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Overview

» Some views of ‘population’
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A statistical definition
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Generative approaches

Inference from sparse weakly linked data (STRUCTURE)
Inference from dense linked data (fineSSTRUCTURE)
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What is a population in general?

Like species, populations are elusive objects.

» Definitions are a function of knowledge and application

v

Some definitions - Need not be biologically meaningful

v

Example: Individuals found on same island

v

Example: Sample location due to clustered sampling
procedure

v

Example: Disease status for case/control studies

v

In statistics: we generalize from samples to a population

v

Share: individuals are equivalent under some measure

But do populations really exist? Does it matter if they are useful?
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Diversion: some fuzzy definitions of species

Are definitions of species analogous to definitions of populations?

» Typological species: Organisms that share the same set of
phenotypes

» Ecological species: Organisms that compete for the same
environment

» Phylogenetic species: Organisms with a single common
ancestor

» Biological species: Organisms that can share DNA via
sexual reproduction

(Western/Eastern) Meadow Lark: http://evolution.berkeley.edu
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What is a population? Motivation from genetics

We are interested in non-subjective definitions of populations.

» Individuals have equivalent genetic ancestry
> This depends on the data available ...

» ... and the model used

» Knowledge driven definition

» Requires defining equivalent!
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The birds and the bees (vs the plants and bacteria)

v

Sex dramatically affects genetic transmission

v

Different population concept required

v

Sexual species

» Generalise the Biological Species concept

» Random mating within a population

» Try to detect deviations from random mating to identify
populations

v

Asexual species
» Generalise the Ecological Species concept
» Neutral competition within a population
» Try to detect deviations from neutrality to identify populations
» Not examined further in this talk
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Top down approaches

Start from a theoretical generative model of reproduction.
For example:

» Individuals move between populations via migration
» Discrete generations (for simplicity)

» Each generation randomly chooses parent(s) within a
population

Population structure: individuals migrate between populations but
mate randomly within each
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Ancestry Process
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Populations as Demes

v
» ; Migration

Ammerman and Cavalli-Sforza,

1984 The Neolithic Transition and the Genetics of Populations in Europe
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Diversion: Principal Components Analysis

» PCA is widely used in genetics, and helpful for visualisation
> It does not make any explicit modelling assumptions...

» BUT to interpret the output, you do!

‘Just’ rotating the data

Similar individuals tend to be close

Differences shared by many individuals tend to appear first
Each component describes a different direction of variation

If we are lucky, these correspond to real shared drift events
There is no unique interpretation of PCA (see McVean 2009)

See Lawson & Falush 2012 for details.
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Example

A) Historical Scenario
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B) Spatial Scenario

Populations
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Bottom up approaches

Start from a definition of population as ‘equivalent’ individuals

>

v

v

v

Within a population, individuals are randomly mating

Small samples of large populations: individuals are
approximately independent

Smaller populations: relationships must be accounted for
What does random mating mean for the data?

How are populations related?
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Top down vs Bottom
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» A) Generative approaches are best in theory, if we can make
the model match reality

» But, hard to use in practice - how to do inference?

» B) Bottom up approaches are approximate - might lose power

» C) But can be refined until they are close to the generating

process

13 /35



Ancestry Process - Ancestral Recombination Graph
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Structure model
Pritchard, Stephens & Donnelly 2000.
» Populations are large and well mixed
» SNPs D;; are unlinked*
» loci have some ancestral frequency

por ~ P(-)

» Population k has frequency py drifted from ancestral pg,**
pki ~ Dirichlet(po;)
» Individual i is in population k if Qj = 1, assigned by

11 P(Dilpq,.)
I

» Individuals in the same population are exchangeable with
respect to the SNP frequencies

* Solutions to this have been explored (computationally inconvenient)

** Valid approximation, originally derived by Wright
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Single SNP with populations
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Scaling STRUCTURE
STRUCTURE approach has a parameter for every SNP. But:
» Assuming that drift is weak, po; = E(D.;) and:

p(pur) ~ N (por, poi(1 — por))

v

Probability SNP / is shared not by chance:

Xiji = DiDj/pos + (1 — Diy)(1 — Djy) /(1 — por)

» Invoke the Central limit theorem:
L
2
Xij = ZXU/ ~ N(uij, o)
=1

This is the Coancestry Matrix
It is a sufficient statistic for p(D|Q)
u and o known and same for all individuals in a population

vV v.vY

Exchangability again!
Now lets think about linkage...

17/35



Ancestral Recombination Graph
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Hein, Schierup and Wiuf 'Gene Genealogies,

Variation and Evolution', OUP 2005
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ChromoPainter

Local genealogies
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ChromoPainter Hidden Markov Model
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FineSTRUCTURE model

» Each population has a characteristic rate P, of sharing
‘chunks’ with each other population

» Individuals are again exchangeable within populations

» Each recombination event has probability Py, = P.b/fp when
coming from an individual in population b into population a

» Dirichlet Process prior on the parameters P,.
» We integrate out P, leaving no population level parameters

» We can put a meaningful prior on the variation of P between
populations, and the number of populations

» In practice these details don’t matter much
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Example: Africa HGDP
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Ancient Genomes: fennoscandia.blogspot.co.uk

Ajv70 Gotland hunter gatherer

—<SHIHLO>

<OTHERS>—

fennoscandia.blogspot.co.uk/2013/11/ajv70-and-modern-european-variation-ii.html
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History of populations

Bottl K
» We have assumed that we observe ctfenec

individuals from real populations

» Populations differ by genetic drift T

» This works, even if there is historical |~/
migration, provided that the mixture
fractions are equal (exchangeability)

Migration

» Real individuals are related by a
combination of drift and admixture

Migration

» ‘Ancestral population graph’

QO

Populations
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Admixture

A) Discrete Admixture B) Continuous Admixture
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Admixture describes mixture without drift.
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Admixture

Density

Density

A) Non-admixed populations

B) Mixing parameter 0.1
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Continuous admixture is a problem.
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Admixture models

» STRUCTURE can infer ‘pure’ populations from admixed
populations

» Population assignment Q;x sums to 1 without requiring a
single element

> Interpretation: Observed individuals are mixtures of pure
populations, without drift

» How can we tell apart:

> Large drift, mixed by admixture?
» small drift without admixture?

» Solution: SNPs have fixed in some populations pjx = 0 (or 1)

» FineSTRUCTURE cannot use this description, as we've
integrated out these details
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Drift model

» See each drift event as independent

» Population assignment Q;x now takes any
value

» '‘Amount’ of each drift event retained by
individual /

» Reconstructs the coancestry matrix

» Requires a strong prior to obtain a unique
solution

Time in the past

Present

Pop A

Pop AB1

op B1

Drift Components
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Coancestry
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Projects

» Siberian cold adaptation (Alexia & Toomas, in review)

» GlobeTrotter (Hellenthal et al: very accurate admixture dating
using ChromoPainter, to appear in Science)

» Peopling of the British Isles (in review)

» UK10K, ALSPAC (4K whole genomes, use in genome-wide
association studies)

» Highly recombining asexuals (fungus, bacteria)
» Model improvements:

> Relatedness
Admixture/history of populations

Complete recoding for usability
Efficient computation (fastFineSTRUCTURE)

vV vVvYyy
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See www.paintmychromosomes.com

» Lawson, Hellenthal, Myers & Falush, ‘Inference of population
structure using dense haplotype data’, 2012. PLoS Genetics.

> Lawson & Falush ‘Similarity matrices and clustering algorithms for
population identifcation using genetic data’, 2012. ARHG.

> Lawson 2014 ‘Populations in statistical genetics modelling and
inference’, in ‘Populations in the Human Sciences’, Eds. Kreager,
Capelli, Ulijaszek & Winney.

Garrett Hellenthal Simon Myers Daniel Falush
UcCL Oxford Max Planck, Leipzig
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Relatedness

What if individuals within a population are related?

==

30

20

20
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Relatedness

et
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Parents

Cousins

v

Samples are cousins

v

This is very easy to tell from their tract length distribution

v

Excluding these tracts, we sample from the population
distribution of chunks

v

Multiple ordering model in progress
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Choice of measure

3k years |
| 1k years Ekyears,—l—|
A Bi B2 C1 G2
IBS Measure COV Measure ESU Measure
ranue (0.832, 0.843 range = (-5246 , 1 3766 ) 204 range = (-0.0339, 0.0201) 2,04
331 333
257 261
1.83 4 1.89
11+ 1.18 1
0.36 0.46
-0.37 4 -0.26
-1.11+ -0.97
-1.84 -1.69
-2.58 -2.4+
-332 -+ -312-+-
FHS Measure IBD Measure CPL Measure
range = (366346, 434550 a0 rnge = 26250, 163576) range= (1774, 2151) .
3.6 378
281 3.04
2,01+ 234
1224 1.56
0.43 0.82
-0.37 0.08
-1.16 -0.65
-1.95 -1.391
-2.751 -2.134
-354 - k e -2.87-H
Bl 51B2




Choice of measure

Between / Within Population Distance
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