Similarity Measures and Clustering In Genetics

Daniel Lawson

Heilbronn Institute for Mathematical Research School of mathematics University of Bristol

dan.lawson@bristol.ac.uk

www.paintmychromosomes.com

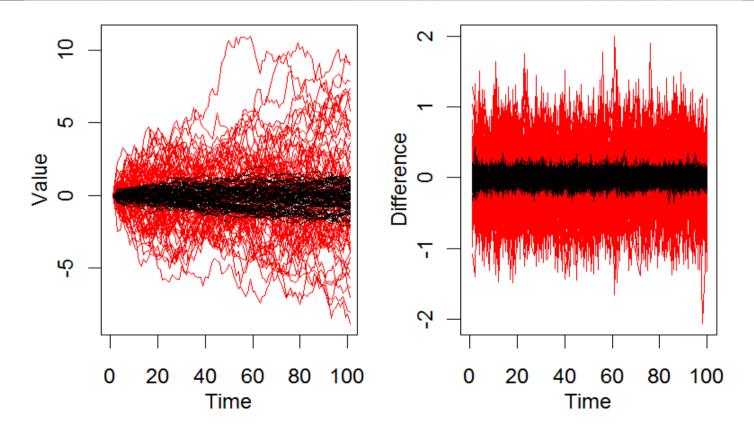
Talk outline

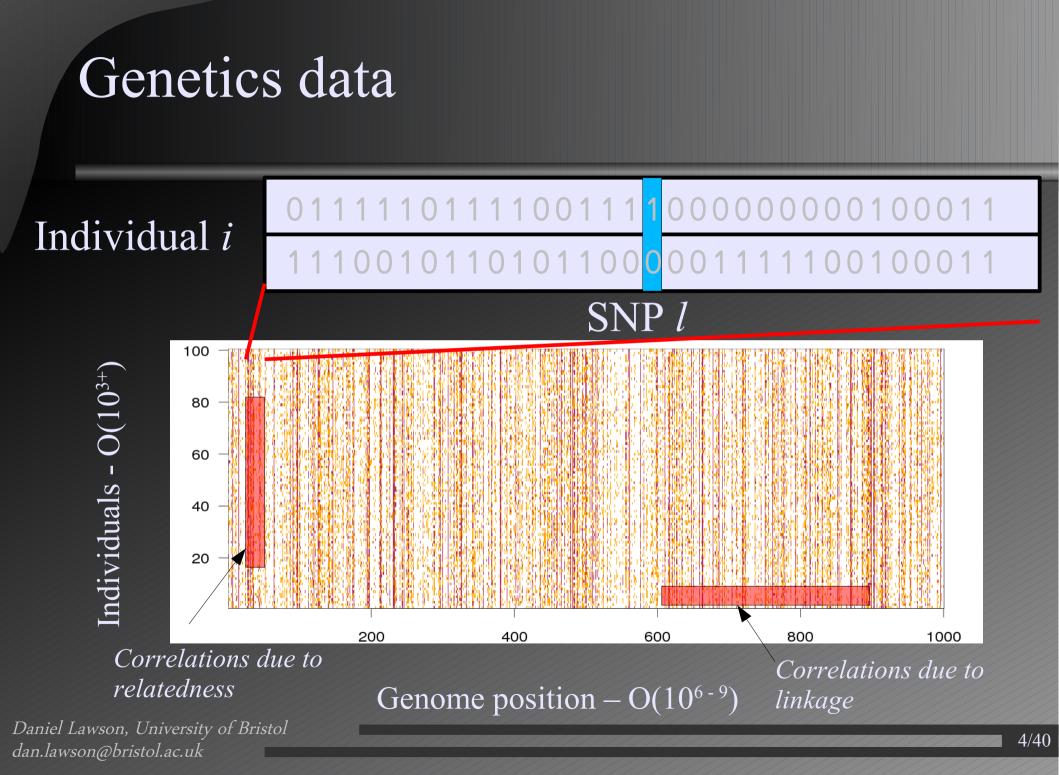
Introduction

- -Genetic data and overview
- 1 Generic approaches
 - Similarity measures
 - Similarity based clustering
 - Spectral methods
- 2 Genetics models
 - -Direct model-based clustering
 - Model-based similarity measures
 - ChromoPainter/FineSTRUCTURE clustering
- 3 Results for real data

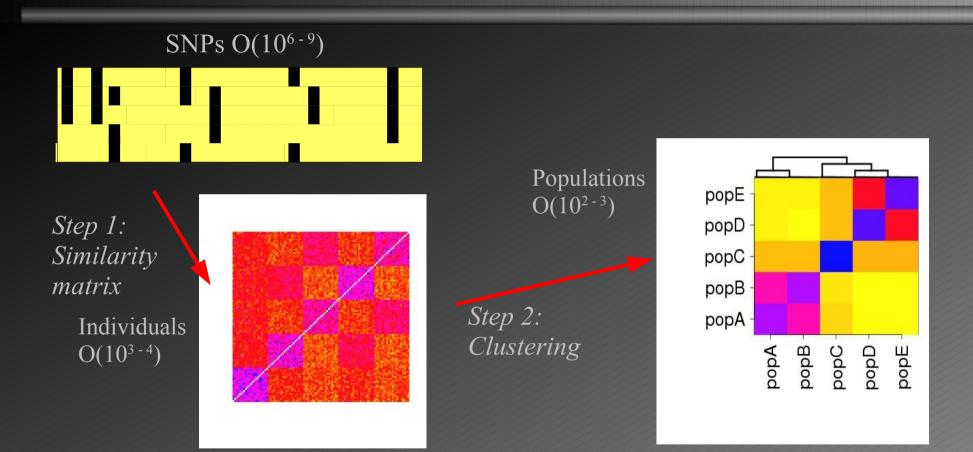
Motivation: Models and Clustering

Models for clustering essential
Choice of measure strongly influences clustering
Example: Random walk



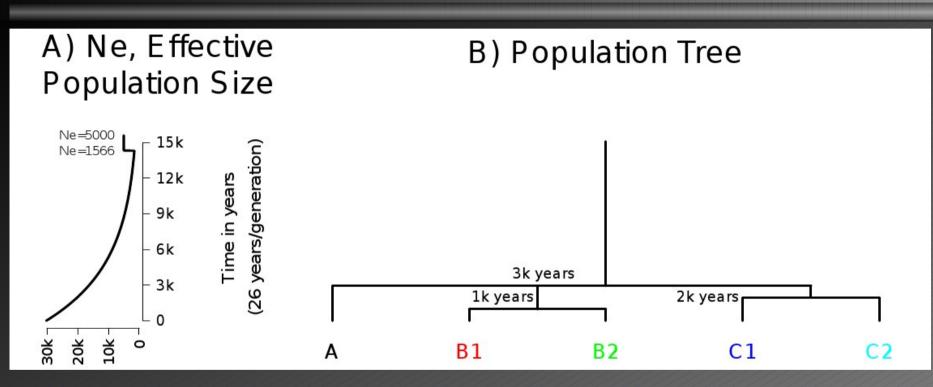


Outline: The process



Step 1: SNPs are converted to similarity matrices Step 2: Analyse the population structure

Simulated data

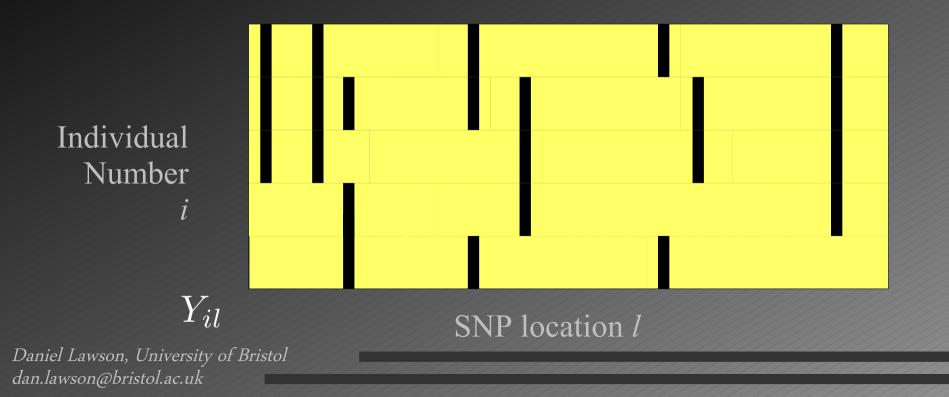


- Simulate data using 'real' conditions
- Sequence data including linkage disequilibrium, random mating within populations, 'complex' demography
- Change how much data we show the models

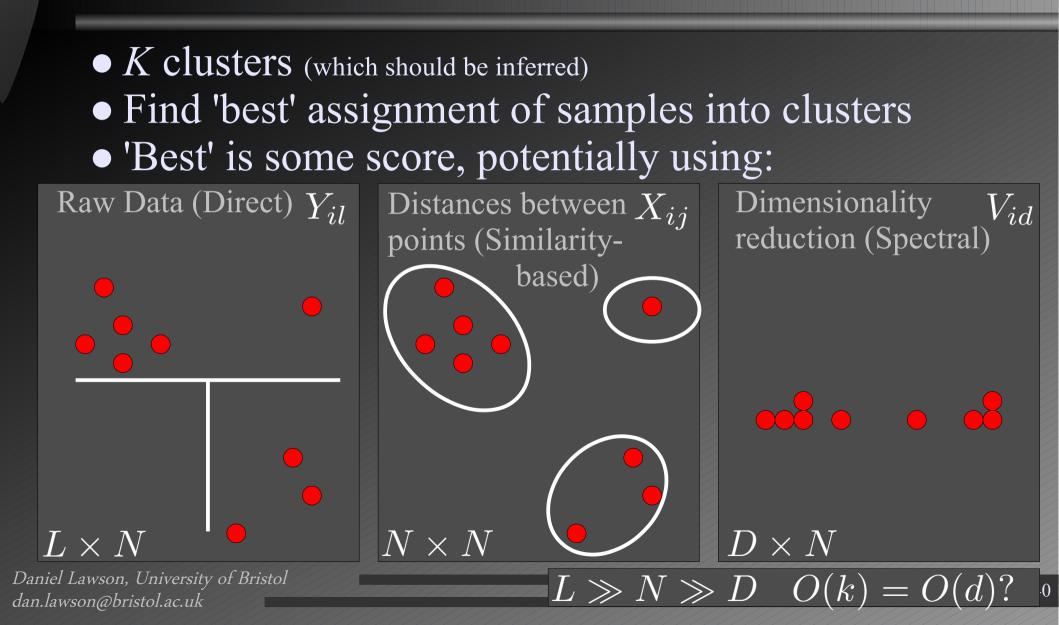
Part 1. Generic Approaches

• Treat SNPs as independent features

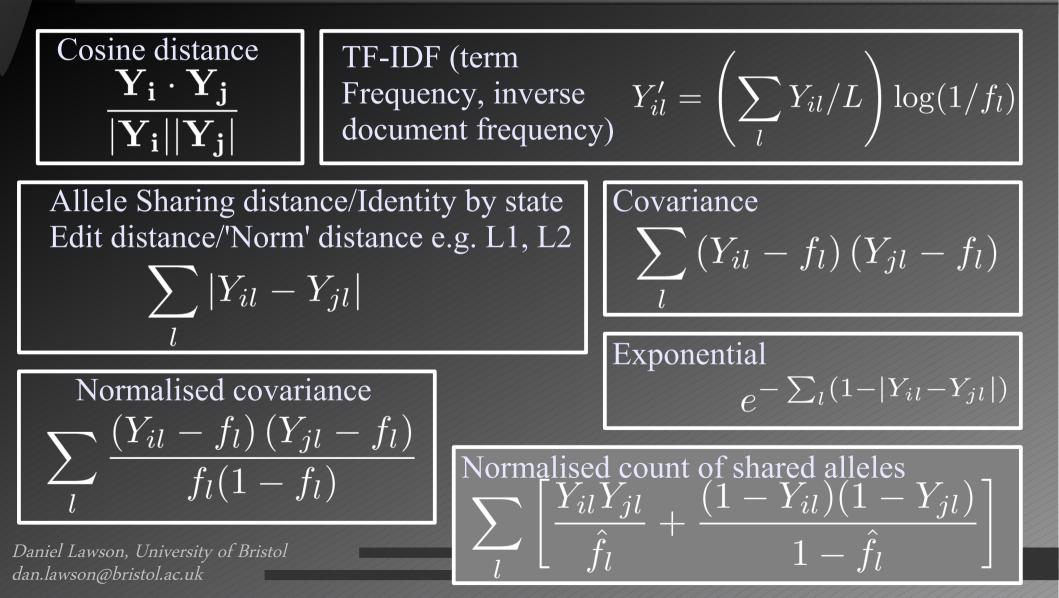
• Cluster individuals as independent samples from some clustering distribution on *Y*_{*il*}



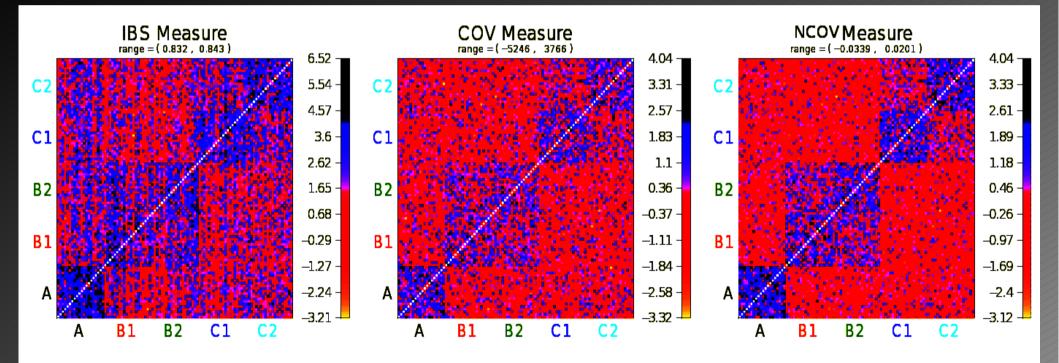
Clustering



Similarity Measures (between SNPs) Almost infinite number of choices... e.g.

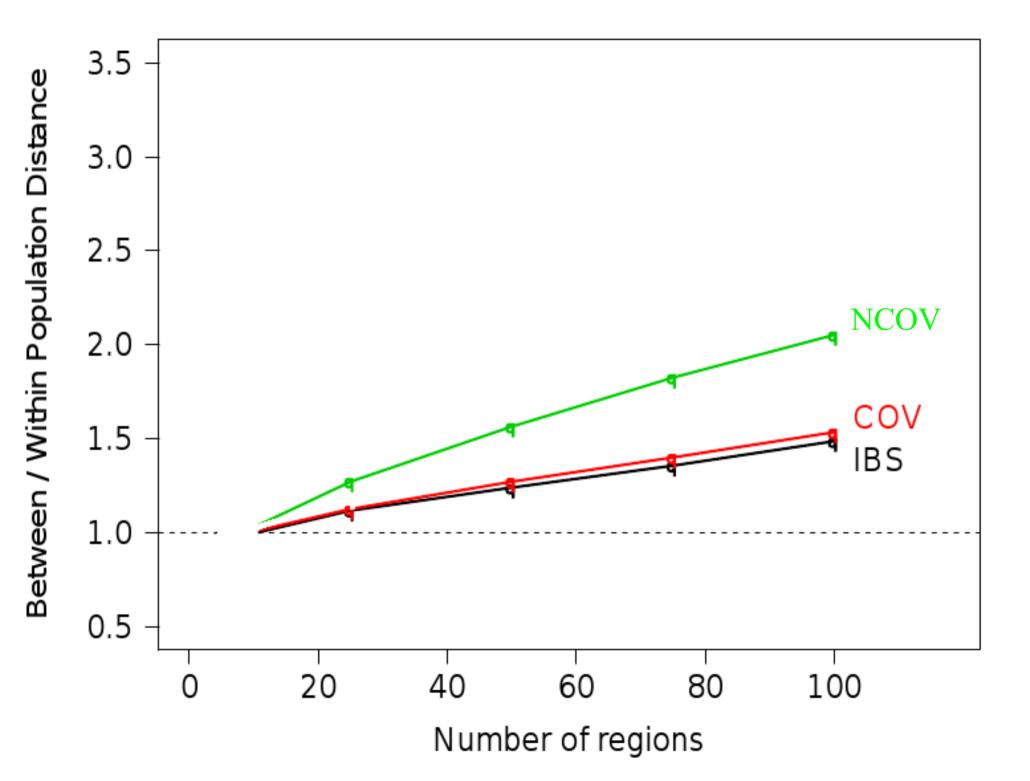


Similarity measures of simulated data

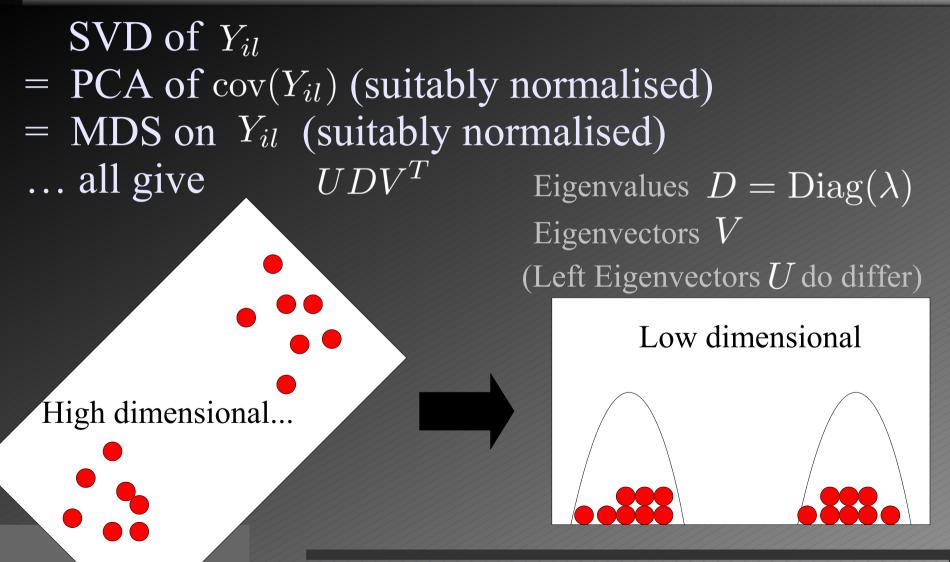


Daniel Lawson, University of Bristol dan.lawson@bristol.ac.uk

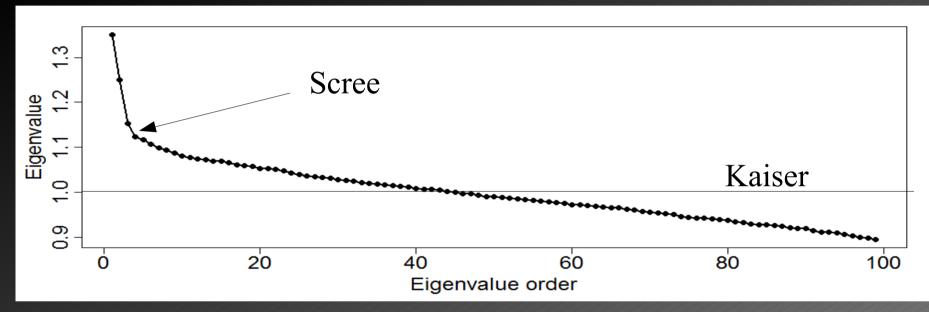
10/40



Dimensionality reduction



How many dimensions?



- All Eigenvalue orientated...
 - Kaiser (1960) criterion (EV>1)
 - Scree test (Cattell 1966, "large jump in EV spectrum")
 - Velicer's MAP criterion
 - Horn's Parallel Analysis (PA) criterion Also consider Eigenvectors
 - Tracy-Widom distribution

How many dimensions?

• MAP (Minimum Average Partial Correlation), Velicer 1976

- Remove largest eigenvalue
- Compute (partial) correlation between remaining eigenvectors and the data (accounting for previous eigenvectors)
- Repeat

- Tracy-Widom Distribution (TW 1994, Patterson et al 2006)
 - Theoretical distribution of the EVs of an *L* by *N* matrix (*L* is the (effective) number of SNPs)
 - Remove biggest EV if bigger than some quantile
 - Repeat

• Parallel Analysis (Horn 1965)

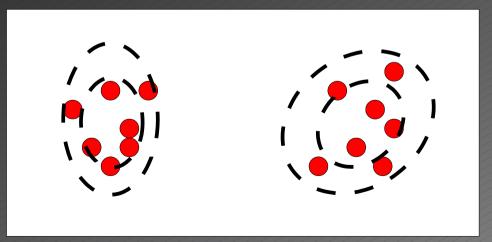
• Simulate many matrices the same shape, with the same mean and variance as the data

N

• Keep all components bigger than some quantile of the simulated values

Clustering: MVN

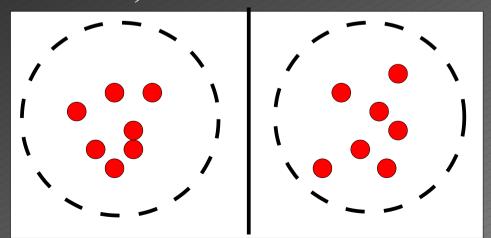
Multivariate Normal ("Soft K-Means", implemented by MCLUST in R)
Infer mean and variance for each cluster
BIC model selection for *K*



Clustering: K-Means

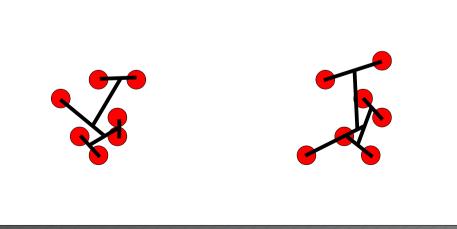
• Minimise Euclidean distance to cluster centers

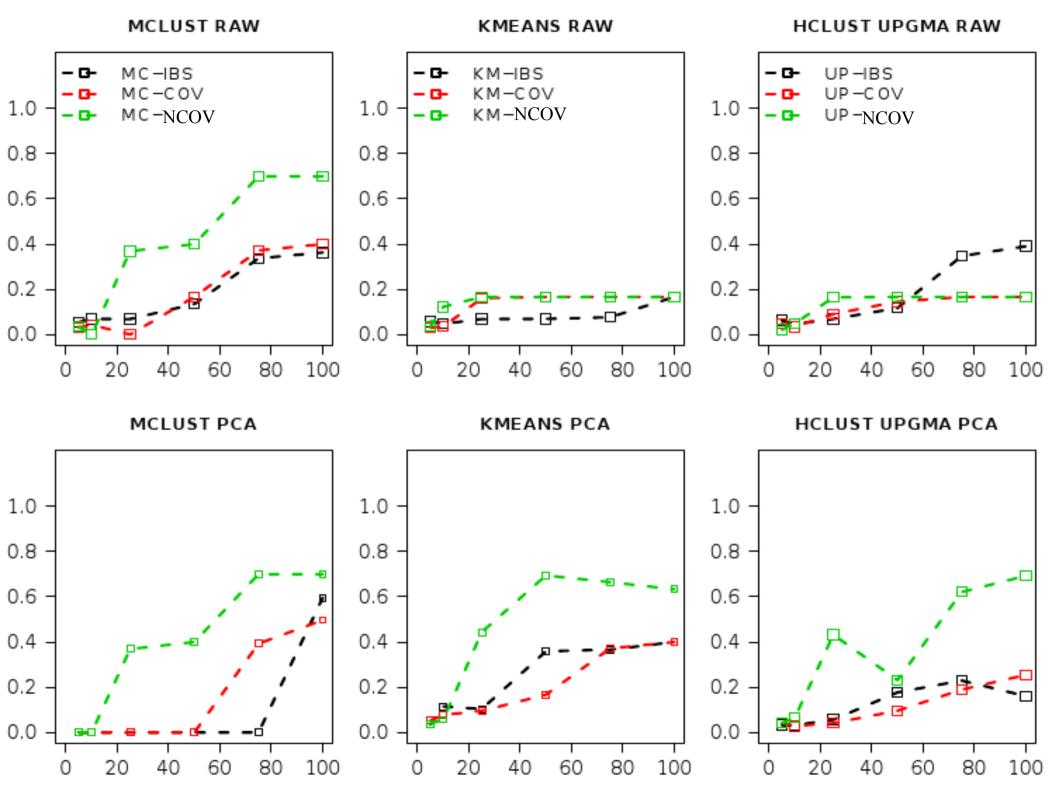
- "Hard K-Means" (as uses the same distance penalty as MVN, but imposes a strict boundary)
- *K* estimated using the Calinski (1974) criterion (comparing variance within clusters to that between clusters)



Clustering: Hierarchical methods

- Successively merge "closest" samples (or successively split... lots of ways to define "close")
- e.g. UPGMA (Unweighted-Pair Group Method with Arithmetic Mean). "Close" here is distance to the centroid of the clusters
- (e.g. Ward's (1963) minimum variance criterion)
- K estimated using the Calinski (1974) criterion





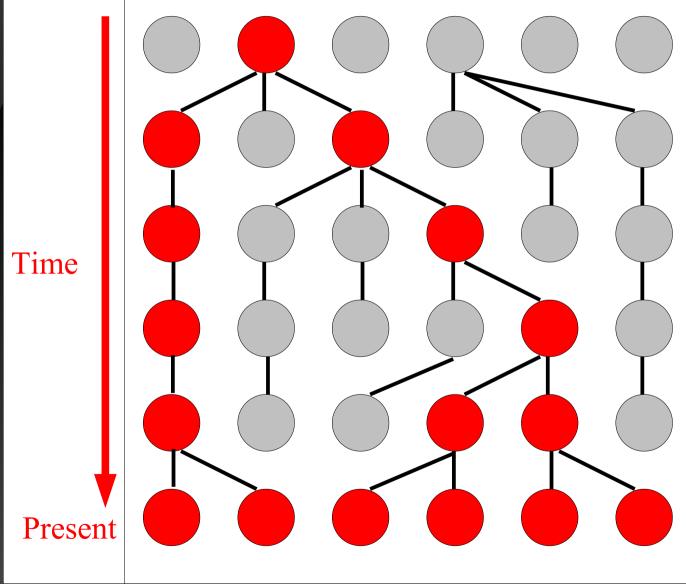
An algorithm to generate papers from Student Projects: Roll 3 dice and refer to the table:

Dice roll	Similarity Measure	Dimensionality Reduction	Clustering Algorithm
1	IBD/ASD	None	MVN
2	Covariance	PCA - MAP	K-Means
3	Normalised Covariance	PCA - Parallel Analysis	Hierarchical (standard)
4	Something from Document clustering	PCA - Tracy-Widom	Hierarchical (iteratively modifying data)
5	Something model- based	Spectral Graph Theory	Something from CS literature
6	Something else	Something from image analysis	???

Part 2: Genetics models

- Similarity measures matter more than clustering model
- MVN model seems best
- On PCA, all models do similarly well
- No similarity measure is good enough
- Time to understand why...

Ancestry process

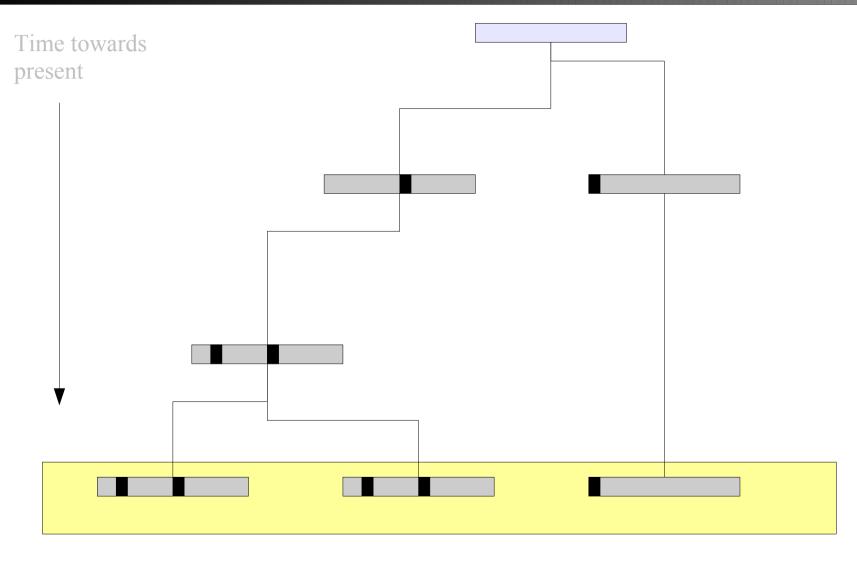


Daniel Lawson, University of Briston dan.lawson@bristol.ac.uk Each generation randomly chooses parent
 Red individuals ancestors to those sampled
 Take limit N→∞

keeping N/T constant • Rate of *coalescence* between pairs $\rightarrow 1$ • Lots known about this *Coalescent Tree* distribution.

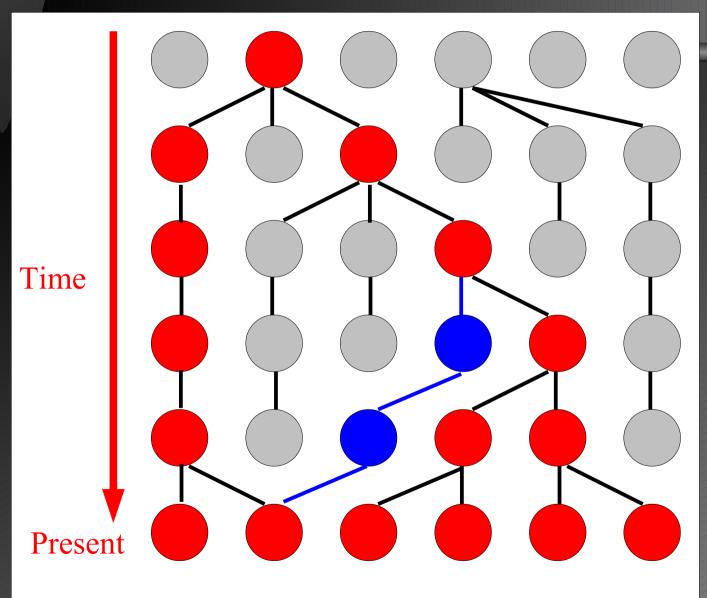
21/40

Genetic model - Ancestral Tree



Hein, Schierup and Wiuf 'Gene Genealogies, Variation and Evolution', OUP 2005

Ancestry process with recombination

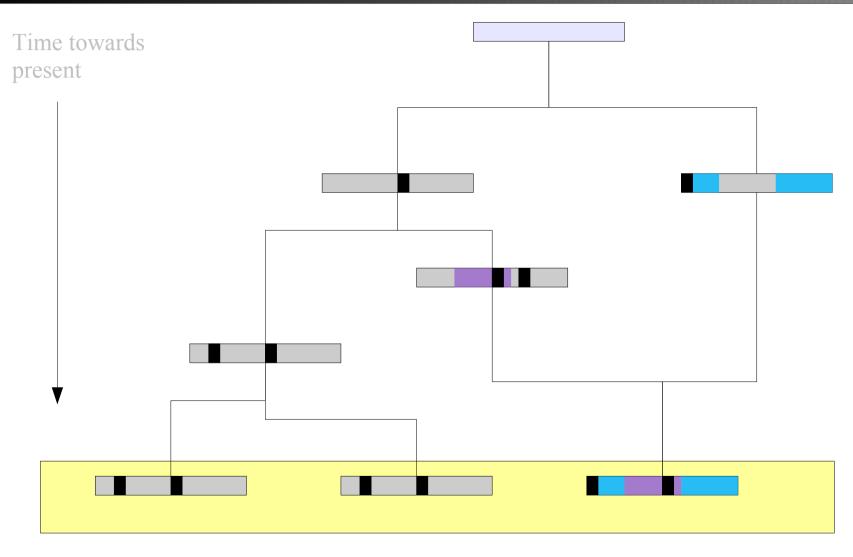


Daniel Lawson, University of Briston dan.lawson@bristol.ac.uk • Probability ρ of getting DNA from two parents

- Creates a graph structure
- Coalescence rates unchanged...
- But now a birth/death process
- Easily simulated but few analytical results

23/40

Ancestral Recombination Graph



Hein, Schierup and Wiuf 'Gene Genealogies, Variation and Evolution', OUP 2005

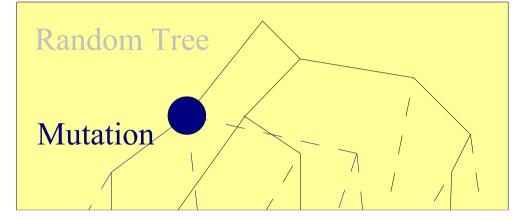
Ancestral Recombination Graph -Summary

Ancestral Recombination Graph (ARG) model
 backwards in time, ignore unobserved ancestors

is equivalent to the

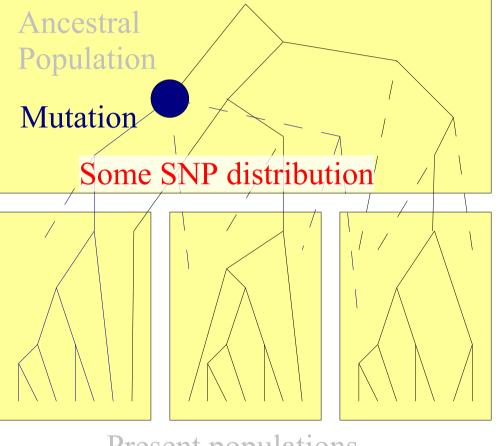
- Forwards in time model
 - Random mating, within known size populations
 - No selection
- Inference under the ARG is impossible for reasonable datasets
- But when recombination is large, each SNP is independently drawn from a random tree

Time to Most Recent Common Ancestor



- Recall that each SNP has a random tree • McVean (2009) showed that $\mathbb{E}(t_{ij}) = f(\sum_{l} |x_{il} - x_{jl}|)$ (where f is simple and known)
- i.e. Counting identical SNPs captures all the information in the tree
- How do times in tree relate to population structure?

Genetic drift



Present populations 'Independent drift' of SNP distribution

Kimura derived exact distribution for this case... (nasty)
Wright studied a related model, leads to Beta distribution of SNP frequency

$$f_k \sim \operatorname{Beta}(f_0, \nu)$$

• Normal distribution approximation exists... simpler to handle covariance effects

 $f_k \sim N\left(f_0, \sigma^2 f_0(1-f_0)\right)$ (Recall relationship to diffusion)

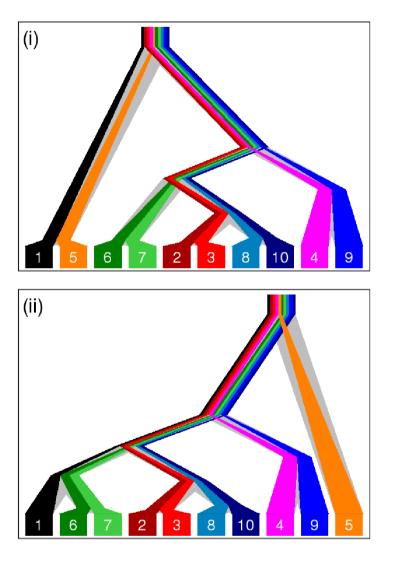
Direct Model-based clustering

• Population model:

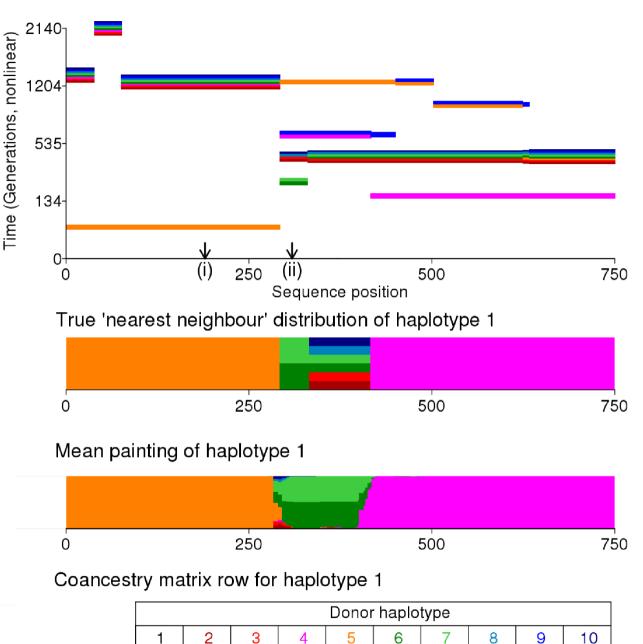
- -Beta distribution for SNP frequencies in each
- Assume individuals exchangeable within populations
- Gives likelihood for frequency of SNPs
 - -Binomial distribution
 - -Assume no linkage (linkage approximations exist)
- Gives popular STRUCTURE* model
 - Still can't cope with large datasets
- Can we do this well on genomic (linked) data?

28/40

Local genealogies



ChromoPainter 'Coancestry' similarity matrix
Unlinked limit: normalised allele sharing



Time to MRCA with haplotype 1

See: Li and Stephens, Genetics 165:2213-2233, 2003

1.1

1.24

0.52

0.52

0.06

0.01

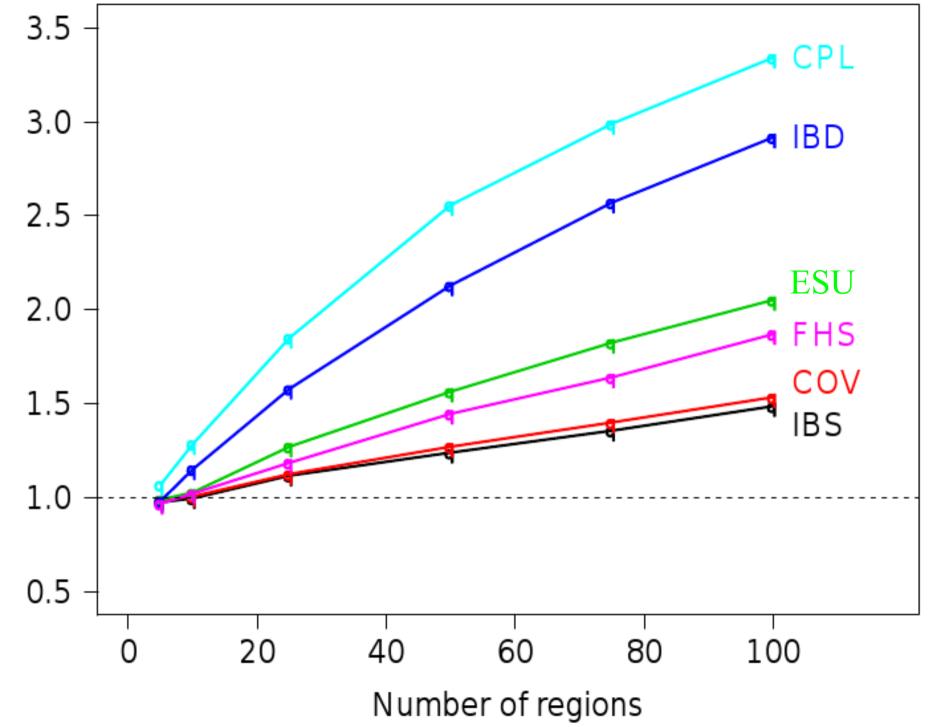
0.06

0.08

0

0.09

Haplotype 1



FineSTRUCTURE Population structure model

Individuals exchangeable within populations

$$x_{ab} = \sum_{i \in a, j \in b} x_{ij}$$

• Populations donate chunks independently at a characteristic rate P_{ab}

$$p(X|P) = \prod_{a,b=1}^{K} \left(\frac{P_{ab}}{\hat{n}_{b}}\right)^{x_{ab}}$$
Population assignment
Number of individuals to donate from
population

Coancestry matrix

Probability of a partition

• Dirichlet Process prior for partition η :

 $\eta \sim \alpha^K \prod_{k=1}^K \Gamma(\hat{n}_k) \qquad \{P_1, \cdots, P_K\} | \eta = \prod_{b=1}^K G_0$

- Rows of P_{ab} (i.e. G_0) are Dirichlet (containing hidden biological parameters)...
- ... so conjugate, and we integrate out P_{ab}

(Idea: add each individual, update Dirichlet posterior, use as prior for the next individual)

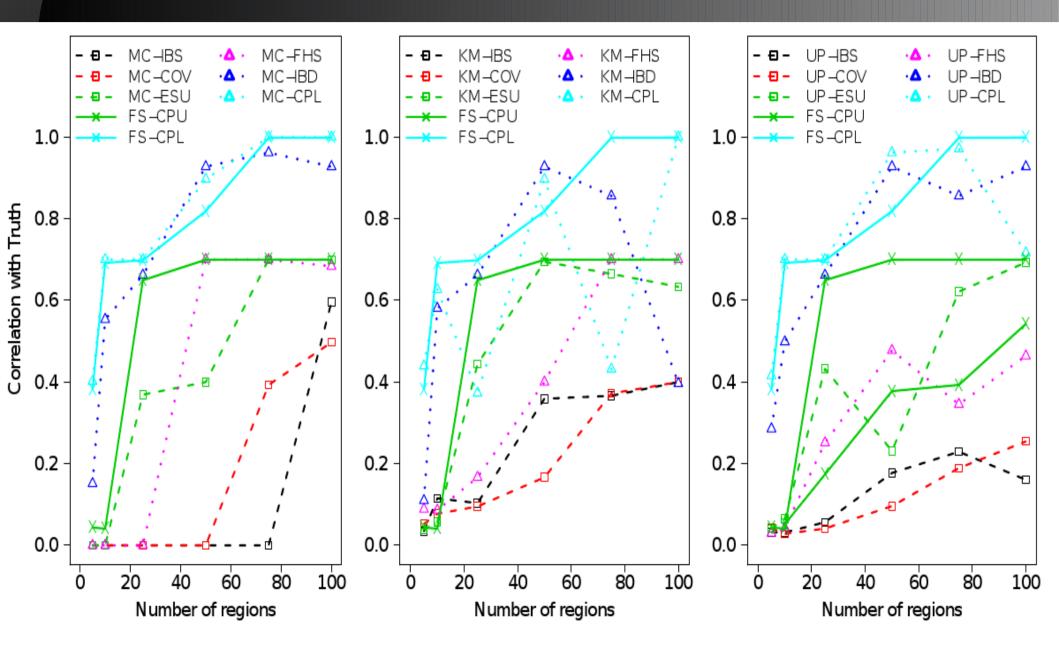
Proven theoretical results

- To O(N), Coancestry matrix is a rotation of the eigenvector matrix
 - -If SNPs are uncorrelated
 - and the number of individuals is large
- To O(N), FineSTRUCTURE likelihood is equivalent to the STRUCTURE* likelihood
 - *if SNPs are uncorrelated,*
 - -drift is weak,
- *genotyped SNPs are not very rare*
- With linkage model we do better.

And the MVN likelihood with a structured covariance...

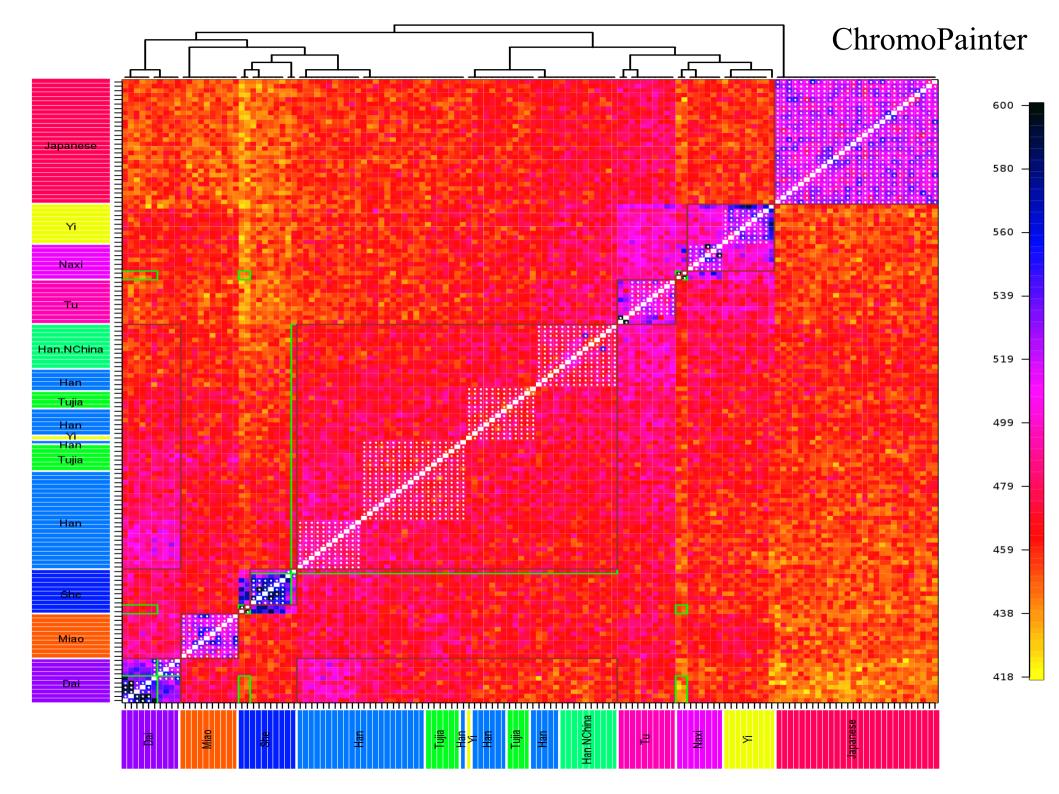
*Pritchard, Stephens and Donnelly, Genetics, 155:945-959, 2000 Calculations due to Simon Myers

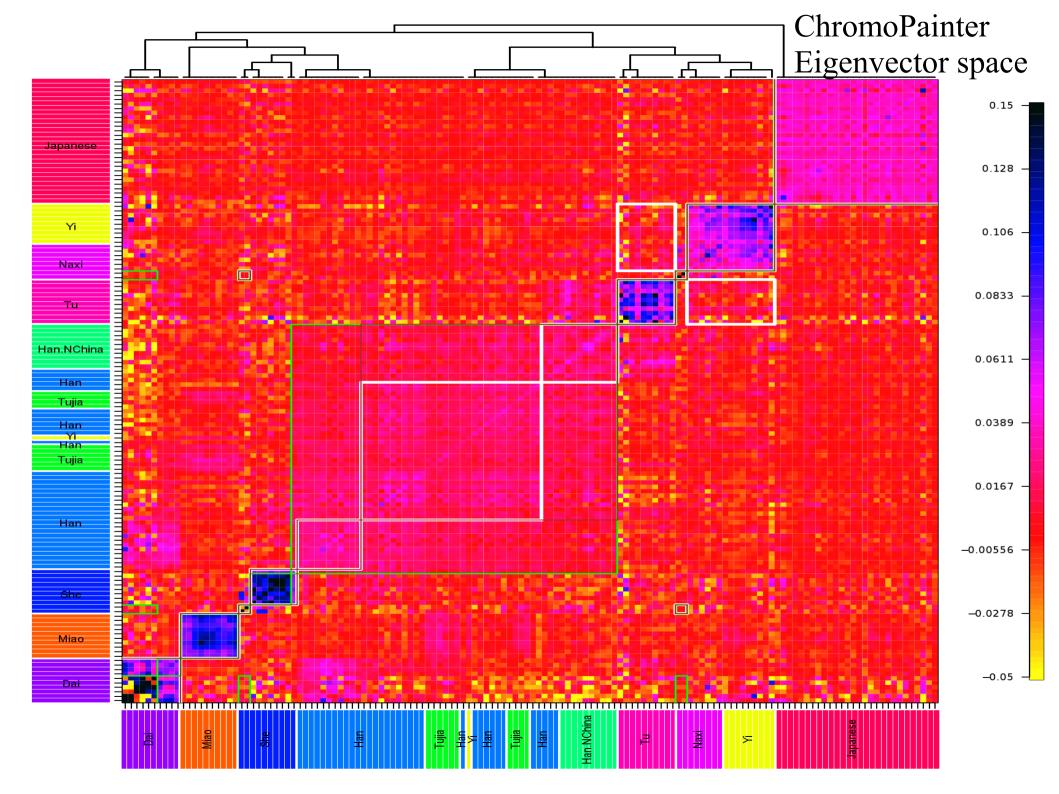
Comparison of linked methods

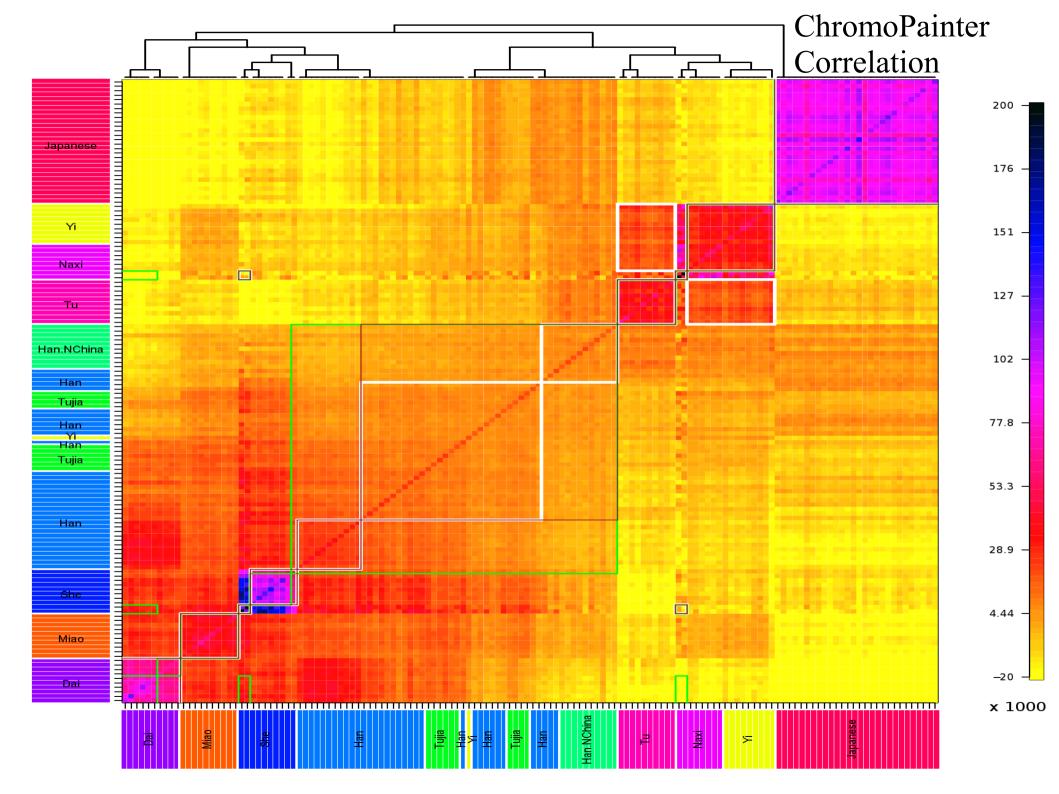


HGDP data

- 938 Individuals worldwide
- 650k SNPs, linked (but relatively weakly)
- Known to contain structure at all scales, but previous models missed this
- Similarity approaches can analyse the whole data
- Focus on East Asian individuals







Conclusions

• In General

- Models matter
- Summaries are part of the model
- 'Model-Free' approaches are still making assumptions!

• Genetics

- Normalising variance is important other unlinked measures are all worse
- Linked models extract more information
- No 'correct' linked model at this stage!
- ChromoPainter/FineSTRUCTURE pipeline is the most robust option

Acknowledgements:

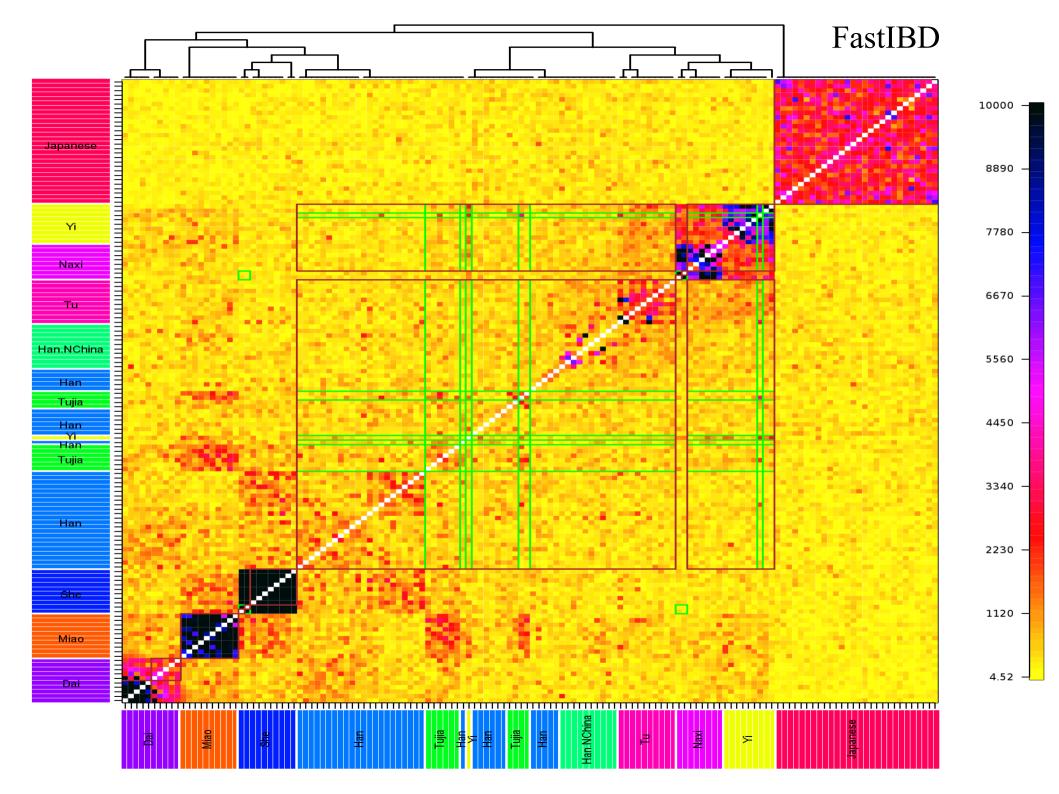
fineSTRUCTURE

Garrett Hellenthal (Oxford) (CP algorithm)

Simon Myers (Oxford) (theory)

Daniel Falush (Max Planck Institute) (CP/FS concept)

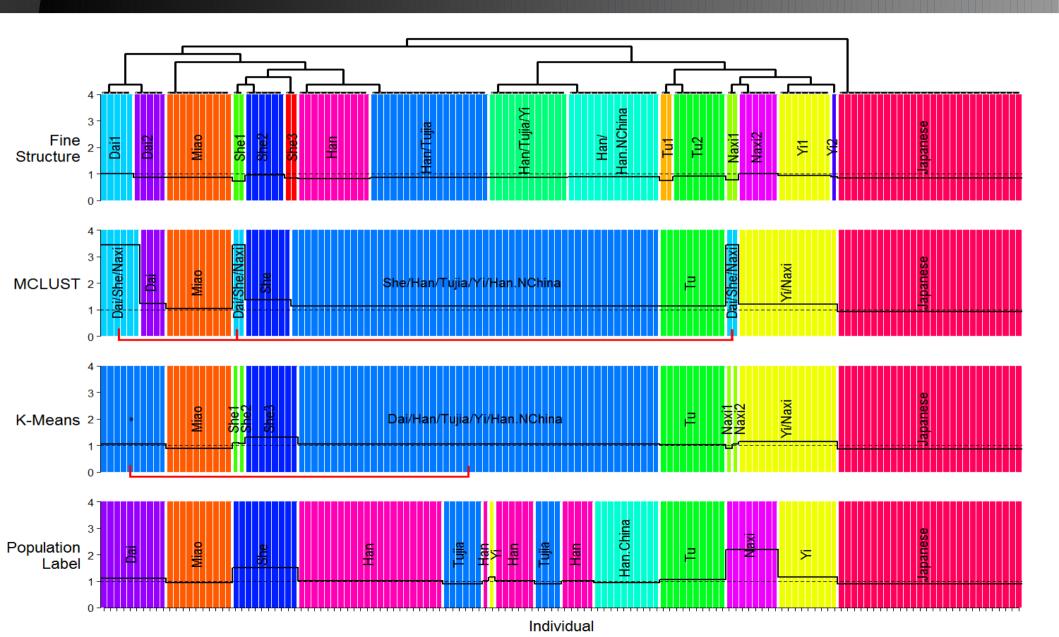
- Peter Green (Bristol) Grant, support
- Bluecrystal HPC facilities @ Bristol
- FineSTRUCTURE Code & GUI: <u>www.paintmychromosomes.com</u>

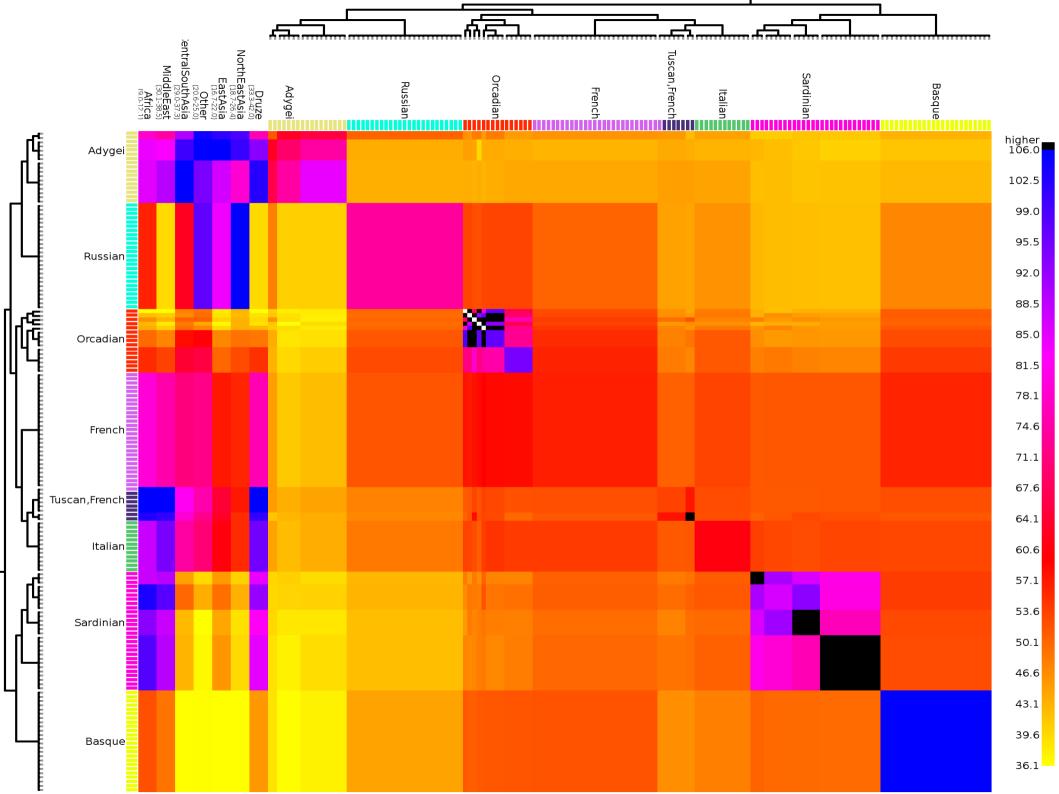


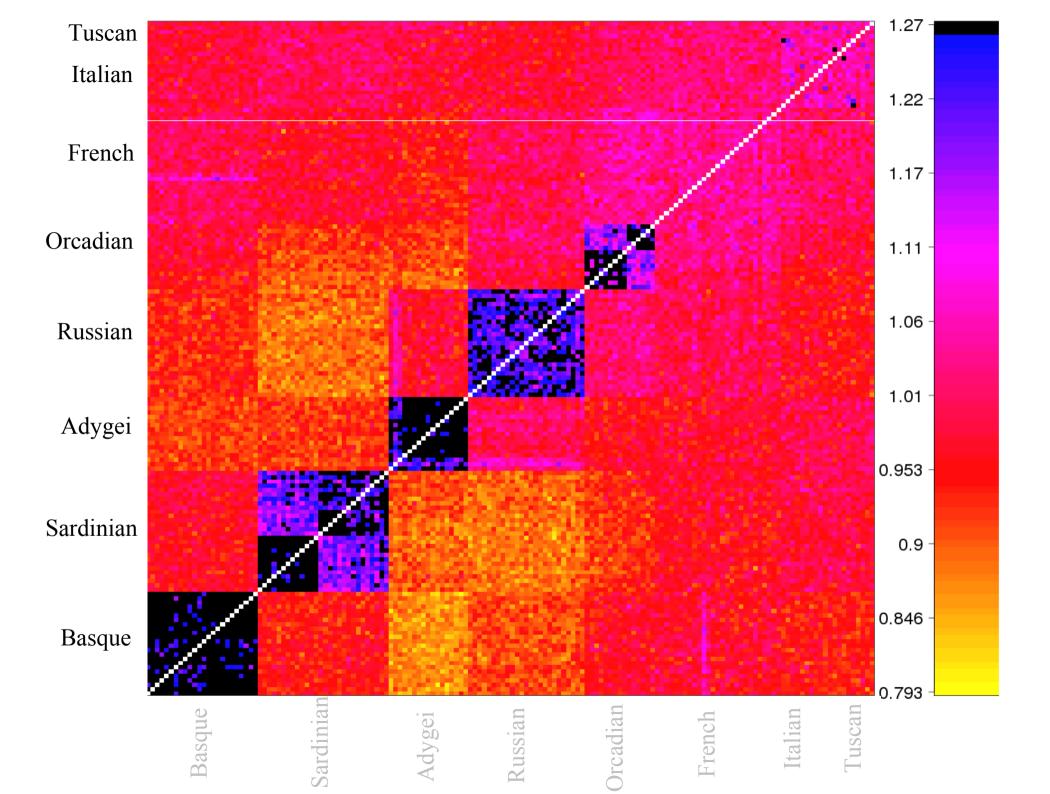
FastIBD (Browning and Browning 2011)

- Alternative linked model: Identify *r* closest segments of DNA for each pair of individuals
- Genetic lengths of each are related to time since common ancestor
- Similarity measure: sum of the genetic lengths found for each pair
- Somewhat heuristic, has some tuning parameters, but empirically works well

Comparison of clusterings

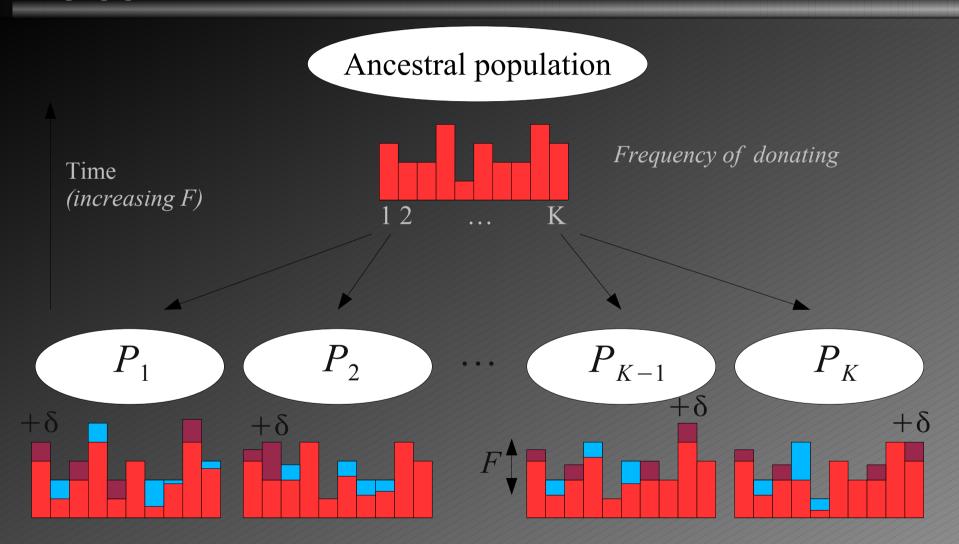






Weak Biological Model for prior

'Correct' Ancestral Recombination Graph for the limit of large populations at large time with simple population structure



Daniel Lawson, University of Bristol dan.lawson@bristol.ac.uk

Posterior evaluation

- MCMC update of hyperparameters and partitions
- Partition moves:
 - Move an individual
 - -Merge
 - Split
 - -Merge and resplit
- Merge/split 'nearly Gibbs' move:

$$p(q_{m};a,b) = p(q_{1}) p(q_{2}|q_{1}) \cdots p(q_{m}|q_{1:m-1})$$

$$p(q_{m}=a) \approx \hat{n}_{a} \int F(x_{m}|P_{m}) dH_{$$

(Not exact as the 'unsplit' population interacts with the remaining dataset)

Simple case: Pella and Masuda Canadian J. Fish. Aquatic Science 63:576-596, 2003 Daniel Lawson, University of Bristol dan.lawson@bristol.ac.uk

47/40

Clustering into k clusters

- Find "similar" individuals l∈ [1, L]
 Three main approaches:

 Cluster on raw data Y_{il}
 Cluster on similarity matrix X_{ij}
 Cluster on dimensionality reduced version of data, e.g. MDS/PCA/SVD V_{id}
 d ∈ [1, D]
 - Recall: $L \gg N \gg D$ O(k) = O(d)?
- Lowest dimension description usually best...
 Raw data approach terrible here (without good model)

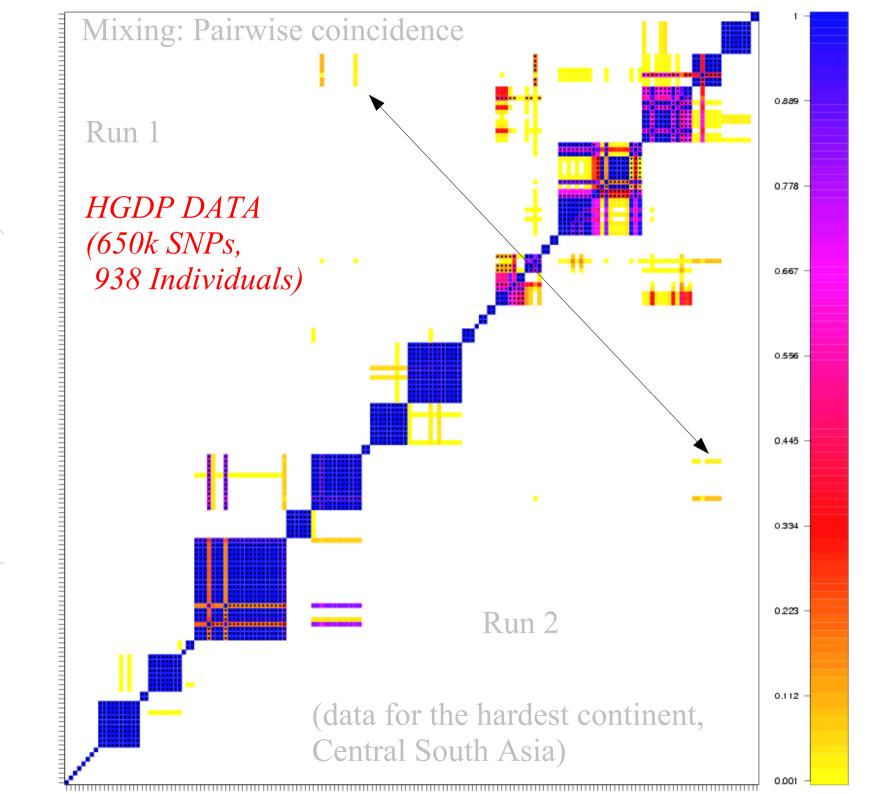
Daniel Lawson, University of Bristol dan.lawson@bristol.ac.uk

The future – Admixture model

- Pure population structure is not correct recent mixing leads to admixture
 - Seek conjugate mixture model for individuals
 - Hierarchical Dirichlet Process!
 - Interpretation: Pure populations created by drift, we see mixtures
- Better model:
 - Allow drift and admixture to both occur in real time
 - Requires more sophisticated model, can we keep conjugacy?

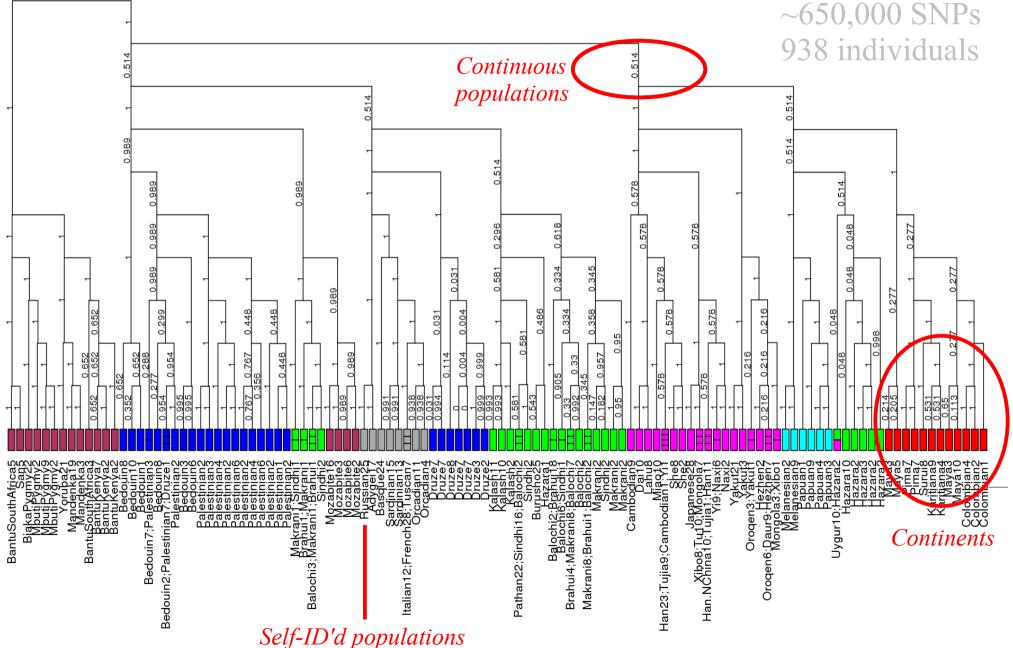
-(Matrix Coalescent* results available)

Daniel Lawson, Initional diffusion treas and Conceptetics, 161:1641-1650, 2002 49/40 dan.lawson@bristol.ac.uk **Neal, in J. M. Bernardo, et al. (ed.), Bayesian Statistics 7, pp. 619-629, 2003



(Individual labels not shown)

MAP tree: whole world HGDP data



Posterior evaluation: building block

• Sample from posterior $p(q_m; a, b) = p(q_1) p(q_2|q_1) \cdots p(q_m|q_{1:m-1})$

Metropolis-Hastings proposal for a split:
 – Random individuals creates population *a* and *b* from *c*

– Move rest from *c* with probability

 $p(m;a) \propto \hat{n}_{a} \int F(x_{m}|p_{m}) dH_{<m, S(p_{m})} \\ \approx n_{a} \frac{P(S_{a}, \{i=1, \cdots, m\}) P(S_{c}, \{i=1, \cdots, m\})}{P(S_{a}, \{i=1, \cdots, m-1\}) P(S_{c}, \{i=1, \cdots, m-1\})}$

52/40

(Not exact as the 'unsplit' population interacts with the remaining dataset)

Daniel Lawson, University of Bristol

dan.lawson@bristol.aExdact case: Pella and Masuda Canadian J. Fish. Aquatic Science 63:576-596, 20

Probability of a partition

Rows of P_{ab} are Dirichlet – Conjugate to multinomial, sum to 1 – Weak prior

Compute posterior incrementally due to conjugacy

$$p(x_a|q) = \prod_{m \in a} \int F(x_m|P_a, q) dH_{$$

$$dH_{\langle m, S_a}(P_a) = Dirichlet(P_a; \{\beta_{ab} + x_{\langle m, b}\}_{b=1, \cdots, K})$$

(Idea: add each individual, update Dirichlet posterior, use as prior for the next individual)

Final model

• Posterior

$$p(\eta|X) \propto \alpha^{K} \prod_{a=1}^{K} \Gamma(\hat{n}_{a}) \frac{\Gamma(\beta_{a})}{\Gamma(x_{a}+\beta_{a})} \prod_{b=1}^{K} \frac{\Gamma(x_{ab}/c+\beta_{ab})}{\Gamma(\beta_{ab})\hat{n}_{b}^{x_{ab}}}$$

• Prior for hyperparameters

$$\beta_{ab} = \begin{cases} \gamma V_b & \text{if } a \neq b \\ \gamma (1 + \delta) V_b & \text{if } a = b \\ Prift \text{ due to mutation} & \text{Ancestral dot} \end{cases}$$

Ancestral donation frequency

 $\gamma = (1 - F)/F$ \blacksquare Drift in allele frequency

Posterior visualisation

- Too many populations!
- Pairwise coincidence matrix
- Create MAP (maximum a posteriori) tree from MAP partition
- Show partition split posterior support
- (Population summary of data matrix *X*)