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Overview

I Some views of ‘population’

I A statistical definition

I Generative approaches

I Inference from sparse weakly linked data (STRUCTURE)

I Inference from dense linked data (fineSTRUCTURE)

I Selected results
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What is a population in general?

Like species, populations are elusive objects.

I Definitions are a function of knowledge and application

I Some definitions - Need not be biologically meaningful

I Example: Individuals found on same island

I Example: Sample location due to clustered sampling
procedure

I Example: Disease status for case/control studies

I In statistics: we generalize from samples to a population

I Share: individuals are equivalent under some measure

But do populations really exist? Does it matter if they are useful?
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Diversion: some fuzzy definitions of species

Are definitions of species analogous to definitions of populations?

I Typological species: Organisms that share the same set of
phenotypes

I Ecological species: Organisms that compete for the same
environment

I Phylogenetic species: Organisms with a single common
ancestor

I Biological species: Organisms that can share DNA via
sexual reproduction

(Western/Eastern) Meadow Lark: http://evolution.berkeley.edu
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What is a population? Motivation from genetics

We are interested in non-subjective definitions of populations.

I Individuals have equivalent genetic ancestry

I This depends on the data available ...

I ... and the model used

I Knowledge driven definition

I Requires defining equivalent!
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The birds and the bees (vs the plants and bacteria)

I Sex dramatically affects genetic transmission

I Different population concept required
I Sexual species

I Generalise the Biological Species concept
I Random mating within a population
I Try to detect deviations from random mating to identify

populations

I Asexual species
I Generalise the Ecological Species concept
I Neutral competition within a population
I Try to detect deviations from neutrality to identify populations
I Not examined further in this talk
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Top down approaches

Start from a theoretical generative model of reproduction.
For example:

I Individuals move between populations via migration

I Discrete generations (for simplicity)

I Each generation randomly chooses parent(s) within a
population

Population structure: individuals migrate between populations but
mate randomly within each
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Ancestry Process

Time

Present
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Populations as Demes

Demes

Migration

Ammerman and Cavalli-Sforza, 1984 The Neolithic Transition and the Genetics of Populations in Europe.
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Diversion: Principal Components Analysis

I PCA is widely used in genetics, and helpful for visualisation

I It does not make any explicit modelling assumptions...
I BUT to interpret the output, you do!

I ‘Just’ rotating the data
I Similar individuals tend to be close
I Differences shared by many individuals tend to appear first
I Each component describes a different direction of variation
I If we are lucky, these correspond to real shared drift events
I There is no unique interpretation of PCA (see McVean 2009)

See Lawson & Falush 2012 for details.
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Bottom up approaches

Start from a definition of population as ‘equivalent’ individuals

I Within a population, individuals are randomly mating

I Small samples of large populations: individuals are
approximately independent

I Smaller populations: relationships must be accounted for

I What does random mating mean for the data?

I How are populations related?
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Top down vs Bottom up
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C) Full Statistical Model

I A) Generative approaches are best in theory, if we can make
the model match reality

I But, hard to use in practice - how to do inference?

I B) Bottom up approaches are approximate - might lose power

I C) But can be refined until they are close to the generating
process
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Ancestry Process - Ancestral Recombination Graph

Time

Present

• Take limit N →∞ with
N/T constant
• Recombination rate ρ
(for tract length)
• Ignore unbranching
ancestors
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Structure model
Pritchard, Stephens & Donnelly 2000.

I Populations are large and well mixed

I SNPs Dil are unlinked*

I loci have some ancestral frequency

p0l ∼ P(·)

I Population k has frequency pkl drifted from ancestral p0l**

pkl ∼ Dirichlet(p0l)

I Individual i is in population k if Qik = 1, assigned by∏
l

P(Dil |pQik ,l)

I Individuals in the same population are exchangeable with
respect to the SNP frequencies

* Solutions to this have been explored (computationally inconvenient)

** Valid approximation, originally derived by Wright
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Single SNP with populations

Ancestral
Population

Present populations
 'Independent drift' of SNP distribution

Mutation

     Some SNP distribution
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Scaling STRUCTURE
STRUCTURE approach has a parameter for every SNP. But:

I Assuming that drift is weak, p0l = E (D·l) and:

p(pkl) ∼ N (p0l , p0l(1− p0l))

I Probability SNP l is shared not by chance:

Xijl = DilDjl/p0l + (1− Dil)(1− Djl)/(1− p0l)

I Invoke the Central limit theorem:

Xij =
L∑

l=1

Xijl ∼ N(µij , σ
2
ij)

I This is the Coancestry Matrix

I It is a sufficient statistic for p(D|Q)

I µ and σ known and same for all individuals in a population

I Exchangability again!

Now lets think about linkage...
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Ancestral Recombination Graph

Time 
towards 
present

Hein, Schierup and Wiuf  'Gene Genealogies, 
Variation and Evolution', OUP 2005
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ChromoPainter
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ChromoPainter Hidden Markov Model
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FineSTRUCTURE model

I Each population has a characteristic rate Pab of sharing
‘chunks’ with each other population

I Individuals are again exchangeable within populations

I Each recombination event has probability P̂ab = Pab/n̂b when
coming from an individual in population b into population a

I Dirichlet Process prior on the parameters Pa·

I We integrate out P, leaving no population level parameters

I We can put a meaningful prior on the variation of P between
populations, and the number of populations

I In practice these details don’t matter much
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Example: Africa HGDP
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Ancient Genomes: fennoscandia.blogspot.co.uk
Ajv70 Gotland hunter gatherer

fennoscandia.blogspot.co.uk/2013/11/ajv70-and-modern-european-variation-ii.html

444k SNPs
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History of populations

I We have assumed that we observe
individuals from real populations

I Populations differ by genetic drift

I This works, even if there is historical
migration, provided that the mixture
fractions are equal (exchangeability)

I Real individuals are related by a
combination of drift and admixture

I ‘Ancestral population graph’

Time

Migration

Bottleneck

Split

Split

Migration

Populations
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Admixture
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Admixture describes mixture without drift.
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Admixture
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Continuous admixture is a problem.
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Admixture models

I STRUCTURE can infer ‘pure’ populations from admixed
populations

I Population assignment Qik sums to 1 without requiring a
single element

I Interpretation: Observed individuals are mixtures of pure
populations, without drift

I How can we tell apart:
I Large drift, mixed by admixture?
I small drift without admixture?

I Solution: SNPs have fixed in some populations pik = 0 (or 1)

I FineSTRUCTURE cannot use this description, as we’ve
integrated out these details
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Drift model

I See each drift event as independent

I Population assignment Qik now takes any
value

I ‘Amount’ of each drift event retained by
individual i

I Reconstructs the coancestry matrix

I Requires a strong prior to obtain a unique
solution

Drift Components

Pop AB1
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Projects

I Siberian cold adaptation (Alexia & Toomas, in review)

I GlobeTrotter (Hellenthal et al: very accurate admixture dating
using ChromoPainter, to appear in Science)

I Peopling of the British Isles (in review)

I UK10K, ALSPAC (4K whole genomes, use in genome-wide
association studies)

I Highly recombining asexuals (fungus, bacteria)
I Model improvements:

I Relatedness
I Admixture/history of populations
I Complete recoding for usability
I Efficient computation (fastFineSTRUCTURE)
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See www.paintmychromosomes.com

I Lawson, Hellenthal, Myers & Falush, ‘Inference of population
structure using dense haplotype data’, 2012. PLoS Genetics.

I Lawson & Falush ‘Similarity matrices and clustering algorithms for
population identifcation using genetic data’, 2012. ARHG.

I Lawson 2014 ‘Populations in statistical genetics modelling and
inference’, in ‘Populations in the Human Sciences’, Eds. Kreager,
Capelli, Ulijaszek & Winney.
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Relatedness

What if individuals within a population are related?
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Relatedness

Relatedness
IBD

Grandparents

Parents

Cousins

I Samples are cousins

I This is very easy to tell from their tract length distribution

I Excluding these tracts, we sample from the population
distribution of chunks

I Multiple ordering model in progress
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Choice of measure
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Choice of measure

Number of regions
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