"You're going to need a bigger boat..."

How to stop interesting population genetics models from being swallowed up by really big datasets Dan Lawson, University of Bristol

Background

- We will 'soon' be able to sequence all the genomes in the world for less than the cost of the logistics of obtaining or processing them
- NHS project to sequence 100K people
- Current project to sequence all 50K Faroe Islanders
- What would we do with 'all the genomes in the world'?
- Can we run appropriate models on them?

Motivation

For Large datasets

- "Statistics doesn't work" estimates get worse as we get more data! (for linear compute)
 - e.g. Bayesian models (MCMC)
- Simple analytics can extract many useful features
 - e.g. K-medians clustering, etc
 - Informative in practice and still hard to get working!
 - But don't do quite the right thing...
- Many interesting quantities are subtle
- or local, so we only have a small amount of data about them
- Always a place for models closer matching reality

Model of interest: FineSTRUCTURE

Find Populations Q with associated uncertainty from SNP data D

- ► The *N* Individuals are highly structured
- ► The *L* SNPs are complexly correlated
- Two stage process
- ChomoPainter 'losslessly' describes coancesty S|D using the data
- FineSTRUCTURE infers Q using genetics model S|Q
- ► *S*|*Q* is approximately multi-variate normal with structured covariance
- Problem: S is $O(LN^2)$ to evaluate

Similarity

p(D|S)p(S|Q)p(Q)

- Compare N individuals about which we have lots of genetic data D
- ▶ i.e. Painting S|D separates the data D from the population model Q
 - If rows of Q sum to 1 this is a mixture model
 - if only 1 element is non-zero it is a partitioning
- Coancestry S(i,j) is computationally costly to evaluate

Random or convenience filtering

- See 'big data'¹ as better sampling of data
- Why not throw away elements from D?
 - Convenience sampling what can we measure? = 'data'
 - Systematic sampling allele frequency, LD filtering
 - Stratified sampling
 - etc
- For example:
 - ► Use L' ≪ L
 - Use $N' \ll N$
- Can fix N' and L' to fix computational cost

1: Big data: any data that can't be processed in memory on a single high spec computer

Emulated Likelihood Models (ELMs)

- S_{ij} is costly to compute, and needed for S|Q
- But are highly structured (e.g. clusters)
- ► So can emulate (i.e. guess) S_{ij} rather than computing
- Calculate a few S^* , approximately sufficient for $p(D|S, \theta)$
- Carefully downweight emulated values
- Weights are only modification to S|Q
- Statistically, emulated values are like Control Variates for the likelihood

Fast finestructure

- Cheap measure S': Use PCA on a few unlinked loci
- Expensive measure S*: Painting of a few individuals to construct a maximally informative reference panel
- Choose next panel member i^{*}_t using the most distant individual to those in the panel
- Emulation: Predict full paintings S[†]_i from panel painting and PCA

How to choose who to paint against whom?

- Iteratively choose the next S.j to add to S*
- Construct a loss function $\hat{\mathcal{L}}$
- ► Next panel member minimises loss: $\operatorname{argmin}_{S_{ij}} \mathbb{E}\left(\hat{\mathcal{L}}(S^* \cup S_{ij}) | S^*\right)$
- ► We can consider different histories to evaluate performance
- Stopping rule: convergence of $\hat{\mathcal{L}}$
- \blacktriangleright ${\cal L}$ can represent interest in some populations over others

The emulator as N and L change

'Machine learning' algorithm with the usual caveats:

- Not a probability model
- Optimal? Unbiased?
- Chosen to respect computational constraints:
 - ► Lots of loci L ≫ N: Use PCA for every pair of individuals, and paint a few
 - ► Lots of individuals N² ≫ L: Computing PCA for every pair of individuals is hard
 - Massive data: Can't even paint everyone against a panel!? There are algorithms that are possible.
- Yet ... 'Low rank' similarity matrices can be nearly losslessly reconstructed*

*Candes & Plan 'Matrix completion with noise', Proc. IEEE, 2010

Fast finestructure - outline Emulator:

S becomes the data for inferring *Q*:

$$\left[p(D|\hat{S},\hat{\theta})\right]p(S|Q,\phi)p(Q,\phi)$$

12/20

3

Fast finestructure - in practice

- Emulator \hat{S} costs $O(N^2L' + NTL) \ll O(N^2L)$ for full model
- ► Current datasets: L = 10,000,000, N = 5000, L' = 10,000 T = 100, predicted saving ratio is 100
- Bigger savings if we are really only interested in a subset of individuals: can automatically choose an appropriate panel

Thinned PCA approach is cheaper by a factor 10000. L will not grow beyond this, but N will - can introduce an emulation step for S'

MM Error

2 14 / 20

Discussion

- Goal: Achieve scale using approximate answers to the right questions via exact answers to the wrong questions
- Proposed the Emulated Likelihood Model:
 - Generally applicable to many problems
 - Full statistical modelling
 - Machine learning algorithms used for the calculation
 - Statistical estimation of parameters is retained but approximated
- FastFineSTRUCTURE is an application (Coming Soon!)
- Take home message for geneticists: You can still develop models that don't scale. Stats is catching up to allow them to scale better.

Thanks for listening!

- Register for FineSTRUCTURE at www.paintmychromosomes.com
- Emulated Likelihood framework developed with Niall Adams, Imperial College London
- FineSTRUCTURE, ChromoPainter work with Garrett Hellenthal, Daniel Falush and Simon Myers

Emulated Likelihood Models for general Bayesian problems

General emulation for big (but not so big) problems

$$\hat{p}(D|S, heta) = \int p(D|S^* \cup S^{\dagger}, heta) p(S^{\dagger}|S^*, heta, \psi) d\psi$$

► i.e. Can use θ to emulate S[†](θ) - e.g. regression in (S, θ) space

• Gaussian Process for $S_{ij}(\theta)$ is a natural choice

► If S[†] is an unbiased estimator of S^{*} this is a pseudo-marginal approach (and hence targeting the correct posterior)

Fast finestructure - Parallel MCMC algorithm

A parallel tempering algorithm for when MCMC parallelises poorly

- Evaluate the unlinked model S'
- Master node: perform MCMC clustering to find \hat{Q}_t using \hat{S}_t , when there are t rows S_t^* computed
- Worker nodes compute S_{ij}^* in the order chosen by the master
- Stopping rule: posterior distribution of \hat{Q} converges
 - No new information added when increasing t
 - (Or if the MCMC is slower than the evaluation of *S*, sometime afterwards)

19 / 20

-2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト