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Abstract

We demonstrate diversification rather than optimisation for highly interacting organisms in a well
mixed biological system by means of a simple model of coevolution. We find the cause to be the complex
network of interactions formed, allowing species that are less well adapted to an environment to succeed,
instead of the ‘best’ species. This diversification can be considered as the construction of many co-
evolutionary niches by the network of interactions between species. The model predictions are discussed
in relation to experimental work on dense communities of the bacteria Escherichia coli, which may coexist
with their own mutants under certain conditions. We find that diversification only occurs above a certain
threshold interaction strength, below which competitive exclusion occurs.

1 Introduction1

2

Understanding how diversity arises through evolution and is sustained in an ecosystem is an important3

issue. One of the key questions therein is whether interactions between organisms enhance or suppress4

diversity. If there is no explicit symbiotic interaction, it would be expected that the competition for a given5

resource leads to exclusion of many types. This results in monodominance, i.e., the survival of the fittest, as6

determined by Gause’s competitive exclusion principle [1]. In contrast, in the presence of strong interactions,7

diversification has been shown to occur both in numerous models and in experiment[2][3]. We attempt to8

understand the relationship between interaction and diversity at a general level, and will relate our work to9

experimental findings on evolution in Escherichia coli [4].10

We show that the diversification can indeed be facilitated by the interaction, using a range of different11

fitness concepts. We do this by adopting a slightly modified version of the Tangled Nature (TaNa) model12

[5, 6, 7]. In addition to the standard, inter-specific interaction in the TaNa model, we allow types to differ in13

‘intrinsic fitness’ - the fitness of a type in the environment, in the absence of other types. A self-supporting,14

dominant genotype may coexist with, or be displaced by, a number of other genotypes that are less efficient15

competitors for the resource individually, provided that strong enough interactions are permitted. Diversity16

is maintained via the complex network of interactions, and we demonstrate a cutoff interaction strength17

below which monodominance persists. We split the ‘intrinsic fitness’ of a type into density dependent (i.e.18

the interaction with own type) and density independent parts, and study them separately. The conditions19

on the interaction strength are, respectively: (1) the net positive interaction with other types is greater than20

the density dependent fitness, (2) the net positive interaction with other types is greater than the density21

independent fitness difference between types.22

The idea that diverse states can be supported by interaction is not new. Gause’s competitive exclusion23

principle states, in the general case, [8] that “the dimension of the environmental interaction variable is an24

upper bound for the number of species that can generically exist at steady state”. Although environmental25

interactions cannot in general be uniquely identified, and so this dimension is not known, it is still possible26
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to support high diversities robustly[9][10] (i.e. still supported with a small change in the environmental27

parameters). This diversity remains finite even in the case of an infinite environment interaction variable28

[11], as species must be ‘different enough’ [12] to coexist stably. In addition, a greater number of species29

than environmental factors may be supported by oscillations or chaos, e.g. [13][14][15]. The appearance30

of diversity in a system with strong interaction is therefore not a surprise by itself, as each interaction31

contributes to the effective dimensionality. Still, it is important to understand how diversity is mediated by32

the interaction.33

We follow Robert May [16] in using generalised, random interactions. In his book he discusses the34

ecological implications of such models in detail; we will be looking at the effects of evolution on that stability.35

Such simple models may most accurately describe molecular replicators (e.g. [17]), and simple bacterial36

systems. However, because only the net interaction and reproduction probability is considered, there are37

other biological cases which can be approximated by this approach.38

Our model is individual based without any individual aging, considering a generalised system of organisms39

so that interactions are random. Genotype space is predefined, so that the interactions between all possible40

organisms are fixed from the start, and mutations are local. In the spirit of other null models, these41

interactions are not correlated in this version of the model. We consider one reproduction attempt as the42

basic unit of time, and we allow mutation to occur during the population dynamics. The total population is43

a result of the dynamics. We will consider an intrinsic fitness landscape in the presence of strong interactions.44

For general background reading on individual based modelling and for discussion on many basic features the45

reader is referred to [18], to [19] for a population dynamics perspective, and [20] for a genetics point of view.46

The features described above mean that the existence of diversity can be seen to arise in the following47

way: from an initially monodominant state, we find that evolution forces a search of genotype space for the48

most stable configurations. Often, these states are diverse, provided the intra-specific competition exceeds49

inter-specific competition (or, equivalently, the beneficial inter-specific interaction is greater than the intrinsic50

fitness). Such diverse states do not exist for low interaction strength, and all states are diverse in the limit of51

very high interaction strength. Stability is determined by the properties of a given configuration in genotype52

space, and states are, on average, more stable as time progresses. In addition, we find a sharp threshold in53

interaction strength below which diversity does not occur.54

2 Definition of the Model55

We now define the Tangled Nature model. Individuals are represented as a vector Sα = (Sα
1 , Sα

2 , ..., Sα
L) in56

genotype space S. The Sα
i take the values ±1, and we use L = 20 throughout, giving 220 = 1048576 possible57

types. Each S string represents an entire type with unique, uncorrelated interactions. The small value of58

L is necessary for computational reasons as all types exist in potentia and have a designated interaction59

with all other types1. There are therefore (220)2 interactions to be considered in this model. We consider60

random interactions for simplicity, which would be correlated in reality. Introducing significant correlation61

whilst maintaining randomness in this relatively small hypercubic genotype space has proved difficult, and so62

we consider uncorrelated interactions here. Note that controlled correlations have been achieved in another63

version of the model [21].64

We refer to individuals by Greek letters α, β, ... = 1, 2, ..., N(t). Points in genotype space are referred to65

as Sa,Sb, ..., and any number of individuals may belong to a point in genotype space Sa.66

In the original TaNa model, individuals α are chosen randomly and allowed to reproduce with probability67

poff :68

1When discussing the model, we refer to points in genotype space as a type. It is a matter of interpretation whether we
consider genotype space to be ‘coarse-grained’ (resulting in each genotype being a different species - valid when k and ε are
‘large’ so that genotype differences affect reproduction probability greatly; see Eq. 2 for definitions), or whether we consider
genotype space to be a small sample of a much larger space, meaning genotypes are types of a base species (which would be
valid when k and ε are small, and so all genotypes have similar reproduction probabilities). As we operate in neither extreme
and reproduction is asexual, the distinction between species and type is difficult.
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poff (Sα, t) =
exp[H(Sα, t)]

1 + exp[H(Sα, t)]
∈ (0, 1) (1)

They are then killed with probability pkill, which is a constant parameter. The difference between the69

original model and the one used here is the definition of the weight function H(Sα, t). The original version70

used was:71

H0(S
α, t) =

k

N(t)

∑

S∈S

J(Sα,S)n(S, t) − µN(t) (2)

72

Here k (≡ 1/c from previous papers) determines the maximum strength of interactions, N(t) is the total73

number of individuals at time t and n(S, t) is the number of individuals with genotype S at that time. The74

interaction matrix J(Sα,S) represents all possible couplings between all genotypes, with Jii = 0 always and75

Jij = Jji = 0 with probability Θ. If the interaction is not zero, then Jij and Jji are both generated randomly76

in the range (−1, 1), so that mutualism, predator-prey and competition are all possible, but amensalism and77

commensalism only occur in the case when one interaction is randomly generated to be very small. Since78

the functional form of J(Sa,Sb) does not affect the dynamics, provided that it is non-symmetric with mean79

0, we choose a form of the interaction matrix that speeds computation [5]. In the analysis sections, we will80

use shorthand versions: Jab as the interaction of an individual from type b on an individual from type a,81

and na as the number of individuals with genotype a.82

In the extended model we consider here, we also allow an intrinsic fitness term, representing the different83

ability of types to survive in the environment. There are at least two possible ways of doing this - either as84

an density dependent fitness term, or a density independent fitness. With these fitness concepts, correlations85

can be introduced easily so we will look at both the case of uncorrelated and correlated landscapes. The86

correlation we choose is a type of Fujiyama landscape2 [18] defined as follows. One type α has a fitness87

of 1, and with each mutational step away from this type we subtract ∆ (= 0.1 in simulations), down to a88

minimum of 0. An uncorrelated landscape is generated with each type having a fitness drawn uniformly89

from (0, 1). See Sect. 3.2 for an explanation and Fig. 2 for results. The modified weight functions take the90

following forms:91

1. Density Dependent fitness (or equivalently, the interaction with an individual’s own type), defined by:92

Hd(S
α, t) = H0(S

α, t) +
ε

N(t)
n(Sα, t)E(Sα) (3)

93

Here, ε is the magnitude of the density dependent part of the ‘intrinsic fitness strength’ and εE(Sα) is94

the intrinsic fitness3 of individual α. E(Sα) is determined according to the case studied:95

1(a) Uncorrelated, density dependent intrinsic fitness landscape.96

1(b) Correlated, density dependent intrinsic fitness using a ‘Fujiyama’ landscape.97

2. Density Independent fitness, defined by:98

Hi(S
α, t) = H0(S

α, t) + εIE(Sα) (4)

99

Here, εI is the magnitude of the density independent part of the intrinsic fitness strength. Ei is again100

determined by the case studied:101

2Named because it has a single, large peak.
3We do not merge it with the J term in Eq. 2 in order to allow different values of the strengths.
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2(a) Uncorrelated, density dependent intrinsic fitness landscape.102

2(b) Correlated, density dependent intrinsic fitness using a ‘Fujiyama’ landscape.103

All individuals of the same type will have the same weight function and therefore the same offspring104

probability at a given time; i.e. if individual α was from type a then H(Sa) = H(Sα). Reproduction occurs105

asexually, and on a successful reproduction attempt two daughter organisms replace the parent, with each106

Sα
i mutated (flipped from 1 to -1, or from -1 to 1) with probability pmut. Thus mutations are equivalent to107

moving to an adjacent corner of the L-dimensional hypercube in genotype space, as discussed in [5].108

A time-step consists of choosing an individual4 α randomly, and processing according to:109

• α is allowed to reproduce with probability poff .110

• α is killed with probability pkill. (if α reproduced, it is one of the two daughter organisms that is111

killed).112

We define a generation as the amount of time for all individuals to have been killed, on average, once.113

For a stable population size, this is also the time for all individuals to have reproduced once, on average. The114

diversity is defined as the number of genotypes with occupancy greater than 20 to eliminate unsuccessful115

mutants from our count, and is called the wildtype diversity. This definition comes from the observed116

population structure, as discussed in the next section. The total number of genotype points occupied is117

approximately L times the wildtype diversity.118

Unless otherwise stated, the parameters used will be: Θ = 0.2, µ = 0.01, pmut = 0.015, ε = 2.0 and119

pkill = 0.1; see [5] for more details. These parameters are selected to allow the population to remain120

moderately high (to avoid accidental extinction), and to be well away from the mutation threshold present121

in this system [6] (c.f. [17]: as the mutation probability is increased, the time spent for the system to find122

a quasi-stable state - described in the next chapter - increases until it becomes infinity, and the quasi-stable123

structure described below is lost). The results are robust to moderate parameter changes; that is, the same124

qualitative behaviour can be found for all small parameter changes by making an appropriate small change125

in the other parameters. In particular, the cutoff for diversity persists over a region of other parameters,126

although the value of the cutoff might change slightly.127

For case 1(a) and case 2(a), the initial conditions are determined by allowing the system to find a128

monodominant state by running the system for 5000 generations with all interaction disabled (k = 0)129

(starting from a random set of individuals), thus one of the best competitors in the initial set is selected.130

Then the interaction was enabled by setting k to the desired value. For case 1(b) and 2(b) of the Fujiyama131

landscape, we simply start the whole population on the fitness peak.132

2.1 The reproduction equation133

Eq. 2 consists of two terms: the first is an average interaction term, and the second a resource competition134

term with all other individuals. Thus k controls the strength of the average interaction and therefore has135

relation to a density (as closer individuals will interact more strongly). This makes our model valid for136

systems in which the population density is roughly constant in time, and individuals compete for a single,137

fixed quantity of resource (determined by µ). Clearly this is true of all systems in steady state and will be138

approximately true of many other systems.139

The introduction of Eq. 1 is in order to turn the infinite ranged H into a probability. One could instead140

treat H as a stochastic growth rate, and use e.g. the Gillespie algorithm [22][23]; this defines the time step141

as the expected waiting time to the next event instead of using a fixed time step as we do. We do not142

choose to do it this way for two reasons. Firstly, there is no reason to assume that the rate of increase of a143

species (given by poff − pkill) will be linear in the quantities defined in H . We have exchanged linearity for144

4In previous versions a different individual was chosen for reproduction and killing actions. Here we select only one individual
and process it for reproduction and killing for code efficiency reasons - above the level of fluctuations the two methods are
equivalent.
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the logical simplicity of having an explicit poff . Secondly, our method is computationally easier. The form145

of Eq. 1 was chosen for its simplicity, and the particular form is not essential to the model. Almost any146

monotonic continuous mapping of H to poff will give equivalent qualitative results (this is tested for a few147

functions, although no proof can be given due to the complexity of the results).148

Our reproductive form, then, assumes that interactions sum additively only when close to equilibrium,149

and that the reproductive advantage gained decreases for additional interactions giving a nonlinear form.150

This can be considered as a rule of diminishing returns - if there is a net benefit for an individual, each151

additional benefit results in a smaller effect (in poff ). The ordering of offspring probabilities poff (Sα, t)152

is unchanged by this map; only the differences between offspring probabilities will change. The effect is153

therefore limited to fluctuations as all features of {H(Sα, t)}α will exist in {poff (Sα, t)}α as well. The form154

of this equation does not appear in many mean field equations - see Sect. 3.2 and [24].155

Using a constant killing probability pkill is a simplifying approximation, as selection certainly will act156

by differential killing as well as differential reproductive success. However, the dynamics in our model are157

qualitatively the same without this restriction (provided pkill is not close to 1). This symmetry between158

selection (i.e. killing probability) and reproductive ability exists in our model because we do not include159

any individual aging. More complex relations are required in models which permit reproduction only for160

individuals which have reached a certain age [25].161

To understand the meaning of the additional density dependent fitness term in case 1 (Eq. 3), we consider162

the weight function of a system with only one type a, H(Sa) = εE(Sa) − µn(Sa) since N = n(Sa). If we163

assume that the system is in a steady state (Poff = Pkill), then H(Sa) = H∗ = − ln( 1
pkill

− 1), which is164

constant. Thus we find n(Sa) = εE(Sa)+|H∗|
µ , meaning that E(Sa) determines how numerous type Sa would165

be if alone in the system. The same result is obtained for the case 2 - the differences are apparent only when166

more than one species is introduced; see Sect. 3.2.167

3 Results168

3.1 Observed behaviour169

As in the basic Tangled Nature model, the system experiences a number of ‘quasi-Evolutionarily Stable170

Strategies’ (called q-ESSs5 for brevity), during which a single genotype or set of genotypes is present with171

constant average occupancy. These q-ESS may end abruptly, leading to a transition phase before a new172

q-ESS is found. For the parameter ranges we study, the transition phase usually lasts for tens of generations173

and so is instantaneous on an evolutionary timescale. This behaviour is shown in Fig. 1, with some major174

events labelled. The qualitative behaviour described here is observed regardless of the form of the intrinsic175

fitness.176

The q-ESS phases have several species (from 1 for small k up to about 6 for large k) with large, stable177

populations, and we call these species wildtypes. The wildtypes are generally separated in genotype space178

and are surrounded by mutant types with much lower population. These mutants do not have poff large179

enough to counteract the death rate, and as such are dependent on the mutations from the wildtype species180

for their existence; therefore their species lifetimes are short. The species abundance distribution is log-181

normal on average [5] if only wildtypes are considered. Transitions between q-ESS states last for only tens of182

generations at these parameter values; however it is still possible for a species to mutate over large distances183

in genotype space in this time. When a new type is successful, it increases in number at the expense of the184

types it interacts with; by this time another type which benefits from the first may be found, and so there185

is an effective ‘selection gradient’ against the dominant species until a q-ESS is reached [5].186

Fig. 2 shows that fitness of case 2(a) (uncorrelated, density independent landscape) yields a non-unity187

diversity at k = 0, due to the high level of neutrality in the system. This is because species with similar188

(high) fitness are plentiful (as εI is uniform distributed) and the transition time between them is high, so189

average diversity measures pick up diverse states often. This would not be the case if density independent190

5Named after Maynard Smith’s ‘Evolutionarily Stable Strategies’. ‘Quasi’ refers to the (in)stability of the strategy to
collective stochastic fluctuations. See [26] for a more full discussion.
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Figure 1: A sample run (k = 10, density dependent fitness) showing all genotypes with occupations greater than 20 as an unordered
genotype label. Times shown correspond to different cross-over situations. (a) is from the original monodominance to a diverse state,
which 100 generations later becomes more diverse again. (b) shows a cross-over from one diverse state to another, which at (c) becomes
a new monodominant state. Then at (d) the system returns to a new diverse state.

fitness peaks were very sparse and of different heights, in which case Gause’s Competitive Exclusion Principle191

would act.192

In contrast, the appearance of diversity in cases 1(a), 1(b) and 2(b) follow another pattern. In these193

cases, at low k there is monodominance, and at high k there is high diversity. Also in all cases, the cross-over194

region behaves in the same way, with a rapid increase from zero at some characteristic kmin, and then a195

steady increase towards a saturation diversity. Diverse states occur for lower k values for case 2(b) than196

case 1, and the existence and approximate value of a cross over in these cases can be shown by a mean field197

argument (see Sect. 3.2).198
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Figure 2: Left: k dependence of the average diversity of an evolved system, taken for 40000 − 50000 generations and 500 runs per
data point for the case 1, density dependent (ε = 2, εI = 0) fitness, and case 2, density independent fitness (ε = 0, εI = 2). Case (a)
has rugged random fitness landscape and case (b) has a Fujiyama landscape. Right: A closer look at the low-k region. Note that case
1(a), 1(b) and 2(b) display the same qualitative behaviour which can be understood at the mean field level, see Sect. 3.2.

For case (b), we consider the proportion of time that the most efficient type is observed in the system199

for varying k values in Fig. 3. We see that the most efficient type is always in existence for small k, and200

there is a threshold at around k = 0.8 (case 2(b)) or k = 1.8 (case 1(b)) above which the most efficient type201

is no longer always present - it may be entirely replaced or drop in numbers to the point at which it is not202

observed during every generation. This means that in case 1 the most efficient type can be replaced, but not203

coexist, for a range of k; for case 2, the most efficient type can coexist without possibility of replacement for204
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a range of k. These results are understood in Sect. 3.2.205

0 5 10 15 20 25
Interaction strength k

0

0.2

0.4

0.6

0.8

1
Pr

op
or

tio
n 

of
 ti

m
e 

w
ild

ty
pe

 f
ou

nd

Case 2(b)
Case 1(b)

0 1 2 3 4 5 6
Interaction strength k

0

0.2

0.4

0.6

0.8

1

Pr
op

or
tio

n 
of

 ti
m

e 
w

ild
ty

pe
 f

ou
nd

Case 2(b)
Case 1(b)

Figure 3: Left: The proportion of generations that the most efficient type is observed in for case 1(b) (density dependent fitness) and
2(b) (density independent fitness), as a function of interaction strength k, averaged over 100 runs per k value. Right: A closer look at
the low k region.

We now analyse case 1(a) (uncorrelated density dependent fitness) in more detail. Fig. 4(a) shows the206

selective drop of Ei with increasing k. The appearance of diversity is clear when considering the ratio of total207

interactions to intrinsic fitness, R =<
k

P

Jijnj

εEini
> shown in Fig. 4(b). At k ≈ 5.55, R = 1, so the average208

interaction is greater than the average intrinsic fitness for k > 5.55. For k >∼ 10, R ∼ k as interaction becomes209

the dominant driving force and selection acts to maintain positive interactions. For large k, each term in210 ∑
Jijnj is already maximised by selection, and is therefore independent of k (again ignoring fluctuations).211

For k ≤ 5.55, interactions do not contribute to fitness of the wildtype. For k ∈ (5.55, 10), the relative212

importance of the two selection forces changes. Below k = 5.55 diverse q-ESS states are not found6 as213

interaction is always weaker than intrinsic fitness leading to monodominance. Manual examination of the214

runs confirms that the diverse states found for k < 5.55 never have temporal stability, and that diverse,215

temporally stable states exist for k = 5.55 which correspond to q-ESS.216
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Figure 4: Analysis of case 1(a). Left: < Eα > as a function of interaction strength k, which decreases towards the mean value of
1/2 for large diversities, demonstrating the decline of importance of individual efficiency as a selection factor. Right: Average value of
the ratio of the relative interaction strengths R as a function of k, approximately a straight line for k >∼ 10.

The number of q-ESS switches is higher in high k systems than in low k. At low interaction strengths,218

monodominant q-ESSs tend to remain for the entire run, with a small possibility of a switch to another219

6The apparent non-unity diversity below the threshold value appears to be due to occasional mutant fluctuations above the
wildtype threshold chosen.
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monodominant q-ESS with higher intrinsic fitness. As interaction strength increases, the number of q-ESS220

switches also increases leading to a greater rate of exploration in genotype space. It was shown in [5] that221

the length of q-ESS epochs increases logarithmically with time, as does the average population size. It222

would appear that the additional stability of large populations to fluctuations plays a role in determining223

the stability of the q-ESS. In addition, the properties of the genotype space near extant types plays a large224

role in determining the stability of a state.225

3.2 Mean field predictions226

For case 1 and case 2(b), we can show the existence of a cross-over from monodominance to diverse states in227

k by a simple argument from the definition of H , although the nature of the cross-over is not determined by228

this argument. This mean field result ignores any fluctuations in the system; however, the result provides a229

surprising match with observation. We can also simply show that random, density independent fitness will230

not allow monodominance.231

We consider the Weight Function H for the case where species a dominates, and a new species b is added232

to the system (na � nb), and require na + nb = N ≈ na. The requirement for invasion is that Hb > Ha so233

that pb
off > pa

off . However, when nb � na a diverse state must exist if Ha > Hb, and competitive exclusion234

will occur if Ha < Hb in this case.235

3.2.1 Case 1: Density dependent fitness236

For type a, Eq. 3 becomes:237

Ha =
knbJab

(na + nb)
+ εIEa

na

(na + nb)
− µ(na + nb) (5)

≈ εIEa − µna (6)

Similarly for type b:238

Hb =
knaJba

(na + nb)
+ εIEb

nb

(na + nb)
− µ(na + nb) (7)

≈ kJba − µna (8)

From above, we require Hb > Ha for invasion; therefore k > εEa

Jba
. For a diverse state, the converse must239

be true: k > εEb

Jab
.240

For case 1(a), Ea has been selected to be high initially, as a was successful on its own; similarly Jba will241

be selected to be high to ensure b can proliferate. Thus we can take Ea = 1 and Jba ≈ 1 for both case 1(a)242

and 1(b). Thus there is a positive threshold at around kmin ≈ ε = 2. It should be a little less for case 1(a)243

as there is a small variation in Ea below unity.244

The inverse relation provides a different value, as neither Eb nor Jab have been selected for - we take245

mean values to get an estimate. Eb is uniform distributed on (0, 1) and thus has mean 0.5, and we take246

the mean7 Jab ≈ 0.2. We therefore find that the minimum value of k for a diverse state to exist is around247

kmin = 2.5ε = 5. For k ∈ (2, 5) invasion is possible coexistence is highly unlikely. Fig. 3 shows that248

replacement of the wildtype occurs at just below k = 2 and Fig. 2 shows that diverse states exist for249

k > 5.55.250

In this case, all interactions should be mutualistic; the ratio na

nb
= kJab−εEb

kJba−εEa
should be positive and of251

order 1 for stability; this requires both Jab and Jba are positive.252

7
J has a mean of zero, but here we are taking the mean of the positive part of the distribution, which has non-zero mean.
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3.2.2 Case 2: Density independent fitness253

For type a, Eq. 4 becomes:254

Ha =
knbJab

(na + nb)
+ εIEa − µ(na + nb) (9)

≈ εIEa − µna (10)

Similarly for type b:255

Hb =
knaJba

(na + nb)
+ εIEb − µ(na + nb) (11)

≈ kJba − µna + εIEb (12)

Using Hb > Ha we find k > εI

Jba
(Ea − Eb) for invasion. For diversity the converse must also be true:256

k > εI

Jba
(Eb − Ea). For k 6= 0 and case 2(a) of a random fitness landscape, the difference Eb − Ea can be257

arbitrarily small and so can always be satisfied for some Jab and Jba. Therefore diverse states always exist258

(for large enough genotype spaces). However, diverse states are not always realised depending on whether259

such a configuration exists in the local genotype space.260

For case 2(b) with a Fujiyama fitness landscape, Ea − Eb = ∆ = 0.1. Therefore invasion will occur for261

k > εI∆
Jba

≈ 0.2 (as Jba can be selected to be high). The converse equation requires k > − εI∆
Jba

which can262

always be satisfied; therefore diversification can always follow invasion. Only for both k >∼ 1 and negative263

Jba will exclusion of the fittest type occur. Fig. 3 shows that replacement of the wildtype occurs at just264

below k = 1 and Fig. 2 shows that diverse states exist for k > 0.5.265

Note that in the case 2, diverse states may be parasitic/predatory or mutualistic, depending on the differ-266

ence in fitness between types. Simple rearrangement of the above weight function yields na

nb
=

Jab+
ε
k
(Ea−Eb)

Jba−
ε
k
(Ea−Eb)

.267

This ratio must be positive for a diverse state to exist, and of order 1 for stability. Unless ε
k (Ea − Ej) is268

small, this implies Jba and Jab are of opposite signs. Thus, both mutualism and predator-prey interactions269

are possible.270

This very simplistic analysis shows that typical species should not be able to coexist below the value271

of kmin. It is surprising that the system explores many exceptional species and even these cannot remain272

in stable coexistence below the the mean-field threshold value (approximately, at least). A diverse state at273

low k is not stable to invasion from mutations; i.e. neighbouring types in genotype space that satisfy the274

above condition that Jba and Jab are both large are not stable to fluctuations. Therefore, these states are275

not realised for long periods of time (when compared to q-ESS), and appear infrequently in time average276

measures. On a mean field level, a cutoff at some value is inevitable as coexistence is impossible for k ≤ ε277

(case 1) or k ≤ ε∆ (case 2(b)). The analysis required to show the true nature of the cross-over is too complex278

for inclusion here and will be studied in future work.279

4 Discussion280

In our model, we have found that there will be a cross-over from monodominance to a diverse state as281

the interaction increases. There appears to be a critical value of interaction strength beyond which the282

monodominance is broken down. For rugged fitness landscapes, it is vital that the fitness of individuals283

is (to some degree) density dependent for a cutoff in diversity to exist. The cutoff appears in the density284

dependent part of fitness for very rough fitness landscapes, and also appears in the density independent part285

for highly peaked fitness landscapes. The relative importance of each will depend on the specifics of the286

system studied. In future work, it will be important to understand the nature of the cross-over theoretically,287

beyond the naive estimate of the mean-field type calculation given in Sect. 3.2.288
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Using density dependent intrinsic fitness predicts that replacement of a ‘fitter’ type can occur at lower289

interaction strength than coexistence. Using density independent intrinsic fitness predicts that coexistence290

should occur at lower interaction strength than replacement of a ‘fitter’ type. This is certainly a feature of291

working in a fixed genotype space; it will be important to establish whether this is still true in models with292

correlated interaction matrices.293

Each evolutionary course can be different in the simulation. If the initial type has neighbours in genotype294

space that interact favourably with each other and negatively against the wildtype, then it will quickly go295

extinct and (possibly several) q-ESS switches are observed. Other initial conditions allow the interactions of296

local mutants to favour the wildtype, and monodominance continues for a longer time, possibly beyond the297

timescale of the simulation. On a transition from one q-ESS state to another, our model predicts that at low298

interaction strengths only monodominant states can occur. However, if the interaction strength k ≥ kmin299

then all initial wildtypes should be able to diversify eventually via an adaptive walk. If k � kmin (> ε), the300

contribution to the weight function from the intrinsic fitness becomes negligible and the system reduces to301

the original Tangled Nature model with the weight function H0, meaning all states are diverse.302

A similar cutoff was observed for diversification of several types of Escherichia coli (e. coli) by Kashiwagi303

et al.[4]. In this experiment the culture was well-mixed and fed with glutamate, the sole nutrition source (of304

nitrogen). Through mutagenesis, evolution of a single gene was studied - the gene for glutamine synthetase305

production, which synthesises glutamine from glutamate. Since the glutamine synthesis is necessary for the306

growth of the bacteria in this experiment, those with the higher activity of glutamine synthetase will result307

in faster growth of the bacteria. Indeed, in a low population density condition, only the fittest type (i.e.,308

that with highest enzyme activity) survives. However, in a dense condition, multiple types including those309

with much lower enzyme activity coexist. Interaction is (amongst other things) via leakage of glutamine,310

and removal of glutamine from the environment confirms survival of the fittest.311

We can identify our interaction strength k as a surrogate to bacterial density in the experimental setup,312

as the strength of interaction felt between cells will increase when they are packed together more closely8.313

The comparison is valid for approximately constant population size, which is approximately the case in both314

experiment and model. Increased density will increase inter-specific interactions more that intra-specific315

interactions, as the addition of a new substance to the cell will be more significant than the addition of the316

same amount of an already present substance. Our predictions appear to be consistent with the experiment,317

and with the subsequent observation that cutting off the interaction prevents the diversification [27].318

Our theoretical results enable us to probe the underlying factor allowing diversification that is unobserv-319

able in real systems. Essentially we require both:320

1. The mean realised interactions for all types are equal to or greater than their own intrinsic fitness.321

‘Intrinsic fitness’ is an absolute measure if fitness is density dependent, but a relative measure if fitness322

is density independent. The greater the ratio of the interaction strength to the intrinsic fitness strength,323

the less selection pressure acts via the type’s efficiency in the environment. Thus all types gain more324

from each other than they do from the environment.325

2. The possible mutations from the wildtype reinforce themselves, or other types, more than the wildtype.326

This is a constraint of the local genotype space, and means that the mutant does not interact more327

positively with the wildtype than with itself.328

Our model is quite general and so can be considered of relevance to many evolutionary systems. The329

only fitness concept that fails to give a reasonable interaction vs. diversity graph is uncorrelated density330

independent fitness; this would not be considered realistic. We conclude that there should be an interaction331

cutoff below which no diverse states are found, above which diversity can arise in the absence of space with332

a single resource.333

8Note that this is an additional density dependence to the one explicitly included in the first term in Eq. 2, which represents
the likelihood of and individual α meeting an individual of type S.
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