
”You’re going to need a bigger boat...”
How to stop interesting population genetics models from being

swallowed up by really big datasets
Dan Lawson, University of Bristol
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Background

I We will ‘soon’ be able to sequence all the genomes in the
world for less than the cost of the logistics of obtaining or
processing them

I NHS project to sequence 100K people

I Current project to sequence all 50K Faroe Islanders

I What would we do with ‘all the genomes in the world’?

I Can we run appropriate models on them?

3 / 20



Motivation

For Large datasets
I “Statistics doesn’t work” – estimates get worse as we get

more data! (for linear compute)
I e.g. Bayesian models (MCMC)

I Simple analytics can extract many useful features
I e.g. K-medians clustering, etc
I Informative in practice - and still hard to get working!
I But don’t do quite the right thing...

I Many interesting quantities are subtle

I or local, so we only have a small amount of data about them

I Always a place for models closer matching reality
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Model of interest: FineSTRUCTURE

Find Populations Q with associated uncertainty from SNP data D

I The N Individuals are highly structured

I The L SNPs are complexly correlated

I Two stage process

I ChomoPainter ‘losslessly’ describes coancesty S |D using the
data

I FineSTRUCTURE infers Q using genetics model S |Q
I S |Q is approximately multi-variate normal with structured

covariance

I Problem: S is O(LN2) to evaluate
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I Compare N individuals about which we have lots of genetic
data D

I i.e. Painting S |D separates the data D from the population
model Q

I If rows of Q sum to 1 this is a mixture model

I if only 1 element is non-zero it is a partitioning

I Coancestry S(i , j) is computationally costly to evaluate
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Random or convenience filtering

I See ‘big data’1 as better sampling of data
I Why not throw away elements from D?

I Convenience sampling - what can we measure? =‘data’
I Systematic sampling - allele frequency, LD filtering
I Stratified sampling
I etc

I For example:
I Use L′ � L
I Use N ′ � N

I Can fix N ′ and L′ to fix computational cost

1: Big data: any data that can’t be processed in memory on a single high spec computer
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Emulated Likelihood Models (ELMs)

I Sij is costly to compute, and needed for S |Q
I But are highly structured (e.g. clusters)

I So can emulate (i.e. guess) Sij rather than computing

I Calculate a few S∗, approximately sufficient for p(D|S , θ)

I Carefully downweight emulated values

I Weights are only modification to S |Q
I Statistically, emulated values are like Control Variates for the

likelihood
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Fast finestructure

I Cheap measure S ′: Use PCA on a few
unlinked loci

I Expensive measure S∗: Painting of a few
individuals to construct a maximally
informative reference panel

I Choose next panel member i∗t using the
most distant individual to those in the panel

I Emulation: Predict full paintings S†·i from
panel painting and PCA
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How to choose who to paint against whom?

I Iteratively choose the next S·j to add to S∗

I Construct a loss function L̂
I L̂ is implicit here

I Next panel member minimises loss:

argminSijE
(
L̂(S∗ ∪ Sij)|S∗

)
I We can consider different histories to evaluate performance

I Stopping rule: convergence of L̂
I L can represent interest in some populations over others
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The emulator as N and L change

‘Machine learning’ algorithm with the usual caveats:

I Not a probability model

I Optimal? Unbiased?
I Chosen to respect computational constraints:

I Lots of loci L� N: Use PCA for every pair of individuals, and
paint a few

I Lots of individuals N2 � L: Computing PCA for every pair of
individuals is hard

I Massive data: Can’t even paint everyone against a panel!?
There are algorithms that are possible.

I Yet . . . ‘Low rank’ similarity matrices can be nearly losslessly
reconstructed*

*Candes & Plan ‘Matrix completion with noise’, Proc. IEEE, 2010
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Fast finestructure - outline
Emulator:
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S becomes the data for inferring Q:[
p(D|Ŝ , θ̂)

]
p(S |Q, φ)p(Q, φ)
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Fast finestructure - in practice

I Emulator Ŝ costs O(N2L′ + NTL)� O(N2L) for full model

I Current datasets: L = 10, 000, 000, N = 5000, L′ = 10, 000
T = 100, predicted saving ratio is 100

I Bigger savings if we are really only interested in a subset of
individuals: can automatically choose an appropriate panel

Thinned PCA approach is cheaper by a factor 10000. L will not grow

beyond this, but N will - can introduce an emulation step for S ′
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Discussion

I Goal: Achieve scale using approximate answers to the right
questions via exact answers to the wrong questions

I Proposed the Emulated Likelihood Model:
I Generally applicable to many problems
I Full statistical modelling
I Machine learning algorithms used for the calculation
I Statistical estimation of parameters is retained but

approximated

I FastFineSTRUCTURE is an application (Coming Soon!)

I Take home message for geneticists: You can still develop
models that don’t scale. Stats is catching up to allow them to
scale better.

15 / 20



Thanks for listening!

I Register for FineSTRUCTURE at
www.paintmychromosomes.com

I Emulated Likelihood framework developed with Niall Adams,
Imperial College London

I FineSTRUCTURE, ChromoPainter work with Garrett
Hellenthal, Daniel Falush and Simon Myers
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Emulated Likelihood Models for general Bayesian problems

General emulation for big (but not so big) problems

p̂(D|S , θ) =

∫
p(D|S∗ ∪ S†, θ)p(S†|S∗, θ, ψ)dψ

I i.e. Can use θ to emulate S†(θ) - e.g. regression in (S , θ)
space

I Gaussian Process for Sij(θ) is a natural choice

I If S† is an unbiased estimator of S∗ this is a pseudo-marginal
approach (and hence targeting the correct posterior)
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Fast finestructure - Parallel MCMC algorithm

A parallel tempering algorithm for when MCMC parallelises poorly

I Evaluate the unlinked model S ′

I Master node: perform MCMC clustering to find Q̂t using Ŝt ,
when there are t rows S∗t computed

I Worker nodes compute S∗·i in the order chosen by the master

I Stopping rule: posterior distribution of Q̂ converges
I No new information added when increasing t
I (Or if the MCMC is slower than the evaluation of S , sometime afterwards)
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