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Process models specified by non-linear dynamic differential equationscontain many parameters, which of-
ten must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining
data from multiple related experiments in a meaningful way, which permits more powerful inference than
treating each experiment as independent. The approach is illustrated with asimulation study and example
data from experiments replicating aspects of the human gut microbial ecosystem. A predictive model is
obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the
model to capture situations of interest that cannot easily be studied experimentally.
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1 Introduction

Many biological and physical systems can in theory be described by a well understood process, but the
process cannot be used directly in practical inference because parameters are inaccessible for direct mea-
surement. A ‘reductionist’ strategy for inference (Levi-Montalcini and Calissano, 2006) by measuring each
parameter in a separate experiment is often not feasible andignores interactions between parameters.

We consider parameter inference for a non-linear differential equation model describing multiple ex-
periments simultaneously. We will use a hierarchical Bayesian approach as it allows for combining data
from different sources whilst accounting for differences between them. Previous Bayesian approaches to
differential equation models include pharmacokinetic models (Gelman et al., 1996; Wakefield, 1996; Lunn
and Aarons, 1997; Mezzetti et al., 2003), and Human Immunodeficiency Virus (HIV) modelling (Putter
et al., 2002; Banks et al., 2005; Huang et al., 2006). These describe how a potentially large number of
individuals are described by the same process but with different parameters. Our methodology aims to
relate parameters between experiments that are limited in data. Parts of the underlying processes are as-
sumed identical across experiments, whilst other aspects of the underlying processes are allowed to vary.
Useful inference requires both knowledge of the process anda statistical model to relate the experimental
data. Model parameters are not uniquely identifiable for each experiment individually but when multiple
experiments are linked using a hierarchical statistical model, they can be identified.

We apply this approach to an ecological microbiology model with which we ultimately wish to under-
stand and control bacterial populations inside the human gut. These are generally inaccessible for direct
measurement. The gut has strong spatial structure, many nutrients are absorbed into the gut wall and
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are therefore unavailable to bacteria, and flow rates are strongly time dependent (Louis et al., 2007). In
contrast, thein-vitro experiments that provide our data are designed to have limited spatial structure, nonab-
sorbent walls and simple continuous flow. The parameterisedbiological model obtained from such studies,
with quantified uncertainty, can then be used to predict how bacteria might behave under conditions that
more closely resemble the human gut. Of specific interest to us is whether the bacterial dynamics change
when absorption of nutrients and metabolic products is taken into account. This can not be investigated
easily by experimentsin vitro, but is straightforward to build into the statistical modelwhich can then be
used to predict how bacterial behaviour is influenced.

We will examine the qualitative benefits of a Bayesian approach using Markov-Chain Monte Carlo
(MCMC) (Gamerman, 1997) techniques using simulated data, followed by experimental data. With lim-
ited data the posterior distribution is ‘large’ and complexmeaning that MCMC algorithms converge very
slowly. However, simultaneous inference restricts the posterior distribution size and simplifies its shape,
making it feasible to explore the posterior parameter space. In Section 2 we discuss an ecological mod-
elling problem for microbiology data to motivate the method. In Section 3 we define the statistical model,
which we explore using a simulation study in Section 4. We then apply the method to the microbiology
data in Section 5 before our concluding remarks in Section 6.

2 Ecological gut microbiology problem

A diverse range of microbes live in the human colon by fermenting nutrients (called substrates) that pass
through our stomach without being digested. Two types of substrate are of interest to us: starch and
non-starch polysaccharides (NSP). Starch is easily fermented by the bacteria, whereas NSP, consisting
mainly of fibre, is harder to ferment. As a consequence, growth on starch is of the order 10 times faster
than growth on NSP, and essentially all starch is used by the bacteria, whilst some NSP is not fermented
and passes out of the colon in feces. Bacteria produce short-chain fatty acids (SCFA) as a by-product
of fermentation. The majority of the SCFA will be absorbed bythe human host, but can also be further
processed by other bacterial types. SCFA concentrations are of primary concern for health, as each has
unique health implications.

For simplicity, the colon can be divided into two main sections. The first section is closest to the
stomach, hence plenty of starch and NSP are available to the bacteria allowing high fermentation rates and
high acidity (pH of approximately 5.5). In the second section of the colon, closer to the rectum, starch
supply is reduced although NSP supply may still be high. Fermentation activity is lower and the pH will
tend more towards neutral (pH of approximately 6.5). Some bacteria are more tolerant of high acidity than
others, and as a consequence bacterial composition will vary depending on local conditions. For more
details, see e.g. Cummings (1997).

2.1 Experimental system

The results of Walker et al. (2005) describe an experimentalsystem using human fecal matter as a seed
for a ‘realistic’ bacterial community, which is placed intoa fermentor vessel and fed on a continuous
supply of substrates with consistency chosen to represent many nutrients available in the human colon. For
inference purposes, the substrates are combined into starch and NSP. This experimental set up represents
a simplification of the human colon as characteristics such as spatial structure, absorption of nutrients and
products, and fluctuations in flow, are not considered. A stirring mechanism ensures that the contents of
the vessel are well-mixed, and the material that leaves the fermentor via an overflow outlet is therefore
assumed to be representative of the vessel contents. The bacteria and SCFA are measured from samples
taken from the outlet. Substrate input is known but is not measured in the output. The pH in the vessel is
controlled by the operator and is held constant at either pH 5.5 (representing the first section of the colon)
or pH 6.5 (representing the later section of the colon). Details of how our data were extracted from (Walker
et al., 2005) are given in Web Appendix A.
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2.2 Mathematical model

Modelling approaches for microbial systems range from simple differential equation models (Wilkinson,
1998; Coleman et al., 1996) to spatially explicit individual based simulations (Kreft et al., 1998; Beretta
and Kuang, 2000). As the simplest relevant model, we use a differential equation model for bacterial
growth and competition at the level of functional groups. Our mathematical model is an abstraction of
the commonly used experimental fermentor system describedin Section 2.1. We consider a single well-
mixed compartment, although extension to multiple compartments is trivial. The input contains substrates
which are converted to bacterial mass, waste, and a number ofSCFA. Some bacterial strains are capable of
gaining extra energy from SCFA. Examples are shown in Fig. 1,which are used in Sections 4 and 5.

Bacteria belonging to groupi are associated with a substratej at concentrationBij(t), and we ob-
serve the total concentrationBi(t) =

∑

j Bij(t). It is assumed that bacterial groups are well mixed
between substratesj, such thatBij is proportional to the concentrationsSj(t). Growth is modelled using
Michaelis-Menten kinetics (Wilkinson, 1998), such that substrate must be first captured by bacteria, and
then processed at a finite rate. At high substrate levels, growth becomes limited to a maximum rateGS

ij .
At low substrate levels, growth rate is proportional to the amount of substrate according toSj(t)G

S
ij/KS

i ,
whereKS

i is the Michaelis-Menten factor defining the substrate levelfor which the growth rate is half
the maximum. For every unit of bacterial growth on substrate, an amountES

ij of substrate is used; this is
therefore an ‘inefficiency’ of conversion.

SCFA of typek is produced by some strains of bacteria at a rateOik for every unit of bacterial growth.
Some bacteria can utilise SCFA, and this is modelled according to Michaelis-Menten dynamics with maxi-
mum rateGA

ik (referred to as utilisation of SCFA) and Michaelis-Menten factorKA
i . The growth on SCFA

is proportional to the growth already achieved on substrate, and occurs at inefficiencyEA
ik. In models of

the human gut, SCFAk is absorbed at a rateRkAk(t), but experimental fermentors haveRk = 0. Flow
through the vessel (or compartment) occurs at a specified andknown rateF (t) = F . Substratej and SCFA
k flow into the fermentor at known rates ofFS0

j andFA0
k respectively. Bacteriai, Substratej and SCFA

k leave the fermentor at a rate ofFBi(t), FSj(t) andFAk(t) respectively.

The initial values of the system are known making this an initial value problem. Our assumptions
directly relate to the widely used fermentor experimental setup, and are in accord with those frequently
made in bacterial gut modelling. Other possible bacterial behaviours are reviewed by Wilkinson (1998).
Web Appendix B contains a table of used terms.

This leads to the following system of equations:

dBi(t)

dt
= −FBi(t) +

nS
∑

j=1

US(i, j; t) +

nA
∑

k=1

UA(i, k; t) (1)

dSj(t)

dt
= F [S0

j − Sj(t)] −

nB
∑

i=1

ES
ijUS(i, j; t) (2)

dAk(t)

dt
= F [A0

k − Ak(t)] − RkAk(t) +

nB
∑

i=1

[

PA(i, k; t) − EA
ikUA(i, k; t)

]

. (3)
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with the intermediate variables:

Bij(t) = Bi(t)
Sj(t)

∑nS

j′=1 Sj′(t)
(4)

US(i, j; t) = Bij(t)G
S
ijSj(t)/(Sj(t) + KS

i ) (5)

UA(i, k; t) = Bi(t)





nS
∑

j=1

US(i, j; t)



 GA
ikAk(t)/(Ak(t) + KA

i ) (6)

PA(i, k; t) = Oik





nS
∑

j=1

US(i, j; t) +

nA
∑

k=1

UA(i, k; t)



 . (7)

2.3 Inference goals

The human gut is not understood well enough to usefully definea process model for which we can fully
infer the parameters. Additionally, no non-trivial singlefermentor experiment has uniquely identifiable
parameters. Models can be parameterised either by using strong prior information or using data from
multiple experiments. In the experiments we can exactly choose and measure the flow rateF , the input
substrateS0

j , the input SCFAA0
k and the host absorption rateRk (which is zero). These parameters are

highly uncertain in the human colon, which additionally hasspatial structure and non-continuous flow.
The experiments we consider were run at two pH levels, which were chosen to reflect the acidity of

the two main compartments of the human colon. For some bacterial groups, the growth ratesGS
ij and

inefficienciesES
ij on substrate are expected to change with pH, and therefore between experiments. Pa-

rameters that are assumed unaffected by pH are SCFA usage inefficiencyEA
ik, growth rates on SCFAGA

ik,
the produced (i.e. output) SCFAOik, and the Michaelis-Menten factorsKS

i for substrate andKA
k for

SCFA.
As a first, tentative, step towards developing a more realistic model of the gut, we will use the inferred

parameter distributions to investigate how absorption of SCFA affects the bacterial populations and SCFA
concentrations.

3 Methodology

Consider a system ofM related experiments indexed bya = 1 . . . M . Observationsyabc are made at time
pointstabc (with c = 1 . . . mab indexing themab observations of variableb in experimenta). The vector
θa contains thepa unknown parameters for experimenta.

The statistical model is specified in three hierarchical levels. The bottom level describes the observa-
tions, which are modelled as

yabc|θa, tabc, σ
2
abc ∼ N(fa(θa, tabc), σ

2
abc), (8)

wherefa(.) is defined by Equations 1–7 parameterised for experimenta. The second level of the hierarchy
describes the experiment-specific parameter vectorθa which follows a normal distribution with meanµ
(lengthp) and between-experiment varianceΣ (p × p matrix), modelled as

θa|µ ∼ N(Xa µ,Xa ΣXT
a )

The ‘mapping matrix’Xa is apa×p matrix, with element(Xa)ij defined as 1 if elementi of θa corresponds
to elementj of µ, and zero otherwise (hence each row ofXa will contain exactly one 1). Pre- and post-
multiplication ofΣ by Xa ensures that the appropriate elements ofΣ are selected. Web Appendix C shows
an example of constructing this matrix.
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The top level of the hierarchy describes the prior distribution for µ, specified independently for each
elementd as a Normal prior:

µd ∼ N(βd, τ
2
d )

where the prior parametersβd andτ2
d are known constants; details of how we calculated them for the data

are in Web Appendix D.
Let Θ denote all parameters, i.e.Θ = {µ, θ1 . . . θM}. The posterior distribution is then given as

p(Θ|y) ∝







∏

a,b,c

N(yabc|fa(θa), σ2
abc)







×







∏

a

N(θa|Xaµ,XaΣXT
a )







×

{

∏

d

(

N(µd|βd, τ
2
d )

)

}

. (9)

As the number of data sets available for estimation of the biological parameters of interest is limited, we
treat the within-study varianceσ2 and between-study varianceΣ as known.

3.1 Posterior evaluation

A Metropolis-Hastings MCMC sampling (Gamerman, 1997) algorithm is used to evaluate the posterior.
A random subset of elements ofΘ, denoted byΘ{s}, is chosen where each individual element ofΘ has
probabilitype = 0.1 to be included in the subset. The subset is updated as follows: Θ′

{s} ∼ N(Θ{s}, δ{s} )

whereδ is a pre-defined matrix reflecting the ‘step size’ for each of the elements ofΘ (we use a diagonal
matrix in practice). LetΘ′ denoteΘ with subset{s} replaced byΘ′

{s}. The probability of acceptingΘ′

is based on the usual Metropolis-Hastings ratio given bymin
(

1, p(Θ′|y)
p(Θ|y)

)

with p(Θ|y) given in Equation

9. As usual in MCMC, we discard an initial ‘burn-in’ portion of the chain before evaluating the poste-
rior density. Web Appendix D gives the hyperparameters usedand Web Appendix E fully specifies the

algorithm. Convergence is assessed by examining the potential scale reduction factor
√

R̂ (Gelman and
Rubin, 1992) or effective sample sizes accounting for autocorrelation, calculated with the ‘CODA’ package
(Plummer et al., 2008) for R (R Development Core Team, 2008).We refer to a chain as ‘converged’ if for
all parameters the effective sample size is greater than100 and (for the inference on experimental data

only)
√

R̂ < 1.4 and the97.5% quantile for
√

R̂ is less than2.
To address concerns of poor mixing in the low posterior regions, and to perform a limited sensitivity

analysis, we additionally consider maximum a-posteriori (MAP) estimates obtained by numerically max-
imising the posterior starting from multiple random point samples from the prior distribution as described
in Web Appendix D.

4 Simulation studies

The simulation studies are based around the fermentor system described in Section 2.2 and aim to reflect
data collection as observed in practice. We start with a simple model (Section 4.1) and extend it to a more
complex model structure (Section 4.2).

4.1 Inference for one bacterial type

We first simulate data a typical dataset from a fermentor system for the simplest possible scenario. It is
assumed that a single type of substrate (starch) is consumedby a single bacterial strain (nominallyBac-
teroides, or ‘Bac’) producing a single SCFA type (Acetate) as is shownin Figure 1 (left). Two fermentor
experiments are simulated: Experiment 1 in an acidic environment (pH 5.5) and Experiment 2 in an acid
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neutral (pH 6.5) environment. All model parameters are assumed to be the same for both pH values, ex-
cept for the maximum growth rate, which at pH 5.5 is set at 1/10th that of acid neutral environment. The
simulated data, shown in Web Figure 1, (details given in Web Appendix F) consist of the concentration
of bacteria and SCFA measured once every 20 hours, for 7 time points. Furthermore, it is assumed that
the starch input is known. We will refer to these two experiments as Study 1. Based on the (simulated)
measurements of SCFA and bacteria we attempt to infer the Michaelis-Menten factor, the SCFA produc-
tion rate, the inefficiency of growth, and the maximum growthrate in the low acidity environment. The
maximum growth rate in the acid neutral environment is assumed known, as is the variation between (Σ)
and within experiments (σ2).

Two inference scenarios, outlined in Table 1, are considered for Study 1: in Scenario A we consider the
simultaneous inference scheme as discussed above. In Scenario B, we first perform inference on the data
from the acid neutral experiment alone, summarise the resulting posterior distribution as univariate means
and standard deviations (ignoring correlations), and use these results as a prior for analysing the data from
the acidic experiment.

Figure 2 illustrates the posterior probabilities of each after 100000 MCMC iterations for Scenario A,
and100000 iterations for each stage in Scenario B. Scenario A allows for strong inference on all param-
eters, and the chain has converged. However, under ScenarioB, the chain converges very poorly (at both
stages), resulting in incorrect inference due to the inefficiency of our algorithm to explore the flat posterior
mode. This flatness can be understood using the discussion onthe Michaelis-Menten factor in Section 2.2.
At neutral acidity (pH 6.5) the substrate level is low so thatthe maximum growth rate is confounded with
the Michaelis-Menten factor. At high acidity (pH 5.5) the substrate level is high and the Michaelis-Menten
factor does not have much effect on growth rates. For each pH level a wide range of parameter combi-
nations leads to an (approximately) constant likelihood, and only when the data from each of the two pH
levels are combined in Scenario A can the Michaelis-Menten factor be estimated. The information gained
from each experiment individually is insufficient for standard inference procedures but parameter estimates
are extractable via hierarchical modelling.

We also investigated the effect ofΣ on the posterior distribution as all parameters simultaneously co-
vary. Web Appendix F shows that there is little difference between parameters inferred with perfect correla-
tion and those inferred with smallΣ. AsΣ increases above 0.5, the Michaelis-Menten factor in Experiment
1 and the inefficiency in Experiment 2 become increasingly less certain and harder to identify.

4.2 Inference for two bacterial types

To investigate how the method relates to differing data qualities, we apply it to a more realistic problem
as outlined in Figure 1 (middle). Two bacterial types compete for a single substrate (starch) and two
SCFA types (Acetate and Butyrate) are produced. As in Study 1, theBacteroidesbacterial type consumes
only substrate to produce Acetate. The second type (nominally Roseburia rectalis, or ‘Rrec’) consumes
starch and is a producer of Butyrate. Furthermore, it achieves additional growth from consuming Acetate.
Experiment 3 is performed at pH 5.5 and experiment 4 is performed at pH 6.5, i.e. the same pH values as
in Study 1. These two experiments are referred to as Study 2, and the simulated data points and general
behaviour of this model are shown in Web Figure 2. Four inference scenarios, summarised in Table 1,
are considered. In Scenario C a strong prior for inferred values (Normal with correct mean and standard
deviation of 0.1 of the mean) is used to infer for Study 2. The other scenarios attempt to manage with
a uniformprior on parameters. In Scenario D simultaneous inference is performed on the simulated data
(consisting of substrate, SCFA and bacterial counts) from both Study 1 and 2. In Scenario E we do not
measure substrate output as this is not commonly available.All were run for 200000 MCMC steps. The
10 parameters to be inferred are: Michaelis-Menten factor for growth of Bac on starch, Michaelis-Menten
factor for Rrec for growth on starch and acetate (assumed thesame), the growth rates on starch of both
Bac and Rrec bacterial strains in the low pH environment, their inefficiencies on starch, Bac production
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of Acetate, Rrec production of Butyrate, Rrec inefficiency of Acetate usage and utilisation of Acetate (for
extra growth of Rrec on SCFA).

Convergence of the MCMC chain is acceptable for Scenario C and D. Scenario E led to poor MCMC
convergence with 5 parameters having effective sample sizes of less that50 (minimum 11). We may
therefore need20 times (or more) the number of samples in this chain to achievethe same convergence as
Scenario C. Figure 3 shows box-plots for each parameter under each Scenario. Scenarios C and D have
roughly equivalent posterior distributions.

Examination of the posterior distribution shows that in Scenario E there is a lack of identifiability
between the Rrec SCFA inefficiency (i.e. use of Acetate for additional growth) and Bac Acetate production.

Only scenarios C and D provide useful one-dimensional summaries for further analysis, indicating that
it is necessary to assume a strong prior on parameter values or to use sufficiently diverse experimental
conditions in order to avoid identifiability problems during inference.
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5 Inference for microbiology data

Having demonstrated that despite limited data, our approach is capable of recovering posterior informa-
tion on parameters of interest, we will now continue to analyse some real data of (Walker et al., 2005)
analogously to Scenario C. These data were obtained from twoexperiments run under neutral (pH 6.5)
or acidic (pH 5.5) conditions. Each fermentor received two substrates, namely starch and NSP. Bacterial
growth is thought to be considerably slower on the less degradable NSP than on starch. In addition to Bac
and Rrec, we will also consider a group of acetate producing bacteria, AcProd, that are thought to be more
resistant to an acidic environment than the Bac group. The relationships between bacteria, substrates and
SCFA are illustrated in Figure 1 (right). Our choice of bacterial and SCFA groupings provide a reasonable
representation of the data, with approximately 75% of the total bacteria and total SCFA covered; see Table
3 of (Walker et al., 2005).

Several parameters are thought to be influenced by pH or type of substrate, and need to be specified
accordingly. There are now 29 parameters to be inferred in total, specified below (number of parameters
in parentheses). Previous data indicate that Rrec grow justas well at high substrate levels at both pH levels
considered, so we infer their maximum growth rate on starch and NSP as constant between experiments (2),
and similarly for the inefficiency of starch and NSP usage (2). The ’AcProd’ community is not well defined
and so the specific bacteria involved might differ with acidity; they are parameterised by their growth
rates (4) and efficiencies (4). Similarly the Bacteroides group are known a-priori to have different growth
rates (4) and efficiencies (4). The remaining parameters areall constant between experiments: Michaelis-
Menten factors for growth on substrate (3), Rrec Michaelis-Menten factor for growth on acetate (1), Acetate
production by Bacteroides and Acetate Producers (2), Acetate utilisation of Rrec and its efficiency (2), and
Butyrate production of Rrec (1).

The prior distributions for these parameters are reasonably informative, and are based on knowledge on
metabolic pathways as well as results from studies on singlebacterial strainsin vitro. Growth on NSP
is less well-understood than on starch, and the priors are suitably weaker. It is assumed that the variation
within experimentsσ2

abc (see Walker et al., 2005, Table 2 and 3) and variation betweenexperimentsΣ are
known, based on data from a repeated experiment with bacteria seeded by a second human donor. Web
Appendix D gives details for parameter values and a sensitivity analysis forΣ; additional implementation
details are Web Appendix E.

In practice, it is not easy to choose a suitably simple model and set of parameters for inference. The
current model was obtained after an iterative process of model simplification and testing, using a simi-
lar analysis to Figure 3, by comparing MCMC posterior distributions. This involved close collaboration
between modellers and microbiologists to ensure that the main characteristics of the microbial processes
were still represented in the model. Convergence was satisfactory and the results are summarised in Figure
4. The growth rate on starch in acidic conditions of the AcProd group differed strongly from our prior,
indicating that the AcProd group is indeed diverse and the composition at different pH changes. Addi-
tionally, the production of Acetate by the Bac group did not meet our prior expectation based on efficient
conversion and therefore our prior needs to account for inefficiency.

The posterior prediction for the growth curves is given by Figure 5. This model is a simple attempt to
describe bacterial ecology in an inference setting and therefore should be considered cautiously; particu-
larly, not all bacterial data points are simultaneously satisfied by the model predictions, perhaps implying
that some important feature is omitted from the model.

Biological interpretation of our results must be cautious as the model is simple and the prior used is
strong. Despite this, our findings are biologically plausible. The inefficiency levels show that a higher level
of cell maintenance is necessary for both Bacteroides and other Acetate Producers under acidic conditions.
Rrec utilisation of Acetate appears to come at an efficiency cost for use of substrate, as energy is required
to do this. However, it may be necessary to model the metabolic pathways in more detail to generalise to
Acetate-poor conditions. Under starvation conditions Bacoutperforms the other groups as shown from its
Michaelis-Menten factor. Rrec finds Acetate difficult to obtain at low densities which is probably due to
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SCFA being free in the medium whereas cells can adhere to substrate (and therefore the Michaelis-Menten
factor for substrate is smaller). As expected, the maximum growth rate for Bacteroides is lower at high pH,
and it does not appear to grow on NSP. This may be due to phenotypic plasticity allowing specialisation to
the more abundant starch.

The continuous fermentor environment provides a highly simplified experimental model of the human
gut. One of these simplifications is that absorption of metabolites is not allowed for. In our mathematical
model formulation, however, it is easy to relax this assumption and Table 2 shows what happens to the
SCFA and bacteria when the fractional absorption rateRk ∼ Normal(0.72, 0.0722)g/d, a realistic value
representing high SCFA concentrations (Jr. et al., 1977) with 10% uncertainty. Fecal Butyrate and Rrec
are significantly reduced at all pH values. Similarly, we canrun our model under ‘high fibre’ conditions
with input consisting of5.0g/d starch (i.e.0.6g/d less),2.4g/d NSP (i.e.0.6g/d more) and flow rate of 1
turnover in 18 hours (compared to 1 turnover per 24 hours). This allows us to compare the host absorption
of SCFA: Acetate decreases from1.24g/d (95% confidence interval,CI = 0.98−1.66) by a factor of0.53
(95% CI = 0.41−0.72) and Butyrate increases from0.63g/d (95% CI = 0.37−0.93) by a factor of1.68
(95% CI = 1.26 − 2.72). Although these findings should be interpreted with caution, the results clearly
show how absorption of metabolites results in a bacterial shift in favour of Acetate Producers which comes
at the cost of Bacteroides. A high fibre diet results in increased Butyrate and decreased Acetate absorption
for the human host.

As an additional check we have performed maximum aposteriori (MAP) estimation from starting con-
ditions sampled from the prior using standard numerical maximisation techniques, which confirms that our
estimate is indeed a local maxima (See Figure 4). Additionally we performed a sensitivity analysis using
the MAP procedure on the variation within experimentsΣ as this is not well known. The MAP estimates
change by less than 1% when the magnitude ofΣ is scaled by a factor of 2 each way (Web Appendix D).

6 Discussion

Despite a limited amount of data, we have shown how integration of knowledge on the underlying model
structure in combination with informative prior information on model parameters allows for inference of
model parameters of interest. Like a prior distribution fora set of parameters, the functional form of the
model (which forms the summary of our knowledge of the process) should be updated if it does not agree
with the data. In this sense, we view our process model as a type of prior, providing restrictions in the
parameter space.

Although our model assumptions will likely be quantitatively incorrect, they do allow us to investigate
what would happen (in a relative sense) if some of the experimental conditions are relaxed. Relaxations
such as allowing for absorption of metabolites are straightforward to incorporate in the mathematical model
but are not easily implemented in experimental studies. Theapproach discussed here therefore provides
a potentially powerful tool for microbiologists to exploresuch ‘what if’ scenarios. Our predictions are
consistent with observations of human colons, adding to thevalidity of using experimental fermentors and
theoretical models to understand gut bacterial ecology.

Data collection and analysis is an expensive exercise, evenfor the relatively simple fermentor studies
used here. Our findings indicate that more time samples should be analysed for bacterial composition (at
present only at start and end of experiment), and replication of fermentors should be considered to allow
for inferring a posterior distribution of the variance components.

Bayesian hierarchical modelling of process model parameters is a powerful and under-utilised tool
for inference. Our results show that this methodology can describe sparse data with a process model
incorporating a large amount of knowledge of the structure of the data. Because we focus on methods that
treat the process model as a black box, they are applicable tomany other problems.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Figure 1 Flow diagrams for the fermentor models used in Sections 4 and5. Substrate types (starch
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Figure 2 Densities for the posterior probability of parameters using simulated data (Study 1, single
bacterial strain) for (black line) Scenario A using simultaneous inference, and (grey line) Scenario B using
summary information and separate inference. The true parameter values are indicated as a vertical line.
Scenario A has a converged MCMC chain (> 200 effective samples per parameter) whereas no parameters
have a large effective sample size in Scenario B.
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Figure 5 Prediction for the model based on parameter samples from theconverged MCMC chain based
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Table 1 Summary of scenarios considered for inference on data from simulation study 1 (one substrate,
one bacterial strain and one SCFA), simulation study 2 (one substrate, two bacterial strains, two SCFA),
and experimental data from Walker et al. (2005). Yes and No indicate whether a variable was measured,
while - indicates that a variable did not form part of the models. Uniform priors on inferred parameters
were used unless specified.

Scenario Study
Bacteria SCFA Substrate

Analysis
Bac Rrec AcProd Ac. Bu. Starch NSP

A 1 Yes - - Yes - Yes - Simultaneous inference of
data from both pH.

B 1 Yes - - Yes - Yes - Step 1: inference on data
from pH 6.5 experiment.
Step 2: use summary of
posterior from Step 1 as
prior for inference on data
from pH 5.5.

C 2 Yes Yes - Yes Yes Yes - Strong prior on inferred
parameters; simultaneous
inference of data from
both pH.

D
1 Yes - - Yes - Yes - Simultaneous inference
2 Yes Yes - Yes Yes Yes - of data from both studies

at both pH.

E
1 Yes - - Yes - No - Simultaneous inference
2 Yes Yes - Yes Yes No - of data from both studies

at both pH.
Data Walker Yes Yes Yes Yes Yes No No Simulated inference

of data from both pH.
Strong prior on inferred
parameters.

Table 2 Predictions for total relative abundances at equilibrium under the assumption of host SCFA
absorption, relative to the full posterior for the no absorption model from Figure 4 & 5.

pH Quantity Effect
Quantile

50% 2.5% 97.5%
5.5 Acetate - 0.64 0.90 1.07
5.5 Butyrate Down 0.24 0.42 0.54
5.5 Bac. Up 1.06 1.18 1.33
5.5 Rrec. Down 0.43 0.72 0.92
5.5 AcProd. - 0.80 1.72 2.28
6.5 Acetate Down 0.55 0.63 0.75
6.5 Butyrate Down 0.22 0.44 0.60
6.5 Bac. - 1.00 1.01 1.03
6.5 Rrec. Down 0.40 0.75 0.98
6.5 AcProd. - 0.03 1.43 2.14


