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Process models specified by non-linear dynamic differential equat@tain many parameters, which of-
ten must be inferred from a limited amount of data. We discuss a hiécaf@&ayesian approach combining
data from multiple related experiments in a meaningful way, which permite powverful inference than

treating each experiment as independent. The approach is illustrated siittulation study and example
data from experiments replicating aspects of the human gut microbiaysteon. A predictive model is

obtained that contains prediction uncertainty caused by uncertainty in tameters, and we extend the
model to capture situations of interest that cannot easily be studiedragpeally.
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1 Introduction

Many biological and physical systems can in theory be desdrby a well understood process, but the
process cannot be used directly in practical inferenceusecparameters are inaccessible for direct mea-
surement. A ‘reductionist’ strategy for inference (LevibMalcini and Calissano, 2006) by measuring each
parameter in a separate experiment is often not feasiblégandes interactions between parameters.

We consider parameter inference for a non-linear difféaéeguation model describing multiple ex-
periments simultaneously. We will use a hierarchical Beyeapproach as it allows for combining data
from different sources whilst accounting for differencesviieen them. Previous Bayesian approaches to
differential equation models include pharmacokinetic sledGelman et al., 1996; Wakefield, 1996; Lunn
and Aarons, 1997; Mezzetti et al., 2003), and Human Immuficidecy Virus (HIV) modelling (Putter
et al., 2002; Banks et al., 2005; Huang et al., 2006). Theserit® how a potentially large humber of
individuals are described by the same process but withrdifteparameters. Our methodology aims to
relate parameters between experiments that are limitedtm dParts of the underlying processes are as-
sumed identical across experiments, whilst other aspétteainderlying processes are allowed to vary.
Useful inference requires both knowledge of the processaastdtistical model to relate the experimental
data. Model parameters are not uniquely identifiable foheagperiment individually but when multiple
experiments are linked using a hierarchical statistical@hahey can be identified.

We apply this approach to an ecological microbiology modigh which we ultimately wish to under-
stand and control bacterial populations inside the human Tese are generally inaccessible for direct
measurement. The gut has strong spatial structure, mamiemstare absorbed into the gut wall and
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are therefore unavailable to bacteria, and flow rates aoagly time dependent (Louis et al., 2007). In
contrast, thén-vitro experiments that provide our data are designed to haveelirsjpatial structure, nonab-
sorbent walls and simple continuous flow. The parametekg®dgical model obtained from such studies,
with quantified uncertainty, can then be used to predict haatdyia might behave under conditions that
more closely resemble the human gut. Of specific interess fe whether the bacterial dynamics change
when absorption of nutrients and metabolic products isrtak® account. This can not be investigated
easily by experimenti vitro, but is straightforward to build into the statistical mo#diich can then be
used to predict how bacterial behaviour is influenced.

We will examine the qualitative benefits of a Bayesian apgmoasing Markov-Chain Monte Carlo
(MCMC) (Gamerman, 1997) techniques using simulated datmwed by experimental data. With lim-
ited data the posterior distribution is ‘large’ and compheganing that MCMC algorithms converge very
slowly. However, simultaneous inference restricts thegyas distribution size and simplifies its shape,
making it feasible to explore the posterior parameter spat&ection 2 we discuss an ecological mod-
elling problem for microbiology data to motivate the methbuSection 3 we define the statistical model,
which we explore using a simulation study in Section 4. Wantapply the method to the microbiology
data in Section 5 before our concluding remarks in Section 6.

2 Ecological gut microbiology problem

A diverse range of microbes live in the human colon by ferimgnutrients (called substrates) that pass
through our stomach without being digested. Two types ofsate are of interest to us: starch and
non-starch polysaccharides (NSP). Starch is easily fetedelny the bacteria, whereas NSP, consisting
mainly of fibre, is harder to ferment. As a consequence, drawt starch is of the order 10 times faster
than growth on NSP, and essentially all starch is used by dlotelia, whilst some NSP is not fermented

and passes out of the colon in feces. Bacteria produce shaitt-fatty acids (SCFA) as a by-product

of fermentation. The majority of the SCFA will be absorbedthg human host, but can also be further
processed by other bacterial types. SCFA concentratiansfgorimary concern for health, as each has
unigue health implications.

For simplicity, the colon can be divided into two main seetio The first section is closest to the
stomach, hence plenty of starch and NSP are available tattterin allowing high fermentation rates and
high acidity (pH of approximately 5.5). In the second seattid the colon, closer to the rectum, starch
supply is reduced although NSP supply may still be high. Eatation activity is lower and the pH will
tend more towards neutral (pH of approximately 6.5). Sonutdve are more tolerant of high acidity than
others, and as a consequence bacterial composition will dgpending on local conditions. For more
details, see e.g. Cummings (1997).

2.1 Experimental system

The results of Walker et al. (2005) describe an experimesystem using human fecal matter as a seed
for a ‘realistic’ bacterial community, which is placed intofermentor vessel and fed on a continuous
supply of substrates with consistency chosen to represamy mutrients available in the human colon. For
inference purposes, the substrates are combined intdhvstactNSP. This experimental set up represents
a simplification of the human colon as characteristics sgctpatial structure, absorption of nutrients and
products, and fluctuations in flow, are not considered. Aisirmechanism ensures that the contents of
the vessel are well-mixed, and the material that leavesdtmadntor via an overflow outlet is therefore
assumed to be representative of the vessel contents. Ttexrihaand SCFA are measured from samples
taken from the outlet. Substrate input is known but is notsuesd in the output. The pH in the vessel is
controlled by the operator and is held constant at either pHr&presenting the first section of the colon)
or pH 6.5 (representing the later section of the colon). iBetdhow our data were extracted from (Walker
et al., 2005) are given in Web Appendix A.
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2.2 Mathematical model

Modelling approaches for microbial systems range from &ndifferential equation models (Wilkinson,
1998; Coleman et al., 1996) to spatially explicit indivilbased simulations (Kreft et al., 1998; Beretta
and Kuang, 2000). As the simplest relevant model, we usefaeréliftial equation model for bacterial
growth and competition at the level of functional groups.r @athematical model is an abstraction of
the commonly used experimental fermentor system descitb8éction 2.1. We consider a single well-
mixed compartment, although extension to multiple compartts is trivial. The input contains substrates
which are converted to bacterial mass, waste, and a numisBeA. Some bacterial strains are capable of
gaining extra energy from SCFA. Examples are shown in Figehich are used in Sections 4 and 5.

Bacteria belonging to groupare associated with a substrgtet concentratiorB;;(t), and we ob-
serve the total concentratioB;(t) = >_; B;;(t). It is assumed that bacterial groups are well mixed
between substratgs such thatB,; is proportional to the concentratios(¢). Growth is modelled using
Michaelis-Menten kinetics (Wilkinson, 1998), such thabstate must be first captured by bacteria, and
then processed at a finite rate. At high substrate levelsytgrbecomes limited to a maximum ratbfj
At low substrate levels, growth rate is proportional to theoant of substrate according ﬂ;(t)ij J/K?,
where K7 is the Michaelis-Menten factor defining the substrate légelhich the growth rate is half
the maximum. For every unit of bacterial growth on substrateamoumEfj of substrate is used; this is
therefore an ‘inefficiency’ of conversion.

SCFA of typek is produced by some strains of bacteria at a €atefor every unit of bacterial growth.
Some bacteria can utilise SCFA, and this is modelled acegrdi Michaelis-Menten dynamics with maxi-
mum rateG2, (referred to as utilisation of SCFA) and Michaelis-Menteatbr K. The growth on SCFA
is proportional to the growth already achieved on substeatd occurs at inefficiencE;j‘g. In models of
the human gut, SCFA is absorbed at a rate; Ax(t), but experimental fermentors ha¥ = 0. Flow
through the vessel (or compartment) occurs at a specifiellraowin rate'(¢t) = F. Substratg and SCFA
k flow into the fermentor at known rates EfS}) and F A9 respectively. Bacterig Substrate and SCFA
k leave the fermentor at a rate B1B; (t), F'S;(t) andF A, (t) respectively.

The initial values of the system are known making this anahialue problem. Our assumptions
directly relate to the widely used fermentor experimengédlg, and are in accord with those frequently
made in bacterial gut modelling. Other possible bacterdlaviours are reviewed by Wilkinson (1998).
Web Appendix B contains a table of used terms.

This leads to the following system of equations:

dB:;t(t) = —FB;(t)+ i Us(i,j;t) + i Ua(i, ki t) )
J=1 k=1
S_ np
d ét(t) = F[89 - S;(t)] - ;EijS(m; ) @
dA;t<t) — F[A2 - Ak(t)] — RkAk(t) + Zl [PA(i7 k’;t) _ EﬁqUA(i, k;t)} ) (3)
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with the intermediate variables:

_ n S;(t)

Bij(t) - Bz(t)zfjlszl Sj/(t) (4)
Us(i,jit) = By(t)GS;(t)/(S;(t) + K7) (5)
Uaiskit) = Bi(t) | D Us(i,j;t) | GLA(8)/(Ax(t) + K7 (6)
Pa(ikit) = Ou |y Us(i.jit) + ) Ua(i.kit)| . )

j=1 k=1

2.3 Inference goals

The human gut is not understood well enough to usefully defipeocess model for which we can fully
infer the parameters. Additionally, no non-trivial sindegmentor experiment has uniquely identifiable
parameters. Models can be parameterised either by usioggsprior information or using data from
multiple experiments. In the experiments we can exactlyosb@and measure the flow rafie the input
substrateS‘;), the input SCFAA{ and the host absorption rafg, (which is zero). These parameters are
highly uncertain in the human colon, which additionally kaatial structure and non-continuous flow.

The experiments we consider were run at two pH levels, whiehrewehosen to reflect the acidity of
the two main compartments of the human colon. For some halctgoups, the growth rate@fj and
inefficienciesEfj on substrate are expected to change with pH, and thereforede experiments. Pa-
rameters that are assumed unaffected by pH are SCFA usdfigiéney E7;, growth rates on SCFA}
the produced (i.e. output) SCF&;x, and the Michaelis-Menten factoss? for substrate and<;* for
SCFA.

As a first, tentative, step towards developing a more réalisbdel of the gut, we will use the inferred
parameter distributions to investigate how absorption@F4 affects the bacterial populations and SCFA
concentrations.

3 Methodology

Consider a system a¥/ related experiments indexed by= 1... M. Observationg,;. are made at time
pointst.,. (with ¢ = 1...my; indexing them,,;, observations of variablein experiment:). The vector
0, contains they, unknown parameters for experiment

The statistical model is specified in three hierarchicatlev The bottom level describes the observa-
tions, which are modelled as

yabc|9a7 tabw Ugbc ~ N(fa(9a7 tabc)a Ugbc)v (8)

wheref,(.) is defined by Equations 1-7 parameterised for experimetihe second level of the hierarchy
describes the experiment-specific parameter veattavhich follows a normal distribution with meam
(lengthp) and between-experiment variancép x p matrix), modelled as

Oulpp ~ N(Xgp, X, 2 XT)

The ‘mapping matrix’X, is ap, x p matrix, with element.X, );; defined as 1 if elemenbf ¢, corresponds
to elementj of , and zero otherwise (hence each rowXqf will contain exactly one 1). Pre- and post-
multiplication of X by X, ensures that the appropriate elements afe selected. Web Appendix C shows
an example of constructing this matrix.
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The top level of the hierarchy describes the prior distidwfor 1, specified independently for each
elementd as a Normal prior:

pta ~ N(Ba,73)
where the prior parametefly andr? are known constants; details of how we calculated them fodtita

are in Web Appendix D.
Let © denote all parameters, i.©. = {u, 0; ... 605 }. The posterior distribution is then given as

p(Bly) o H N(yabc|fa(9a)a‘73bc) X H N(9a|XaﬂvXaZXg)

a,b,c a

X {H(N(Mdmdﬁg))}' ©)

d

As the number of data sets available for estimation of théohioal parameters of interest is limited, we
treat the within-study variance® and between-study varian&eas known.

3.1 Posterior evaluation

A Metropolis-Hastings MCMC sampling (Gamerman, 1997) &t is used to evaluate the posterior.
A random subset of elements 6f, denoted byO,;, is chosen where each individual elementbhas
probabilityp. = 0.1 to be included in the subset. The subset is updated as foI[@({\ﬁ ~ N(O¢4y,04) )
whereé is a pre-defined matrix reflecting the ‘step size’ for eachhefélements ob (we use a diagonal
matrix in practice). Let®’ denote®© with subset{s} replaced b)@’{s}. The probability of accepting’

is based on the usual Metropolis-Hastings ratio givemby (1, g((%'lzf)))with p(Oly) given in Equation
9. As usual in MCMC, we discard an initial ‘burn-in’ portiorf the chain before evaluating the poste-

rior density. Web Appendix D gives the hyperparameters aset\Web Appendix E fully specifies the

algorithm. Convergence is assessed by examining the jpaltenale reduction factot/ﬁ (Gelman and
Rubin, 1992) or effective sample sizes accounting for aartetation, calculated with the ‘CODA package
(Plummer et al., 2008) for R (R Development Core Team, 2008) refer to a chain as ‘converged’ if for
all parameters the effective sample size is greater tit@irand (for the inference on experimental data

only) \/E < 1.4 and thed7.5% quantile for\/ﬁ is less thare.

To address concerns of poor mixing in the low posterior negji@nd to perform a limited sensitivity
analysis, we additionally consider maximum a-posteriBtAP) estimates obtained by numerically max-
imising the posterior starting from multiple random poiatrgles from the prior distribution as described
in Web Appendix D.

4 Simulation studies

The simulation studies are based around the fermentomsydtscribed in Section 2.2 and aim to reflect
data collection as observed in practice. We start with a leimmodel (Section 4.1) and extend it to a more
complex model structure (Section 4.2).

4.1 Inference for one bacterial type

We first simulate data a typical dataset from a fermentoresydor the simplest possible scenario. It is
assumed that a single type of substrate (starch) is consbynadsingle bacterial strain (nominalBac-
teroides or ‘Bac’) producing a single SCFA type (Acetate) as is shdanvRigure 1 (left). Two fermentor
experiments are simulated: Experiment 1 in an acidic enuirent (pH 5.5) and Experiment 2 in an acid
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neutral (pH 6.5) environment. All model parameters are mgslito be the same for both pH values, ex-
cept for the maximum growth rate, which at pH 5.5 is set atth/ildat of acid neutral environment. The
simulated data, shown in Web Figure 1, (details given in Wepehdix F) consist of the concentration
of bacteria and SCFA measured once every 20 hours, for 7 toimtsp Furthermore, it is assumed that
the starch input is known. We will refer to these two experntseas Study 1. Based on the (simulated)
measurements of SCFA and bacteria we attempt to infer thbadits-Menten factor, the SCFA produc-
tion rate, the inefficiency of growth, and the maximum growate in the low acidity environment. The
maximum growth rate in the acid neutral environment is agglikmown, as is the variation betweex)
and within experimentss@).

Two inference scenarios, outlined in Table 1, are consibiEmeStudy 1: in Scenario A we consider the
simultaneous inference scheme as discussed above. InrBcBnwe first perform inference on the data
from the acid neutral experiment alone, summarise thetiegudosterior distribution as univariate means
and standard deviations (ignoring correlations), and lusset results as a prior for analysing the data from
the acidic experiment.

Figure 2 illustrates the posterior probabilities of eadieraf00000 MCMC iterations for Scenario A,
and 100000 iterations for each stage in Scenario B. Scenario A allowstimng inference on all param-
eters, and the chain has converged. However, under Scaahie chain converges very poorly (at both
stages), resulting in incorrect inference due to the inefiicy of our algorithm to explore the flat posterior
mode. This flatness can be understood using the discussithe dhichaelis-Menten factor in Section 2.2.
At neutral acidity (pH 6.5) the substrate level is low so it maximum growth rate is confounded with
the Michaelis-Menten factor. At high acidity (pH 5.5) théostrate level is high and the Michaelis-Menten
factor does not have much effect on growth rates. For eactepél & wide range of parameter combi-
nations leads to an (approximately) constant likelihoao] enly when the data from each of the two pH
levels are combined in Scenario A can the Michaelis-Men&eiof be estimated. The information gained
from each experiment individually is insufficient for stamd inference procedures but parameter estimates
are extractable via hierarchical modelling.

We also investigated the effect &f on the posterior distribution as all parameters simultasoco-
vary. Web Appendix F shows that there is little differencenmen parameters inferred with perfect correla-
tion and those inferred with small. As Y. increases above 0.5, the Michaelis-Menten factor in Expemi
1 and the inefficiency in Experiment 2 become increasingly teertain and harder to identify.

4.2 Inference for two bacterial types

To investigate how the method relates to differing dataitjga) we apply it to a more realistic problem
as outlined in Figure 1 (middle). Two bacterial types corepler a single substrate (starch) and two
SCFA types (Acetate and Butyrate) are produced. As in StutlyeBacteroidesacterial type consumes
only substrate to produce Acetate. The second type (nolyiRalseburia rectalisor ‘Rrec’) consumes
starch and is a producer of Butyrate. Furthermore, it aelsi@dditional growth from consuming Acetate.
Experiment 3 is performed at pH 5.5 and experiment 4 is peréorat pH 6.5, i.e. the same pH values as
in Study 1. These two experiments are referred to as Studgd2the simulated data points and general
behaviour of this model are shown in Web Figure 2. Four infeeescenarios, summarised in Table 1,
are considered. In Scenario C a strong prior for inferredes(Normal with correct mean and standard
deviation of 0.1 of the mean) is used to infer for Study 2. THeepbscenarios attempt to manage with
auniformprior on parameters. In Scenario D simultaneous inferempeiformed on the simulated data
(consisting of substrate, SCFA and bacterial counts) froih IStudy 1 and 2. In Scenario E we do not
measure substrate output as this is not commonly avail&#levere run for 200000 MCMC steps. The
10 parameters to be inferred are: Michaelis-Menten factogfowth of Bac on starch, Michaelis-Menten
factor for Rrec for growth on starch and acetate (assumedahee), the growth rates on starch of both
Bac and Rrec bacterial strains in the low pH environmenty ihefficiencies on starch, Bac production
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of Acetate, Rrec production of Butyrate, Rrec inefficien€yAoetate usage and utilisation of Acetate (for
extra growth of Rrec on SCFA).

Convergence of the MCMC chain is acceptable for ScenariodCarScenario E led to poor MCMC
convergence with 5 parameters having effective samples sifdess that0 (minimum 11). We may
therefore need0 times (or more) the number of samples in this chain to achieyesame convergence as
Scenario C. Figure 3 shows box-plots for each parameterreatdh Scenario. Scenarios C and D have
roughly equivalent posterior distributions.

Examination of the posterior distribution shows that in 1@&o@ E there is a lack of identifiability
between the Rrec SCFA inefficiency (i.e. use of Acetate fditamhal growth) and Bac Acetate production.

Only scenarios C and D provide useful one-dimensional suiesiéor further analysis, indicating that
it is necessary to assume a strong prior on parameter vatuesuse sufficiently diverse experimental
conditions in order to avoid identifiability problems dugimference.
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5 Inference for microbiology data

Having demonstrated that despite limited data, our apprigcapable of recovering posterior informa-
tion on parameters of interest, we will now continue to asalgome real data of (Walker et al., 2005)
analogously to Scenario C. These data were obtained fronexweriments run under neutral (pH 6.5)
or acidic (pH 5.5) conditions. Each fermentor received twbstrates, namely starch and NSP. Bacterial
growth is thought to be considerably slower on the less dizdni@ NSP than on starch. In addition to Bac
and Rrec, we will also consider a group of acetate producangdnia, AcProd, that are thought to be more
resistant to an acidic environment than the Bac group. Tladioaships between bacteria, substrates and
SCFA are illustrated in Figure 1 (right). Our choice of baieieand SCFA groupings provide a reasonable
representation of the data, with approximately 75% of th&l tsacteria and total SCFA covered; see Table
3 of (Walker et al., 2005).

Several parameters are thought to be influenced by pH or tiypebstrate, and need to be specified
accordingly. There are now 29 parameters to be inferredtéd, tepecified below (number of parameters
in parentheses). Previous data indicate that Rrec grovagusell at high substrate levels at both pH levels
considered, so we infer their maximum growth rate on stancHNSP as constant between experiments (2),
and similarly for the inefficiency of starch and NSP usage T&e 'AcProd’ community is not well defined
and so the specific bacteria involved might differ with atyidihey are parameterised by their growth
rates (4) and efficiencies (4). Similarly the Bacteroidesugrare known a-priori to have different growth
rates (4) and efficiencies (4). The remaining parameteralbcenstant between experiments: Michaelis-
Menten factors for growth on substrate (3), Rrec Michaklenten factor for growth on acetate (1), Acetate
production by Bacteroides and Acetate Producers (2), Azetdisation of Rrec and its efficiency (2), and
Butyrate production of Rrec (1).

The prior distributions for these parameters are reasgnatdrmative, and are based on knowledge on
metabolic pathways as well as results from studies on siogderial strainsin vitro. Growth on NSP
is less well-understood than on starch, and the priors argbodyiweaker. It is assumed that the variation
within experimentsr2, . (see Walker et al., 2005, Table 2 and 3) and variation betwgpariments are
known, based on data from a repeated experiment with bactegded by a second human donor. Web
Appendix D gives details for parameter values and a seitgiinalysis fory; additional implementation
details are Web Appendix E.

In practice, it is not easy to choose a suitably simple moddlset of parameters for inference. The
current model was obtained after an iterative process ofeinsichplification and testing, using a simi-
lar analysis to Figure 3, by comparing MCMC posterior disttions. This involved close collaboration
between modellers and microbiologists to ensure that thia oteracteristics of the microbial processes
were still represented in the model. Convergence was aetiisly and the results are summarised in Figure
4. The growth rate on starch in acidic conditions of the AdPgeoup differed strongly from our prior,
indicating that the AcProd group is indeed diverse and thepmsition at different pH changes. Addi-
tionally, the production of Acetate by the Bac group did natetour prior expectation based on efficient
conversion and therefore our prior needs to account fofidierficy.

The posterior prediction for the growth curves is given bgufe 5. This model is a simple attempt to
describe bacterial ecology in an inference setting ancfber should be considered cautiously; particu-
larly, not all bacterial data points are simultaneouslysfiad by the model predictions, perhaps implying
that some important feature is omitted from the model.

Biological interpretation of our results must be cautioagtee model is simple and the prior used is
strong. Despite this, our findings are biologically plaissilihe inefficiency levels show that a higher level
of cell maintenance is necessary for both Bacteroides dret dicetate Producers under acidic conditions.
Rrec utilisation of Acetate appears to come at an efficiensy for use of substrate, as energy is required
to do this. However, it may be necessary to model the metapatihways in more detail to generalise to
Acetate-poor conditions. Under starvation conditions Batperforms the other groups as shown from its
Michaelis-Menten factor. Rrec finds Acetate difficult to aibtat low densities which is probably due to
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SCFA being free in the medium whereas cells can adhere tératdgand therefore the Michaelis-Menten
factor for substrate is smaller). As expected, the maximrowth rate for Bacteroides is lower at high pH,
and it does not appear to grow on NSP. This may be due to phaingthasticity allowing specialisation to
the more abundant starch.

The continuous fermentor environment provides a highlypéified experimental model of the human
gut. One of these simplifications is that absorption of metitds is not allowed for. In our mathematical
model formulation, however, it is easy to relax this assuompand Table 2 shows what happens to the
SCFA and bacteria when the fractional absorption fgte~ Normal(0.72,0.0722)g/d, a realistic value
representing high SCFA concentrations (Jr. et al., 197%) Wi% uncertainty. Fecal Butyrate and Rrec
are significantly reduced at all pH values. Similarly, we can our model under ‘high fibre’ conditions
with input consisting 06.0g/d starch (i.e0.6g/d less),2.4g/d NSP (i.e.0.6g/d more) and flow rate of 1
turnover in 18 hours (compared to 1 turnover per 24 hoursis dlfows us to compare the host absorption
of SCFA: Acetate decreases frdn24¢g/d (95% confidence intervall’l = 0.98—1.66) by a factor 0f0.53
(95% C1T = 0.41—0.72) and Butyrate increases frob63g/d (95% CI = 0.37—0.93) by a factor ofl.68
(95% CI = 1.26 — 2.72). Although these findings should be interpreted with cayttbe results clearly
show how absorption of metabolites results in a bacteriélisHavour of Acetate Producers which comes
at the cost of Bacteroides. A high fibre diet results in insegbButyrate and decreased Acetate absorption
for the human host.

As an additional check we have performed maximum apostéNtkP) estimation from starting con-
ditions sampled from the prior using standard numericalimesation techniques, which confirms that our
estimate is indeed a local maxima (See Figure 4). Additlgved performed a sensitivity analysis using
the MAP procedure on the variation within experimebtas this is not well known. The MAP estimates
change by less than 1% when the magnitudg of scaled by a factor of 2 each way (Web Appendix D).

6 Discussion

Despite a limited amount of data, we have shown how integmaif knowledge on the underlying model
structure in combination with informative prior informati on model parameters allows for inference of
model parameters of interest. Like a prior distribution dcset of parameters, the functional form of the
model (which forms the summary of our knowledge of the pregsbould be updated if it does not agree
with the data. In this sense, we view our process model aseadfprior, providing restrictions in the
parameter space.

Although our model assumptions will likely be quantitativencorrect, they do allow us to investigate
what would happen (in a relative sense) if some of the expariad conditions are relaxed. Relaxations
such as allowing for absorption of metabolites are stréagivard to incorporate in the mathematical model
but are not easily implemented in experimental studies. approach discussed here therefore provides
a potentially powerful tool for microbiologists to exploseich ‘what if’ scenarios. Our predictions are
consistent with observations of human colons, adding tedlfidity of using experimental fermentors and
theoretical models to understand gut bacterial ecology.

Data collection and analysis is an expensive exercise, ®vehe relatively simple fermentor studies
used here. Our findings indicate that more time samples dhmubanalysed for bacterial composition (at
present only at start and end of experiment), and replicaifdermentors should be considered to allow
for inferring a posterior distribution of the variance camnents.

Bayesian hierarchical modelling of process model paramétea powerful and under-utilised tool
for inference. Our results show that this methodology cascidiee sparse data with a process model
incorporating a large amount of knowledge of the structiitb®data. Because we focus on methods that
treat the process model as a black box, they are applicabtany other problems.
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Study 1 Study 2 Experiment
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Figure 1 Flow diagrams for the fermentor models used in Sections 45an&ubstrate types (starch
and NSP) are shown in squares. Bacterial types are showfiees and are: Ac.Prod. (mixed acetate
producers), Bac.Hacteroideyand Rrec. Roseburia Rectal)s Bacteria overlap substrate because they are
assigned to substrates proportional to the substrate ahuadSCFA (Acetate and Butyrate) are shown in
stretched hexagons. Input and output substances are liséelrackets around starch indicated that this is
not available in all cases.
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Figure 2 Densities for the posterior probability of parameters gséimulated data (Study 1, single
bacterial strain) for (black line) Scenario A using simaokaus inference, and (grey line) Scenario B using
summary information and separate inference. The true peieEamalues are indicated as a vertical line.
Scenario A has a converged MCMC chain 200 effective samples per parameter) whereas no parameters
have a large effective sample size in Scenario B.
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Figure 3 Posterior probability distribution for the parameters udy 2 for the two bacterial strains
experiments with true values shown as a vertical line. Eactzdntal segment contains three box-plots,
with Scenarios C, D, E running from top to bottom. ‘MM factas’the Michaelis-Menten factor. Scenario
labels C and D are in brackets if the effective sample sizhdsangel00 — 200 (no brackets:> 200);
Scenarios E is in brackets if the sample size is in the ramge 200.
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Figure 4 Posterior probabilities for the Walker et al. (2005) dategvging all parameters as a box-plot
averaged over 3 separate MCMC chains. Grey crosses showrpeians and grey dotted lines show
twice the prior standard deviation(see Web Appendix D). Wreglian value is the thick line, with the
box representing th&0% confidence region and the dashed lines extend to the wholplsaithe MAP
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see text for an interpretation of these results.
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Figure 5 Prediction for the model based on parameter samples frommaimeerged MCMC chain based
on the Walker et al. (2005) data for (Left) pH 5.5 and (Right) .5. Shown are the median predicted
value for bacteria (solid thick line), and for SCFA (brokarel) along with thed5% credible intervals (thin

dotted lines). Observed data for SCFA and for bacteria aveistirom Web Appendix B. The model has

all variables matching the data as initial conditions, adun past the final data point to establish long
term trends.



Table 1 Summary of scenarios considered for inference on data fiomlation study 1 (one substrate,
one bacterial strain and one SCFA), simulation study 2 (ohstsate, two bacterial strains, two SCFA),
and experimental data from Walker et al. (2005). Yes and Maaie whether a variable was measured,
while - indicates that a variable did not form part of the medéJniform priors on inferred parameters
were used unless specified.

Scenario  Study Bacteria SCFA Substrate Analysis
Bac Rrec AcProd Ac. Bu. Starch NSP

A 1 Yes - - Yes - Yes - Simultaneous inference of
data from both pH.

B 1 Yes - - Yes - Yes - Step 1: inference on data
from pH 6.5 experiment.
Step 2: use summary of
posterior from Step 1 as
prior for inference on data
from pH 5.5.

C 2 Yes Yes - Yes Yes Yes - Strong prior on inferred
parameters; simultaneous
inference of data from
both pH.

D 1 Yes - - Yes - Yes - Simultaneous inference

2 Yes Yes - Yes Yes Yes - of data from both studies
at both pH.

E 1 Yes - - Yes - No - Simultaneous inference

2 Yes Yes - Yes Yes No - of data from both studies
at both pH.

Data Walker Yes Yes Yes Yes Yes No No Simulated inference

of data from both pH.
Strong prior on inferred
parameters.

Table 2 Predictions for total relative abundances at equilibriunder the assumption of host SCFA
absorption, relative to the full posterior for the no absiompmodel from Figure 4 & 5.

. Quantile
pH Quantity Effect 50% 25% 975%
5.5 Acetate - 0.64 0.90 1.07
5.5 Butyrate Down 0.24 0.42 0.54
55 Bac. Up 1.06 1.18 1.33
55 Rrec. Down 043 0.72 0.92
5.5 AcProd. - 0.80 1.72 2.28

6.5 Acetate Down 055 0.63 0.75
6.5 Butyrate Down 0.22 0.44 0.60
6.5 Bac. - 1.00 1.01 1.03
6.5 Rrec. Down 040 0.75 0.98
6.5 AcProd. - 0.03 1.43 2.14



