"You're going to need a bigger boat..."
How to stop interesting population genetics models from being
swallowed up by really big datasets
Dan Lawson, University of Bristol
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Background

» We will ‘soon’ be able to sequence all the genomes in the
world for less than the cost of the logistics of obtaining or
processing them

» NHS project to sequence 100K people
» Current project to sequence all 50K Faroe Islanders
» What would we do with ‘all the genomes in the world’?

» Can we run appropriate models on them?
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Motivation

For Large datasets

» “Statistics doesn’t work” — estimates get worse as we get
more data! (for linear compute)

» e.g. Bayesian models (MCMC)

» Simple analytics can extract many useful features
» e.g. K-medians clustering, etc
» Informative in practice - and still hard to get working!
» But don't do quite the right thing...
> Many interesting quantities are subtle
» or local, so we only have a small amount of data about them
» Always a place for models closer matching reality
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Model of interest: FineSTRUCTURE

Find Populations @ with associated uncertainty from SNP data D

>

>

>

The N Individuals are highly structured
The L SNPs are complexly correlated
Two stage process

ChomoPainter ‘losslessly’ describes coancesty S|D using the
data

FineSTRUCTURE infers Q using genetics model S|Q

S|Q is approximately multi-variate normal with structured
covariance

Problem: S is O(LN?) to evaluate



Similarity

p(D[S)p(5]Q)p(Q)
Data Similarity Structure
N D NS N Q

L N K

» Compare N individuals about which we have lots of genetic
data D

» i.e. Painting S|D separates the data D from the population
model @

> If rows of Q sum to 1 this is a mixture model

> if only 1 element is non-zero it is a partitioning

» Coancestry S(/,) is computationally costly to evaluate
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Random or convenience filtering

» See 'big data'! as better sampling of data
» Why not throw away elements from D?

» Convenience sampling - what can we measure? ='data’

» Systematic sampling - allele frequency, LD filtering
» Stratified sampling
> etc
» For example:
» Use ' < L
» Use NV < N

» Can fix N and L’ to fix computational cost

1: Big data: any data that can't be processed in memory on a single high spec computer
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Emulated Likelihood Models (ELMs)

» Sjj is costly to compute, and needed for S|Q

» But are highly structured (e.g. clusters)

» So can emulate (i.e. guess) Sj rather than computing

» Calculate a few S*, approximately sufficient for p(D|S, 6)
> Carefully downweight emulated values

» Weights are only modification to S|Q

» Statistically, emulated values are like Control Variates for the
likelihood
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Fast finestructure

» Cheap measure S’: Use PCA on a few
unlinked loci

» Expensive measure S*: Painting of a few
individuals to construct a maximally
informative reference panel

» Choose next panel member i} using the
most distant individual to those in the panel

» Emulation: Predict full paintings S.JE. from
panel painting and PCA
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How to choose who to paint against whom?

v

Iteratively choose the next S, to add to S*

v

Construct a loss function £

v

Lis implicit here

v

Next panel member minimises loss:
argming, [ (EA(S* U S;j)|5*)

» We can consider different histories to evaluate performance

v

Stopping rule: convergence of £

» L can represent interest in some populations over others
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The emulator as N and L change

‘Machine learning” algorithm with the usual caveats:

» Not a probability model

» Optimal? Unbiased?
» Chosen to respect computational constraints:
» Lots of loci L > N: Use PCA for every pair of individuals, and
paint a few
» Lots of individuals N? > L: Computing PCA for every pair of
individuals is hard
» Massive data: Can't even paint everyone against a panel!?
There are algorithms that are possible.
» Yet ... 'Low rank’ similarity matrices can be nearly losslessly

reconstructed*

*Candes & Plan ‘Matrix completion with noise’, Proc. IEEE, 2010
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Fast finestructure - outline
Emulator:

Decision model
parameters

[N.L]

Thinning model ~ Simple model Emulator model Empirical
Parameters parameters parameters Bayes

S becomes the data for inferring Q:

[P(DIS.8)] p(SIQ. $)p(Q. 9)
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Fast finestructure - in practice

» Emulator S costs O(N?L' + NTL) < O(N?L) for full model

» Current datasets: L = 10,000,000, N = 5000, L’ = 10,000
T = 100, predicted saving ratio is 100

> Bigger savings if we are really only interested in a subset of
individuals: can automatically choose an appropriate panel

Thinned PCA approach is cheaper by a factor 10000. L will not grow
beyond this, but N will - can introduce an emulation step for S’
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Discussion

» Goal: Achieve scale using approximate answers to the right
questions via exact answers to the wrong questions
» Proposed the Emulated Likelihood Model:

» Generally applicable to many problems

Full statistical modelling

Machine learning algorithms used for the calculation
Statistical estimation of parameters is retained but
approximated

» FastFineSTRUCTURE is an application (Coming Soon!)

» Take home message for geneticists: You can still develop
models that don't scale. Stats is catching up to allow them to
scale better.
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Thanks for listening!

> Register for FineSTRUCTURE at

www.paintmychromosomes.com

» Emulated Likelihood framework developed with Niall Adams,

Imperial College London

» FineSTRUCTURE, ChromoPainter work with Garrett
Hellenthal, Daniel Falush and Simon Myers
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Emulated Likelihood Models for general Bayesian problems

General emulation for big (but not so big) problems

p(DIS.6) = [ p(DIS*UST,0)p(S|S". 6. v)d

» i.e. Can use 0 to emulate ST(0) - e.g. regression in (S, 0)
space
» Gaussian Process for 5;(6) is a natural choice
» If ST is an unbiased estimator of S* this is a pseudo-marginal
approach (and hence targeting the correct posterior)
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Fast finestructure - Parallel MCMC algorithm

A parallel tempering algorithm for when MCMC parallelises poorly
» Evaluate the unlinked model S’
> Master node: perform MCMC clustering to find (A?t using St,
when there are t rows S} computed
» Worker nodes compute S in the order chosen by the master

» Stopping rule: posterior distribution of Q converges
» No new information added when increasing t

P (Or if the MCMC is slower than the evaluation of S, sometime afterwards)
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Culmulative loss
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