
Statistical frameworks for detecting tunnelling in
cyber defence using big data

Daniel John Lawson†,
Patrick Rubin-Delanchy

Heilbronn Institute
School of Mathematics

University of Bristol
Bristol, UK

†Email: dan.lawson@bristol.ac.uk

Nicholas Heard
and Niall Adams

Department of Mathematics
Imperial College London

London, UK
and

Heilbronn Institute, University of Bristol

Abstract—How can we effectively use costly statistical models
in the defence of large computer networks? Statistical modelling
and machine learning are potentially powerful ways to detect
threats as they do not require a human level understanding
of the attack. However, they are rarely applied in practice as
the computational cost of deploying all but the most simple
algorithms can become implausibly large. Here we describe a
multilevel approach to statistical modelling in which descriptions
of the normal running of the network are built up from the lower
netflow level to higher-level sessions and graph-level descriptions.
Statistical models at low levels are most capable of detecting the
unusual activity that might be a result of malicious software
or hackers, but are too costly to run over the whole network.
We develop a fast algorithm to identify tunnelling behaviour at
the session level using ‘telescoping’ of sessions containing other
sessions, and demonstrate that this allows a statistical model to
be run at scale on netflow timings. The method is applied to a
toy dataset using an artificial ‘attack’.

I. INTRODUCTION

It is frequently the case that malicious activity on a
computer network cannot be identified with certainty. For
example, this can be because we do not have reliable signature
for malware or because we cannot perform packet inspection
so as not to intrude on the privacy of users. In the face
of such uncertainty, we need to build up statistical evidence
for malicious activity from a variety of sources. Fine-grained
statistical models for how the network should be behaving
would be helpful, but these are computationally expensive and
cannot be run on all edges of the network simultaneously.
Here we consider a ‘big data’ modelling strategy that allows
these tools to be used, by deciding whether to run them based
on simpler models. We give an illustration on artificial attack
data showing that combining models across levels can detect
a malicious attack.

To illustrate the value of statistical modelling, we consider
the problem of detecting malicious activity on a network using
network ‘flows’ [1] (netflow). This is a hard and important
computational problem in cyber defence [2]. Specifically,
we consider detecting tunnelling [3], [4] in the case where
the attacker has obtained legitimate credentials. Because an
attacker may be detectable if they do not follow existing
connections, they must create tunnels from their entry point to
the target. Legitimate users are unlikely to need to do this, so

the attack can still be detected. This is a very difficult statistical
problem, requiring careful models for timing information. The
key observation is that network activity is ‘telescoped’ [5], that
is, activity on outgoing edges of a node is entirely contained
within incoming activity. Further, the timing of such netflow
events are correlated. Finding these correlations in principle
requires examining all edges with a complex statistical model.
This computation is, in general, infeasible.

To address the issue of computational complexity, we
propose a framework in which high level data summaries
are used to identify a limited number of candidate edges.
This ‘multilevel modelling’ approach (e.g. [6]) makes several
levels of modelling approximation, with each level promoting
the most promising candidates for further analysis to the
level below. A full computation at the netflow level is only
performed for a heavily filtered dataset.

A key aspect to the use of multilevel modelling is how
information between levels interacts. If levels are strongly
correlated then there is no need to perform detailed modelling
as summarised high level data is sufficient. Conversely, if the
correlation between levels is weak, the high level summaries
are not useful. To overcome this erosion of statistical power,
transitions between levels are constructed to be ‘conservative’,
that is, we only filter [7] information that is certainly not of
interest. We move beyond filtering by exploiting an ‘interest-
ingness ordering’ of the remaining data.

We demonstrate our approach on computer traffic generated
by the Imperial College network. Imperial College London is
a leading university in the UK and its associated computer
network contains 345098 IPs and hundreds of millions of
edges. To demonstrate the value of the approach, we have
created a telescoping session by making a sequence of suc-
cessive SSH sessions, chosen to resemble an infiltration path
([8] describes a real-world case). We have demonstrated that
this tunnel can be detected with our approach. Further, the
described methodology can be used with other models.

II. MODELLING

A. Models for cyber security

Figure 1a describes the relationship between the modelling
levels we use for different scales of abstraction.



Graph

Session Graph

Sessions

Raw netflow Netflow model Time

a) b)
Edge A­B
Edge B­C

Edge C­DA
ct

iv
it

y

Fig. 1. a) Conceptual relationship between the conceptual levels in our
framework. b) Schematic of telescoping sesssions in a 4-chain consisting of
the four nodes A-B-C-D, and hence three edges.

1) Graph level: We conceptualise the graph of which nodes
communicate in the network. As is routine in network analysis,
we use the network structure to limit the space of computations
we consider by only performing computations on edges that
share a node. The graph level can be modelled for interesting
behaviour (e.g. [9]) but we do not pursue this here.

2) Session level: Communications in practice are highly
bursty, i.e. an edge is much more likely to see traffic when it
has recently experienced traffic. There are many reasons for
this, with the most important being the presence of a user.
Users create netflow by use of their system, and create changes
in the automated behaviour of their computers by running
processes in the background. User-generated activity manifests
differently to automated computer activity, which often occurs
regularly without intervention. Examples are DNS (Domain
Name System) traffic, communication between servers for
idle services, refreshing website content, etc. For effective
correlation analysis, it is extremely important to model whether
traffic is directly user generated. This view of sessions extracts
out a) sets of flows that will be modelled together (each
session), and b) flows that are not of modelling interest.

An additional complication is that router and protocol
features split raw netflow events in an unpredictable manner.
See [10] for more details of how this can be modelled. To
address this simply, we use ‘time-out’ sessionization, defining
netflow records on the same edge as part of the same session
if they occur within T = 125 seconds of each other. This is
arbitrary and should be modelled in real applications.

3) Telescoping Session Graph level: Tunnelling directly
causes telescoping of sessions. Telescoping here means that an
‘incoming’ session to a node B entirely contains an ‘outgoing’
session (Figure 1b). Finding telescoping sessions has a simple
algorithmic solution. However, we must also account for the
possibility that sessions contain each other by chance.

We can form a graph of all telescoping [5] and hence
interesting sessions. This will be a massive simplification of
the original graph. Whilst there will be some legitimate reasons
for users to tunnel through a single machine, these are typically
constructed by the network administration. Any other chains
in the telescoping session graph are therefore of interest.

Let X be a session, described by a source node N1(X), a
destination node N2(X), a start time Ts(X) and an end time
Tf (X). The duration of a session is D(X) = Tf (X)−Ts(X).

Definition 1: Telescoping Sessions. Session i is ‘telescop-
ing’ session j if:

1) The start time of j is ‘shortly after’ the start time of
i: Ts(Xi)− a1 < Ts(Xj) < Ts(Xi) + a2.

2) The end time of j is ‘shortly before’ the end time of
i: Tf (Xi)− a3 < Tf (Xj) < Tf (Xi) + a4.

3) Node B is the destination of session i, and the source
of session j: N2(Xi) = B and N1(Xj) = B.

The tolerances a can depend on X . We set a1 = 0, a2 =
a3 =∞ to retain all telescoping sessions however different in
size, and a4 = 4.5 seconds based on the empirical reliability
of timings between our routers.

Algorithm 1: Find all telescoping sessions for node B.
Sort all events by ‘effective start time’, Ts(X) + a1(X) for
incoming sessions (N2(Xi) = B) and Ts(X) for outgoing
sessions (N1(Xi) = B). Then iterate over sessions i:

1) If N2(Xi) = B (incoming session), store Xi with an
expiry time Ei = Ts(Xi) + a2.

2) Else N1(Xi) = B (outgoing session):
a) Expire all incoming sessions j for which

Ej > Ts(Xi), i.e. which have passed their
expiry time.

b) For all remaining sessions j check if
Tf (Xj) − a3 < Tf (Xi) < Tf (Xj) + a4. If
so, record the session pair.

This algorithm is linear in the number of sessions and
quadratic in the number of unexpired incoming sessions active
at a given time. This is limited to the number of IP addresses
that are making overlapping incoming connections, and is in
practice much smaller than the indegree of a node.

Further, we can easily compute all L-chains (consecutively
telescoping sessions involving L nodes; Figure 1b shows a 4-
chain) and L-paths (nodes involved in L-chains) in the dataset.
Firstly, assign each session an ID and represent a telescoping
session as a pair of session IDs. Finding telescoping sessions of
length L only requres checking, for all chains of length L−1,
whether final session k is a penultimate session in another
chain. We iterate over L from 3 upwards until there are no
chains remaining. Because only chains containing node B can
chain with nodes ending in node B, relatively few comparisons
are required. Finally, we construct L-paths by considering all
unique chains of length L.

We want to focus attention on the sessions most likely to
be tunnelling. For this, each 3-path on edges l,m is scored by
the probability plm that the telescoping occurred by chance.
To properly calibrate this requires an understanding of the
seasonal nature of each edge, and the correlation between
events. However, we can obtain a cost efficient estimate by
a) resampling the session durations with replacement, and
b) assuming a uniform distribution on the start times. This
leads to a probability of each session pair telescoping of
fij = (D(Xi) + a1 + a4 −D(Xj))/T for incoming sessions
i and outgoing sessions j, where T is the observation time
window. Because we resample with replacement, a randomly
chosen session telescopes with probability

flm =
∑
i∈l

∑
j∈m

fij/MlMj .

Finally, we assume independence between each telescoping
pair, which is approximately true if sessions are short relative



to the overall time. Under these assumptions the number of
observed nesting sessions nlm is a binomial random variable

nlm ∼ Bin(MlMm, flm).

Therefore plm = p(nlm ≥ nobslm ) is a p-value for the probability
that the sessions telescope by chance. plm can only take finitely
many values, and so it is a discrete random variable. However,
in this case p(plm ≤ α) ≤ α meaning that the p-value is
conservative.

Although it is possible to compute the probability of an L-
chain similarly, we simply use Fisher’s method to combine p-
values. We note that since long chains are of intrinsic interest,
it is not necessary to compare between length classes.

4) Netflow level: Modelling at the netflow level is ex-
tremely difficult. Every protocol behaves differently and should
be treated accordingly. Statistical analysis will be most pow-
erful for the netflow events directly, but for convenience we
follow many authors (e.g. [2]) in binning activity over time. We
consider the total number of flows to give the observed number
of flows Fit per minute t on edge i. We then consider the log-
transformed variable xit = log(Fit+1) as a standardized time
series. The ‘netflow level score’ for a pair of edges l and m is

slm = cor(xit, xjt),

over a period identified by the session algorithm as of interest.
This illustrative score is sufficient for our example and is a
placeholder for a more complex statistical model.

B. Big Data Statistics

The key statistical challenge is to relate the session features
to the netflow level. Although each score should, in principle,
be positively correlated with ‘interestingness’ at the netflow
level, it is far from clear how to combine the scores in order
to make the best prediction about the value to be gained from
performing netflow modelling. In [11] we discuss how scores
can be mapped across levels, and the benefits this can lead to.
In [12], we discuss some general principles applicable to the
cyber problem. Here we focus on making a working framework
without quantification of how slm and plm relate. A negative
correlation (present here) implies that the smallest plm and the
highest scores slm are interesting.

The session level can be constructed in a single pass
of the data. The 3-paths from the telescoping session graph
can be run efficiently in a Hadoop streaming environment
(hadoop.apache.org) using the MapReduce [13] framework:
keys are created in the map phase by duplicating each session
X to produce a key:value pair N1(X) : X and N2(X) : X .
They are then sorted using a ‘secondary sort’ and then the
reducer performs Algorithm 1. The telescoping p-values plm
can be computed in the same pass with a modest memory over-
head. L-paths are then constructed iteratively; a MapReduce
algorithm could also be developed for this problem.

In a ‘Big Data statistics’ framework containing too many
telescoping 3-paths, we could find successively more inter-
esting telescoping sessions. The parameters ai can be set to
consider only very ‘tightly’ telescoping sessions. We can then
iteratively repeat the analysis with less restrictive conditions.
This approach first examines sessions of similar duration which
are more likely to be tunnels. We could additionally make this

T4

N5

T1
T3

N6

T2

N7
N8

N9

N10N11

N12

N13

N14

N15

N16

N17

N18

N19
N20

N21 N22
N23

N24

N25

N26

N27

N28

N29

N30

N31

N32
N33

N34

N35

N36

N37

N38

N39

N40 N41

N42

N43

N44

N45
N46

N47

N48

N49

N50

N51

N52

N53

N54

N55

N56

N57

N58

N59

N60

N61

N62

N63

N64

N65

N66

N67

N68

N69
N70

N71

N72

N73

N74

N75

N76N77

N78

N79

N80

N81 N82

N83

N84

N85

N86

N87

a) Netflow graph: 2 hours, all ports

T1

T2

N5

T3

T4

N6

N7

N8
N9

N10
N11

N12

N13

N14

N15

N16

N17

N18

N19

N20

N21

N22

N23

N24

N25

N26

N27

N28

N29

N30

b) Chain graph

Fig. 2. Graph of netflow connections containing either N2 or N4 in Study
2, showing our inserted tunnel from T1-T2-T3-T4 in red and other nodes NX
in white. a) Netflow graph, containing the tunnelling event. b) Telescoping
session graph for 5-paths.

explicit by defining a ‘tightness score’ s(Xi, Xj) and run the
iterations to capture ranges of this score. This can quickly
obtain interesting results for promotion to the netflow level.

III. RESULTS

To test our approach, we generated an artificial ‘attack’ by
creating an unusual SSH tunnel, for which we had credentials.
From a home PC (T1) we used SSH to access a mathematics
server (T2) at Imperial college, onwards to a Bristol University
server (T3), and back to a machine at Imperial (T4). Activity
on T4 included installing the Google Chrome browser to
simulate events which change its behaviour, and streaming a
video to generate a correlated data stream along the tunnel, as
might be observed in data exfiltration. The Imperial College
netflow records were obtained for T2 and T4 for 48 hours
containing the event and we tried to identify a) the path and
b) the time of the tunnelling event.

In study 1, we examined the 6569 SSH netflow records
over 48 hours. Many of these records are failed port scanning
activity. Our telescoping algorithm finds two 4-paths in this
dataset. These are N6-T2-T3-T4 (p-value 0.0013) and T1-T2-
T3-T4 (p-value 0.00011). Because T2 is a busy server a session
overlapped by chance with our procedure, but as N6-T2 was
a busy edge it has a downweighted p-value relative to the true
path (by a factor of 10).

In study 2, we examine the 4698 netflow events of all
protocols and ports for a 2 hour window containing the true



13:36 13:48 14:00 14:12 14:24 14:36 14:48
0
5

10
15
20

lo
g(

F
lo

w
s)

a) Edge T1 − T2

Time

13:36 13:48 14:00 14:12 14:24 14:36 14:48

0
10

20

lo
g(

F
lo

w
s)

b) Edge T2 − T3

Time

13:36 13:48 14:00 14:12 14:24 14:36 14:48

0
10

20

lo
g(

F
lo

w
s)

c) Edge T3 − T4

Time

13:36 13:48 14:00 14:12 14:24 14:36 14:48

0
10

lo
g(

F
lo

w
s)

d) Edge T4 − X

Time

Install Chrome Stream video

Fig. 3. The path we inserted and was located by our algorithm shown as edge
activity (log number of flows per second) over time. a–c) have the inferred
times for the 4 telescoping sessions marked as vertical lines. d) shows the
top 4 outgoing edges from T4, ordered by correlation with edge T3–T4. The
black (highest) curve is Google which is also shown unlogged as a dashed line
(normalised). Two important actions were performed through the tunnel and
are marked in d); firstly, installing Google Chrome, and secondly, streaming
a Youtube video (from Google). Correlations are (0.91, 0.57, 0.44, 0.39) for
the black (Google), red, green and blue IPs respectively.

event, as shown in Figure 2a. There are 27 5-paths in this data,
giving the Telescoping session graph in Figure 2b. All 5-paths
contain the 2 SSH 4-paths found above and end with a variety
of servers. Much of this is background desktop activity such
as maintaining connections to websites in an active browser,
dropbox, and DNS.

Figure 3 shows this path in raw netflow events, as well
as telescoping of sessions. Our injected activity on N4 cannot
be easily determined from the session level data. However,
using the session level results as a prioritisation for the netflow
level modelling, we can identify what actions were taken using
the tunnel. Figure 3d shows that we have correctly identified
a Google IP (black line, correlation 0.96) involved in both
the behavioural change and the data streaming. There are no
other netflow events moving large volumes of data into T4
during our streaming video action. Stage 1 achieved a data
reduction of 100 but more importantly made the tunnelling
activity clear. Stage 2 informs about the activity occurring
during the tunnelling event.

IV. DISCUSSION

Finding anomalies in netflow data is a very difficult chal-
lenge, with modelling still in its infancy (e.g. [14]). This work
demonstrates that models do not have to scale intrinsically to
be used as part of modelling massive data sets. Further work
is required to refine the proposed models - both of session
overlap and netflow models - into deployable tools. However,
we emphasise that our framework permits the use of complex
statistical methodology (such as [15]).

Our algorithm for detecting ‘telescoping sessions’ has
linear cost in both the number of netflow records and nodes.
We provided an implementation that can be run on massive
data platforms such as MapReduce, and can in principle be
run in real time on streaming data. Further, the algorithm is
effective at finding SSH tunnelling which is helpful in the
defence of large networks.

We have described a two stage algorithm for performing a
statistical analysis on large volumes of netflow. This operates
by first using a fast O(N) filtering algorithm, designed to
discard data conservatively, in order to focus the computation
of a costly statistical model to the data of interest. This could
a) find the tunnelling event, b) give a probability of a true
‘attack’ compared to a chance event; and c) make statistical
inference about the activity performed during that tunnelling.

ACKNOWLEDGMENT

We gratefully acknowledge Imperial College ICT services
and Andy Thomas for assistance gathering the netflow data.

REFERENCES

[1] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An overview of ip flow-based intrusion detection,” Communication
Surveys & Tutorials, vol. 12, no. 3, pp. 343–356, 2010.

[2] J. Neil, C. Hash, A. Brugh, M. Fisk, and C. B. Storlie, “Scan statistics
for the online detection of locally anomalous subgraphs,” Technomet-
rics, vol. 55, no. 4, pp. 403–414, 2013.

[3] W. Ellens, P. Żuraniewski, A. Sperotto, H. Schotanus, M. Mandjes, and
E. Meeuwissen, “Flow-based detection of DNS tunnels,” in Emerging
Management Mechanisms for the Future Internet. Springer, 2013, pp.
124–135.

[4] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Detecting http
tunnels with statistical mechanisms,” in ICC’07. IEEE, 2007, pp.
6162–6168.

[5] H. Djidjev, G. Sandine, C. Storlie, and S. Vander Wiel, “Graph based
statistical analysis of network traffic,” in Proceedings of the Ninth
Workshop on Mining and Learning with Graphs, 2011.

[6] N. A. Heard, D. J. Weston, K. Platanioti, and D. J. Hand, “Bayesian
anomaly detection methods for social networks,” The Annals of Applied
Statistics, vol. 4, no. 2, pp. 645–662, 2010.

[7] A. Cuzzocrea, I.-Y. Song, and K. C. Davis, “Analytics over large-scale
multidimensional data: the big data revolution!” in Proceedings of the
ACM 14th international workshop on Data Warehousing and OLAP.
ACM, 2011, pp. 101–104.

[8] J. Neil, C. Storlie, C. Hash, and A. Brugh, “Statistical detection of
intruders within computer networks using scan statistics,” in Data
Analysis for Network Cyber-Security, Adams & Heard, 2014, 2014.

[9] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park, “Scan statistics
on enron graphs,” Computational & Mathematical Organization Theory,
vol. 11, no. 3, pp. 229–247, 2005.

[10] P. Rubin-Delanchy, D. J. Lawson, N. Heard, and N. Adams, “Three
views on netflow session,” 2014, Heilbronn Institute Technical Report.

[11] D. J. Lawson and N. M. Adams, “A general decision framework
for structuring computation using data directional scaling to process
massive similarity matrices,” arXiv preprint arXiv:1403.4054, 2014.

[12] N. Adams and D. J. Lawson, “An approximate framework for flexible
netflow screening,” 2014, Heilbronn Institute Technical Report.

[13] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[14] N. Adams and N. Heard, Data Analysis for Network Cyber-Security.
Imperial College Press, 2014.

[15] D. Bodenham and N. Adams, “Continuous monitoring of a computer
network using multivariate adaptive estimation,” in IEEE Data Mining
Workshops (ICDMW), Dec 2013, pp. 311–318.


