populations
● 'Best' is some score, potentially using:

Raw Data (Direct) Distances between 
points (Similarity-
                based)

Dimensionality 
reduction 
(Spectral/PCA)
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Pairwise summary statistics

Allele Sharing distance/Identity by state
Edit distance/'Norm' distance e.g. L1, L2

Covariance

Normalised covariance

…..

Count the number of shared
SNPs

PCA uses the covariance

EIGENSTRAT use this normalisation
to do PCA
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    SVD of
=  PCA of              (suitably normalised)
=  MDS on        (suitably normalised) 
… all give Eigenvalues

Eigenvectors

Dimensionality reduction

High dimensional...

Low dimensional

(Left Eigenvectors     do differ)
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● MAP (Minimum Average Partial 
Correlation), Velicer 1976

● Remove largest eigenvalue
● Compute (partial) correlation between 

remaining eigenvectors and the data 
(accounting for previous eigenvectors)

● Repeat 

How many dimensions?

● Tracy-Widom Distribution (TW 1994, 
Patterson et al 2006)

● Theoretical distribution of the EVs of an L 
by N matrix (L is the (effective) number of 
SNPs)

● Remove biggest EV if bigger than some 
quantile

● Repeat

N

N

N

L

● Parallel Analysis (Horn 1965)
● Simulate many matrices the 

same shape, with the same 
mean and variance as the 
data

● Keep all components bigger 
than some quantile of the 
simulated values
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Clustering: MVN

● Multivariate Normal (“Soft K-Means”, 
implemented by MCLUST in R)

● Infer mean and variance for each cluster
● BIC model selection for K
● (Alternatives: K-means, UPGMA, etc)
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The coancestry matrix

● (unlinked) coancestry matrix:

● To O(N), Coancestry matrix is a rotation of the 
(EIGENSTRAT PCA) eigenvector matrix

– If SNPs are uncorrelated
– and the number of individuals is large

● To O(N), Coancestry matrix is a sufficient statistic for the 
STRUCTURE likelihood

– If additionally, drift is small
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●ChromoPainter 'Coancestry' 
similarity matrix
●Unlinked limit: normalised 
allele sharing
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Li and Stephens Hidden Markov Model

● Switches occur at constant rate
● Mutations occur at constant rate
● Can efficiently infer            (painting)
● And              (switches, the number of 'chunks')

SNPs

Closest haplotype ('painting')

Mutation

(Scaled Genetic distance)
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Similarity measures of simulated data

Simulation scenario: 'Europe'
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Simulation scenario: 'Europe'

www.paintmychromosomes.com

FastIBD (Browning & Browning 2011)
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FineSTRUCTURE
Population structure model

● Individuals exchangeable within populations

● Populations donate chunks independently at a 
characteristic rate

Coancestry matrix

Number of individuals to donate from
Donation 
frequency of 
population

Population assignment
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Probability of a partition

● Dirichlet Process prior for partition    :

● Rows of        (i.e.     ) are Dirichlet (containing hidden 

biological parameters)...

● … so conjugate, and we integrate out 

● No individual/population level parameters
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Additional results

● To O(N), FineSTRUCTURE likelihood is 
equivalent to the STRUCTURE* likelihood

– if SNPs are uncorrelated,
– drift is weak,
– genotyped SNPs are not very rare

● Empirically, with linkage model we do better.

Calculations due to Simon Myers
*Pritchard, Stephens and Donnelly, Genetics, 155:945-959,  2000
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More details

● MCMC based Bayesian inference
● Post-processing step for a tree relating populations
– Identify & merge close relatives first

● Infer K: Structure bar plots don't make sense
● New ways to visualise results needed...
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HGDP dataset

http://hgdp.uchicago.edu/

Slide courtesy of GH
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MAP tree: whole world HGDP data
~650,000 SNPs
938 individualsContinuous 

populations

Continents

Self-ID'd populations
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Structure in the copy matrix
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Other uses

● Other quantities:
– Matrix         of the length of haplotype chunks
– Matrix         of mutations on haplotype chunks
–                                      Correlation between 'origin' of 

SNPs as a function of genetic distance
● Applications

– Population inference
– Identifying groupable individuals (e.g for GWAS, 

demographic inference, other modelling)
– … Haplotype-based association studies?
– Admixture dating
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Admixture dating

● Expected length of haplotypes 
between populations halves 
each generation

● Exponential tract length 
distribution

Slide courtesy of GH
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Slide courtesy of GH

(Admixture-injected 'simulated' dataset)
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1340AD
(1250-1530AD)
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Former Mongolian Empire

Slide courtesy of GH
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Personal genomics (e.g. 23andMe)

(Sharing approx 250K SNPs)

● http://fennoscandia.blogspot.co.uk (~200 Scandanavian 
individuals)

● http://www.harappadna.org (~700 South Asian 
individuals)

● http://dodecad.blogspot.co.uk (~400 Balkans/West Asia 
individuals)

● http://eurogenes.blogspot.co.uk (~500 European 
individuals)

● http://magnusducatus.blogspot.co.uk (~100 Lithuanian 
individuals)

http://fennoscandia.blogspot.co.uk/
http://www.harappadna.org/
http://dodecad.blogspot.co.uk/
http://eurogenes.blogspot.co.uk/
http://magnusducatus.blogspot.co.uk/
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http://www.harappadna.org/2012/02/dense-south-asian-chromopainter/



Daniel Lawson, University of Bristol
dan.lawson@bristol.ac.uk 40/43

Summary statistics (requiem)

● FastIBD (Browning & Browning 2011) is another 
useful linked summary statistic

● Different features to ChromoPainter
● If you know the correct number of PCA 

components to retain, you can do very well with 
PCA and simple models

● But it goes very wrong in some (real) circumstances
● New linked approaches will be developed
● ChromoPainter/FineSTRUCTURE pipeline is a lot 

more robust than model-free alternatives
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Further info

● ChromoPainter/FineSTRUCTURE 
software/code/info: 

www.paintmychromosomes.com
● Includes GUI: Windows/Linux/Mac (cmd line only)
● ChromoPainter/FineSTRUCTURE publication:

Lawson et al 2012 PLoS Genetics
● Summary statistics review: Lawson & Falush 

2012 An. Rev. Hum. Genet. (to appear)
● Admixture dating paper in preparation
● POBI paper in preparation
● 'Admixture' model in the works

http://www.paintmychromosomes.com/
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FastIBD
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Run 1

Run 2

(data for the hardest continent, 
Central South Asia)

Mixing: Pairwise coincidence
(In
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HGDP DATA
(650k SNPs, 
 938 Individuals)
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FastIBD (Browning and Browning 2011)

● Alternative linked model: Identify r closest 
segments of DNA for each pair of individuals

● Genetic lengths of each are related to time since 
common ancestor

● Similarity measure: sum of the genetic lengths 
found for each pair

● Somewhat heuristic, has some tuning parameters, 
but empirically works well
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ChromoPainter
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Comparison of clusterings
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Structure in the copy matrix
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Weak Biological Model for prior

Time
(increasing F)

P1 P2 PK−1 PK⋯

1 2        …        K

Ancestral population

Frequency of  donating


F

'Correct' Ancestral Recombination Graph for the limit of large populations at large time with 
simple population structure
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Posterior evaluation

● MCMC update of hyperparameters and partitions
● Partition moves:
– Move an individual
– Merge
– Split
– Merge and resplit

● Merge/split 'nearly Gibbs' move:
p(qm ;a ,b)= p(q1) p(q2∣q1)⋯ p(qm∣q1: m−1)

p(qm=a)≈ n̂a∫ F (xm∣Pm)dH <m , Sa
(Pm)

Simple case: Pella and Masuda Canadian J. Fish. Aquatic Science 63:576-596, 2003
(Not exact as the 'unsplit' population interacts with the remaining dataset)
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Clustering into k clusters

● Find “similar” individuals
● Three main approaches:
– Cluster on raw data
– Cluster on similarity matrix
– Cluster on dimensionality reduced version of 

data, e.g. MDS/PCA/SVD

● Lowest dimension description usually best...
● Raw data approach terrible here (without good model)

Recall:
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The future – Admixture model
● Pure population structure is not correct – recent 

mixing leads to admixture
– Seek conjugate mixture model for individuals 
– Hierarchical Dirichlet Process!
– Interpretation: Pure populations created by drift, 

we see mixtures
● Better model:
– Allow drift and admixture to both occur in real 

time
– Requires more sophisticated model, can we keep 

conjugacy?
– (Matrix Coalescent* results available)
– Dirichlet diffusion tree** concept*Wooding and Rogers, Genetics, 161:1641-1650,  2002

**Neal, in J. M. Bernardo, et al. (ed.), Bayesian Statistics 7, pp. 619-629, 2003
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Comparison of linked methods
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Posterior evaluation: building block

● Sample from posterior

● Metropolis-Hastings proposal for a split:
– Random individuals creates population a and b 

from c
– Move rest from c with probability

p(m ;a)∝ n̂a∫ F ( xm∣pm)dH <m , S ( pm)

≈na
P (S a ,{i=1,⋯ ,m })P (S c ,{i=1,⋯, m})

P (S a , {i=1,⋯,m−1})P (S c ,{i=1,⋯, m−1})

Exact case: Pella and Masuda Canadian J. Fish. Aquatic Science 63:576-596, 2003

p(qm ;a , b)= p(q1) p(q2∣q1)⋯ p(qm∣q1: m−1)

(Not exact as the 'unsplit' population interacts with the remaining dataset)
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Probability of a partition
Rows of        are Dirichlet

– Conjugate to multinomial, sum to 1
– Weak prior

Compute posterior incrementally due to 
conjugacy

Pab

dH <m , Sa
(Pa)=Dirichlet (Pa ;{βab+x <m , b}b=1,⋯ , K )

p(xa∣q)=∏
m∈a

∫ F (xm∣Pa , q)dH <m , Sa
(Pa)

(Idea: add each individual, update Dirichlet posterior, use as 
prior for the next individual)
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Final model

● Posterior

● Prior for hyperparameters

p ∣X ∝K ∏
a=1

K

 na
 a

  xaa
∏
b=1

K  xab/cab

 ab nb
xab

ab={ V b if a≠b
 1V b if a=b

Ancestral donation frequency

=1−F /F Drift in allele frequency

Drift due to mutation
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Posterior visualisation

● Too many populations! 
● Pairwise coincidence matrix
● Create MAP (maximum a posteriori) tree from 

MAP partition
– Show partition split posterior support

● (Population summary of data matrix X)
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Comparison of linked methods
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