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Background

» We will ‘soon’ be able to sequence all the genomes in the
world for less than the cost of the logistics of obtaining or
processing them

» Current project to sequence all 50K Faroe Islanders

» What would we do with ‘all the genomes in the world’?

» Can we run appropriate models on them?

» More modest goal: scalable framework for statistical
methodology

» This includes MCMC, which | will use here

» But can be replaced by optimisation for really scary volumes
of data
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Motivation

For Large datasets

> “Statistics doesn’t work” — estimates get worse as we get
more data! (for linear compute)

» e.g. MCMC
Simple analytics can extract many useful features
» e.g. K-medians clustering, etc

v

v

Informative in practice - and still hard to get working!

v

Exploit averaging over lots of data

v

But many interesting quantities are subtle...

v

or local, so we only have a small amount of data about them

v

Always a place for models closer matching reality
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Model of interest: FineSTRUCTURE

Clustering @ with associated uncertainty from SNP data D

>

>

>

The N Individuals are highly structured (Populations)
The L SNPs are complexly correlated

D|S describes individuals with a Hidden Markov Model with
each other individual as the hidden state

S; is the vector of expected times each individual is
transitioned to in the HMM

MCMC inference for Q using genetics model S|Q

S|Q is approximately multi-variate normal with structured
covariance

Problem: S is O(LN?) to evaluate
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Similarity

p(D|S)p(S]1Q)p(Q)

Data Similarity Structure
N D NS N Q
L N K
» Compare N items about which we have a large amount of
data D (trivial extension: to M = O(N) other items).
» Similarity S(/,/) is computationally costly to evaluate
» S structured by a model @
» i.e. Similarity model p(D|S) separates the data D from the

structure model p(S|Q)

> If rows of @ sum to 1 this is a mixture model

> if only 1 element is non-zero it is a partitioning

6
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Random or convenience filtering

» See 'big data'! as better sampling of data
» Why not throw away elements from D?

» Convenience sampling - what can we measure? ='data’
» Systematic sampling - retain every n-th data point
» Simple random sampling - retain fraction p

» Stratified sampling

> etc

> For example:

» Use ' < L
» Use NV < N

» Can fix N and L’ to fix computational cost

1: Big data: any data that can't be processed in memory on a single high spec computer
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Emulated Likelihood Models (ELMs)
Fundamental idea: Replace p(D|S,0) in

p(DIS,0)p(0)p(S|Q, ¢)p(Q, ®)

using S* computed and St emulated similarities, s.t. S = S*U ST:

B(DIS.0) = p(DIS*US',0) = / p(D]S*US!,0,0)p(ST|5*, v)dy

v

Sjj is costly to compute, and needed for S|Q

v

But are highly structured (e.g. clusters)
» So can emulate Sj rather than computing

v

Choose S* to be approximately sufficient for p(D|S, 0)

v

Carefully downweight emulated data

v

Weights are only modification to S|Q
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The oracle

Which NT elements S* of S should we evaluate?
Natural solution using oracle knowledge of the true S.

» Use a loss function £(S*)
> Seek argming.y£(S*(T))
» Choices for £ might be:

» KL divergence between the true and the emulated posterior
> A loss based on model usage (e.g. is the clustering correct?
Control the false positive rate, etc)

» Choose T based on acceptable loss



Building blocks of a real Emulated Likelihood Model

The oracle is too costly. We instead must:

» lteratively choose the next S;; to add to §*

v

From a limited set produced by a restriction operator R(S*)

Construct an estimator £ for £

v

v

Decide on the next point to evaluate using
argming, [ (ﬁ(S* U 5,'j)|5*>

» We can consider different histories to evaluate performance
» Stopping rule: convergence of £

£ can be implicit from R, if it returns points ordered by E(ﬁ)
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The emulator

‘Machine learning’ emulator with the usual caveats:

v

Rarely optimal, rarely unbiased

v

Prediction error estimated using online cross validation

v

Respects computational constraints:
» L>> N: Consider O(N? + LN) algorithms
» N> L: Consider O(LN) algorithms

» Massive data: Consider O(LN® + N) algorithms with o < 1.

v

Yet ... Low rank similarity matrices can be nearly losslessly
reconstructed*®

*Candes & Plan ‘Matrix completion with noise’, Proc. |IEEE, 2010
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Fast finestructure - outline
Emulator:

Decision model
parameters

[N.L]

Thinning model ~ Simple model Emulator model Empirical
Parameters parameters parameters Bayes

S becomes the data for inferring Q:

[P(DIS.8)] p(SIQ. $)p(Q. 9)
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Fast finestructure - decision and emulation

» Decision R: Choose item to evaluate if
using the point most distant to all am

evaluated points LN
> We are evaluating S* in entire rows ' > >\
1 ~ N\

» Emulation: Predict S.JE.: mixture model \ >\
.?;" = MM(S},), and regression on ) .0\‘
5 = LM(S;, S) o> 87

gy | il
> Implicit loss function L: ‘@ ‘_
» Minimise the maximum prediction error /
» Finds outliers and clusters &

» S* form convex hull of S
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Fast finestructure - in practice

» Computation of S costs O(N2L' + NT2L) < O(N?L)

» Current datasets: L = 10,000,000, N = 5000, L' = 10,000
T = 100, predicted saving ratio is 100

We can save up to factor 10000 by reducing T, the cost of the linearised
model on the reduced dataset. L will not grow beyond this, but N will -
can introduce an emulation step for S’
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Fast finestructure - Parallel MCMC algorithm

A parallel tempering algorithm for when MCMC parallelises poorly
» Evaluate the unlinked model S’
> Master node: perform MCMC clustering to find (A?t using St,
when there are t rows S} computed
» Worker nodes compute S in the order chosen by the master

» Stopping rule: posterior distribution of Q converges
» No new information added when increasing t

P (Or if the MCMC is slower than the evaluation of S, sometime afterwards)
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Culmulative loss
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Emulated Likelihood Models for general Bayesian problems

General emulation for big (but not so big) problems

p(DIS.6) = [ p(DIS*UST,0)p(S|S". 6. v)d

» i.e. Can use 0 to emulate ST(0) - e.g. regression in (S, 0)
space
» Gaussian Process for 5;(6) is a natural choice
» If ST is an unbiased estimator of S* this is a pseudo-marginal
approach (and hence targeting the correct posterior)
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Discussion

v

Goal: Approximate answers to the right questions using exact
answers to the wrong questions

v

Machine learning is increasingly important for large datasets

v

Statistical modelling still has a place
Proposed the Emulated Likelihood Model:
» Full statistical modelling
» Machine learning algorithms used for the calculation
» Statistical estimation of parameters is retained but
approximated

v
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