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Talk outline

Introduction
– Genetic data and overview

1 Generic approaches
– Similarity measures
– Similarity based clustering
– Spectral methods

2 Genetics models
– Direct model-based clustering
– Model-based similarity measures
– ChromoPainter/FineSTRUCTURE clustering

3 Results for real data



Daniel Lawson, University of Bristol
dan.lawson@bristol.ac.uk 3/40

Motivation: Models and Clustering

● Models for clustering essential
● Choice of measure strongly influences clustering
● Example: Random walk
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Genetics data

Genome position – O(106 - 9)
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Outline: The process

SNPs O(106 - 9)

Step 1: SNPs are converted to similarity matrices
Step 2: Analyse the population structure

Populations
O(102 - 3)

Step 2: 
Clustering

Step 1:
Similarity 
matrix

Individuals
O(103 - 4)
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Simulated data

● Simulate data using 'real' conditions
● Sequence data including linkage disequilibrium, random mating 
within populations, 'complex' demography
● Change how much data we show the models
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Part 1. Generic Approaches

● Treat SNPs as independent features
● Cluster individuals as independent samples from 

some clustering distribution on

SNP location l

Individual
Number

i
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Clustering

● K clusters (which should be inferred)

● Find 'best' assignment of samples into clusters
● 'Best' is some score, potentially using:

Raw Data (Direct) Distances between 
points (Similarity-
                based)

Dimensionality 
reduction (Spectral)
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Similarity Measures (between SNPs)
● Almost infinite number of choices... e.g.

Cosine distance TF-IDF (term 
Frequency, inverse
document frequency)

Allele Sharing distance/Identity by state
Edit distance/'Norm' distance e.g. L1, L2

Covariance

Normalised covariance

Normalised count of shared alleles

Exponential 
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Similarity measures of simulated data
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NCOV



Daniel Lawson, University of Bristol
dan.lawson@bristol.ac.uk 12/40

    SVD of
=  PCA of              (suitably normalised)
=  MDS on        (suitably normalised) 
… all give Eigenvalues

Eigenvectors

Dimensionality reduction

High dimensional...

Low dimensional

(Left Eigenvectors     do differ)
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How many dimensions?

● All Eigenvalue orientated...
– Kaiser (1960) criterion (EV>1)
– Scree test (Cattell 1966, “large jump in EV spectrum”)
– Velicer's MAP criterion
– Horn's Parallel Analysis (PA) criterion
– Tracy-Widom distribution

Kaiser

Scree

Also consider Eigenvectors
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● MAP (Minimum Average Partial 
Correlation), Velicer 1976

● Remove largest eigenvalue
● Compute (partial) correlation between 

remaining eigenvectors and the data 
(accounting for previous eigenvectors)

● Repeat 

How many dimensions?

● Tracy-Widom Distribution (TW 1994, 
Patterson et al 2006)

● Theoretical distribution of the EVs of an L 
by N matrix (L is the (effective) number of 
SNPs)

● Remove biggest EV if bigger than some 
quantile

● Repeat

N

N

N

L

● Parallel Analysis (Horn 1965)
● Simulate many matrices the 

same shape, with the same 
mean and variance as the 
data

● Keep all components bigger 
than some quantile of the 
simulated values
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Clustering: MVN

● Multivariate Normal (“Soft K-Means”, 
implemented by MCLUST in R)

● Infer mean and variance for each cluster
● BIC model selection for K
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Clustering: K-Means

● Minimise Euclidean distance to cluster centers
● “Hard K-Means” (as uses the same distance 

penalty as MVN, but imposes a strict boundary)
● K estimated using the Calinski (1974) criterion 

(comparing variance within clusters to that 
between clusters)
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Clustering: Hierarchical methods

● Successively merge “closest” samples (or successively 
split... lots of ways to define “close”)

● e.g. UPGMA (Unweighted-Pair Group Method with 
Arithmetic Mean).  “Close” here is distance to the centroid of the 
clusters

● (e.g. Ward's (1963) minimum variance criterion)
● K estimated using the Calinski (1974) criterion
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NCOV NCOV NCOV
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An algorithm to generate papers from 
Student Projects: Roll 3 dice and refer to the 
table:

Dice 
roll

Similarity Measure Dimensionality 
Reduction

Clustering Algorithm

1 IBD/ASD None MVN

2 Covariance PCA - MAP K-Means

3 Normalised 
Covariance

PCA - Parallel 
Analysis

Hierarchical (standard)

4 Something from 
Document 
clustering

PCA - Tracy-Widom Hierarchical (iteratively 
modifying data)

5 Something model-
based

Spectral Graph Theory Something from CS 
literature

6 Something else... Something from image 
analysis

???
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Part 2: Genetics models

● Similarity measures matter more than clustering 
model

● MVN model seems best
● On PCA, all models do similarly well
● No similarity measure is good enough

● Time to understand why...
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Ancestry process

Time

Present

● Each generation 
randomly chooses parent
● Red individuals 
ancestors to those 
sampled
● Take limit

keeping           constant
● Rate of coalescence 
between pairs
● Lots known about this 
Coalescent Tree 
distribution.
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Genetic model - Ancestral Tree
Time towards 
present

Hein, Schierup and Wiuf  'Gene Genealogies, Variation and Evolution', OUP 2005
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Ancestry process with recombination

Time

Present

● Probability      of 
getting DNA from two 
parents
● Creates a graph 
structure
● Coalescence rates 
unchanged...
● But now a birth/death 
process
● Easily simulated but 
few analytical results
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Ancestral Recombination Graph
Time towards 
present

Hein, Schierup and Wiuf  'Gene Genealogies, Variation and Evolution', OUP 2005
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 Ancestral Recombination Graph - 
Summary

● Ancestral Recombination Graph (ARG) model 
– backwards in time, ignore unobserved ancestors

is equivalent to the
● Forwards in time model

– Random mating, within known size populations
– No selection

● Inference under the ARG is impossible for reasonable 
datasets

● But when recombination is large, each SNP is 
independently drawn from a random tree
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Time to Most Recent Common 
Ancestor
Ancestral
Population

Mutation

Some SNP distribution

● Recall that each SNP has a 
random tree
●McVean (2009) showed that

(where f is simple and known)

● i.e. Counting identical SNPs 
captures all the information in the 
tree
● How do times in tree relate to 
population structure?

Random Tree

Present populations

Mutation
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Genetic drift

Ancestral
Population

Present populations
 'Independent drift' of SNP distribution

Mutation

● Kimura derived exact 
distribution for this case... (nasty)
● Wright studied a related model, 
leads to Beta distribution of SNP 
frequency

● Normal distribution 
approximation exists...      
simpler to handle covariance 
effects

(Recall relationship to diffusion)

Some SNP distribution
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Direct Model-based clustering

● Population model:
– Beta distribution for SNP frequencies in each
– Assume individuals exchangeable within 

populations
● Gives likelihood for frequency of SNPs
– Binomial distribution
– Assume no linkage (linkage approximations exist)

● Gives popular STRUCTURE* model
– Still can't cope with large datasets

● Can we do this well on genomic (linked) data?

*Pritchard, Stephens and Donnelly, Genetics, 155:945-959,  2000
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●ChromoPainter 'Coancestry' 
similarity matrix
●Unlinked limit: normalised 
allele sharing
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ESU
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FineSTRUCTURE
Population structure model

● Individuals exchangeable within populations

● Populations donate chunks independently at a 
characteristic rate

Coancestry matrix

Number of individuals to donate from
Donation 
frequency of 
population

Population assignment
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Probability of a partition

● Dirichlet Process prior for partition    :

● Rows of        (i.e.     ) are Dirichlet (containing hidden 

biological parameters)...

● … so conjugate, and we integrate out 
(Idea: add each individual, update Dirichlet posterior, use 
as prior for the next individual)
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Proven theoretical results

● To O(N), Coancestry matrix is a rotation of the 
eigenvector matrix

– If SNPs are uncorrelated
– and the number of individuals is large

● To O(N), FineSTRUCTURE likelihood is 
equivalent to the STRUCTURE* likelihood

– if SNPs are uncorrelated,
– drift is weak,
– genotyped SNPs are not very rare

● With linkage model we do better.
Calculations due to Simon Myers

*Pritchard, Stephens and Donnelly, Genetics, 155:945-959,  2000

And the MVN 
likelihood with a 
structured  
covariance...
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Comparison of linked methods
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HGDP data

● 938 Individuals worldwide
● 650k SNPs, linked (but relatively weakly)
● Known to contain structure at all scales, but 

previous models missed this
● Similarity approaches can analyse the whole data
● Focus on East Asian individuals
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ChromoPainter



Daniel Lawson, University of Bristol
dan.lawson@bristol.ac.uk 37/40

ChromoPainter 
Eigenvector space
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ChromoPainter 
Correlation
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Conclusions

● In General
– Models matter
– Summaries are part of the model
– 'Model-Free' approaches are still making assumptions!

● Genetics
– Normalising variance is important – other unlinked 

measures are all worse
– Linked models extract more information
– No 'correct' linked model at this stage!
– ChromoPainter/FineSTRUCTURE pipeline is the most 

robust option
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FastIBD
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FastIBD (Browning and Browning 2011)

● Alternative linked model: Identify r closest 
segments of DNA for each pair of individuals

● Genetic lengths of each are related to time since 
common ancestor

● Similarity measure: sum of the genetic lengths 
found for each pair

● Somewhat heuristic, has some tuning parameters, 
but empirically works well
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Comparison of clusterings
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Weak Biological Model for prior

Time
(increasing F)

P1 P2 PK−1 PK⋯

1 2        …        K

Ancestral population

Frequency of  donating


F

'Correct' Ancestral Recombination Graph for the limit of large populations at large time with 
simple population structure
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Posterior evaluation

● MCMC update of hyperparameters and partitions
● Partition moves:
– Move an individual
– Merge
– Split
– Merge and resplit

● Merge/split 'nearly Gibbs' move:
p(qm ;a ,b)= p(q1) p(q2∣q1)⋯ p(qm∣q1: m−1)

p(qm=a)≈ n̂a∫ F (xm∣Pm)dH <m , Sa
(Pm)

Simple case: Pella and Masuda Canadian J. Fish. Aquatic Science 63:576-596, 2003
(Not exact as the 'unsplit' population interacts with the remaining dataset)
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Clustering into k clusters

● Find “similar” individuals
● Three main approaches:
– Cluster on raw data
– Cluster on similarity matrix
– Cluster on dimensionality reduced version of 

data, e.g. MDS/PCA/SVD

● Lowest dimension description usually best...
● Raw data approach terrible here (without good model)

Recall:
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The future – Admixture model
● Pure population structure is not correct – recent 

mixing leads to admixture
– Seek conjugate mixture model for individuals 
– Hierarchical Dirichlet Process!
– Interpretation: Pure populations created by drift, 

we see mixtures
● Better model:
– Allow drift and admixture to both occur in real 

time
– Requires more sophisticated model, can we keep 

conjugacy?
– (Matrix Coalescent* results available)
– Dirichlet diffusion tree** concept*Wooding and Rogers, Genetics, 161:1641-1650,  2002

**Neal, in J. M. Bernardo, et al. (ed.), Bayesian Statistics 7, pp. 619-629, 2003
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Run 1

Run 2

(data for the hardest continent, 
Central South Asia)

Mixing: Pairwise coincidence
(In

di
vi

du
al

 la
be

ls
 n

ot
 sh

ow
n)

HGDP DATA
(650k SNPs, 
 938 Individuals)
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MAP tree: whole world HGDP data
~650,000 SNPs
938 individualsContinuous 

populations

Continents

Self-ID'd populations
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Posterior evaluation: building block

● Sample from posterior

● Metropolis-Hastings proposal for a split:
– Random individuals creates population a and b 

from c
– Move rest from c with probability

p(m ;a)∝ n̂a∫ F ( xm∣pm)dH <m , S ( pm)

≈na
P (S a ,{i=1,⋯ ,m })P (S c ,{i=1,⋯, m})

P (S a , {i=1,⋯,m−1})P (S c ,{i=1,⋯, m−1})

Exact case: Pella and Masuda Canadian J. Fish. Aquatic Science 63:576-596, 2003

p(qm ;a , b)= p(q1) p(q2∣q1)⋯ p(qm∣q1: m−1)

(Not exact as the 'unsplit' population interacts with the remaining dataset)
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Probability of a partition
Rows of        are Dirichlet

– Conjugate to multinomial, sum to 1
– Weak prior

Compute posterior incrementally due to 
conjugacy

Pab

dH <m , Sa
(Pa)=Dirichlet (Pa ;{βab+x <m , b}b=1,⋯ , K )

p(xa∣q)=∏
m∈a

∫ F (xm∣Pa , q)dH <m , Sa
(Pa)

(Idea: add each individual, update Dirichlet posterior, use as 
prior for the next individual)
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Final model

● Posterior

● Prior for hyperparameters

p ∣X ∝K ∏
a=1

K

 na
 a

  xaa
∏
b=1

K  xab/cab

 ab nb
xab

ab={ V b if a≠b
 1V b if a=b

Ancestral donation frequency

=1−F /F Drift in allele frequency

Drift due to mutation
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Posterior visualisation

● Too many populations! 
● Pairwise coincidence matrix
● Create MAP (maximum a posteriori) tree from 

MAP partition
– Show partition split posterior support

● (Population summary of data matrix X)
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