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Abstract

Neutral dynamics occur in evolution if all types are ‘effectively equal’

in their reproductive success. From population dynamics, the definition

of ‘effectively equal’ depends on the population size and the details of mu-

tations. The observed neutral genetic evolution in extremely large clonal

populations can only be explained under current models if selection is

completely absent. Such models typically consider the case where pop-

ulation dynamics occurs on a different timescale to evolution and there

are at most two competing types. However, mutations are not rare in a
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whole population, then the whole distribution of types must be consid-

ered. We show that this has important consequences for the occurrence

of neutral evolution. In highly connected type spaces, neutral dynamics

can occur for all population sizes despite significant selective differences,

via the forming of effectively neutral networks connecting rare neutral

types. Biological implications include an explanation for the high diver-

sity of rare types that survive in large clonal populations, and a theoretical

justification for the use of neutral null models.

Keywords: neutral network — fitness landscape — holey landscape

1 Introduction

The evolution of a population is influenced by both chance events and selec-

tion. Selection acts on a population via differential reproductive success brought

about by heritable differences. Chance events include mutations that cause heri-

table differences and the random process of population dynamics. The perceived

relative importance of these various process has changed over time. Darwin

[1859] believed that selection with variation was paramount, but more recently

Kimura [1983] introduced the ‘neutral theory of molecular evolution’ demon-

strating that chance in population dynamics best describes the fixation of many

mutations. This has since been extended to nearly-neutral mutations by Ohta

[2003] and others [Tachida, 1991, Nei, 2005]. Very recently the relative impor-

tance of chance has again been challenged [Hahn, 2008]. The current genetic

inference framework [Felstenstein, 1988] measures phylogenetic relationships in

terms of the number of mutations and therefore requires neutral evolution of at

least some loci. It is therefore essential to address the relevance of the neutral

evolution as a null model.

By current methods it is estimated that up to 50% of loci in some bac-
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terial genes [Charlesworth and Eyre-Walker, 2006] are shaped by adaptation.

This leaves a huge proportion of the genome shaped by effectively neutral sub-

stitutions. Could undetected selection at these loci be relevant for evolution?

Mutations resulting in a small change to reproductive ability are common in

both coding and non-coding regions of the genome [Ohta, 1997], arising for

example via the stability of RNA folding [Aita et al., 2003], gene regulation

[Ohta, 2002] and increased efficiency of shorter genomes. Under the nearly neu-

tral theory of molecular evolution, each gene usually contributes independently

to reproductive success. Effectively neutral dynamics are observed for selection

less than some critical value which decreases inversely with increasing popula-

tion size. In very large bacterial populations, selective differences would have to

be essentially absent for neutral evolution to occur. Since (very) small fitness

differences are to be expected in all mutations, it is important to address why

neutral evolution should be observed at all for viruses and bacteria.

The standard theoretical approach to evolution is to assign ‘fitness’ to genes

under given genetic and environmental conditions, which translates to a re-

productive ability for the individual. In sexually reproducing organisms, genes

are regularly recombined in different combinations and over evolutionary time

an average fitness may be assigned to each gene by averaging over all possible

genetic environments. However, in asexually reproducing organisms, recombi-

nation is rare and gene interactions are more important in determining long

term reproductive success. In this case a better model is to assign a ‘fitness’ to

a combination of genes, i.e. to the type of the individual. Using this approach

we demonstrate that effectively neutral evolution may occur at relatively strong

selection in large populations, when compared with the more frequently studied

model of independent contributions to fitness from each gene.

Our model provides an extension to the nearly-neutral theory and permits
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effectively neutral dynamics for potentially infinite population sizes provided

that different genetic types may have the same fitness. An ‘effectively neutral’

network of types is formed, in which nearest neighbour types need not be com-

petitively neutral. Competitively neutral types are connected by less fit types

in a way that does not affect the statistics of the evolution of the population as

a whole. Previous results do not apply in our case because in large populations

the usual assumption of the separation of population dynamics from evolution-

ary dynamics may not hold. The expected number of mutations per generation

is large, but the absolute mutation rate need not be high.

Our model predicts the conditions for emergence of neutral networks with-

out a-priori assuming all types are equally viable. Neutral networks have found

application to viral evolution [van Nimwegen, 2006] and have been well studied

previously [Huynen et al., 1996, van Nimwegen et al., 1999, van Nimwegen and

Crutchfield, 2000]. The ‘holey fitness landscape’ [Gavrilets, 1999] is a theoreti-

cally approachable description of neutral networks. Our model is a step towards

relating models with neutral dynamics to non-neutral models.

In Section 2 we define a simple evolution model, for which relevent previous

results are interpreted with semi-rigorous arguments in Section 3. Section 4

uses these results to interpret a simulation study before which is discussed in

Section 5.

2 A conserved population nearly-neutral evolu-

tion model

A simple Moran birth/death process [Moran, 1962] is considered with clonal

reproduction in a type space. An individual is characterised by its type, i.e.

the alleles at a number of loci. The type determines reproductive probability
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using a ‘fitness landscape’ model to describe how reproductive success varies

with type. Three possible representative fitness landscapes are considered.

2.1 Definition of the model

A conserved number of individuals N are considered, with each individual i

belonging to a given type xi = (x(1)
i , x

(2)
i , · · · , x

(D)
i ) where D is the number of

loci and xi is the allele of the ith loci (taking integer values). Each type xi

has a fitness F (xi) which determines that types reproduction probability. A

generation consists of performing N of the following timesteps:

1. Select an individual i uniformly from the population which will be killed

at the end of the timestep.

2. Select an individual j of type xj for reproduction proportional to its fit-

ness, i.e. with probability poff (xj) = F (xj)/(
∑N

k=1 F (xk)).

3. Replace individual i with an offspring of individual j with initial type

xi = xj . With probability u a mutation occurs at a single loci, say x(α)
i ,

with α ∈ (1, D) each chosen with probability 1/D. The mutation involves

allele x(α)
i changing by +1 or −1 with equal probability.

If all fitnesses F (xj) are equal then the dynamics are neutral. We will now

define the various fitness landscapes F (x).

2.2 Fitness

To capture important qualitative features of the change in fitness with type, the

following three simple definitions of a fitness landscape are considered.

Landscape 1: The random uncorrelated fitness landscape is maximally rugged,
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and created by the following function:

F (x; s) = 1− sy(x), (1)

where y(x) is a random number generated uniformally in (0, 1) for each x. Hence

the fitness F (x; s) is uncorrelated between types and is in the range [1− s, 1].

This fitness landscape can also be related to simple correlated (i.e. smoothly

varying but random) fitness landscapes by rescaling. Consider a correlated

random fitness landscape with correlation length η, such that 〈F (x)F (x′)〉 ∝
exp(−(x − x′)/η). By rescaling mutation size and mutation rate (i.e. ‘coarse-

graining’ the fitness landscape) the correlated fitness landscape can be reduced

to an uncorrelated fitness landscape. Mutation at rate u creates a random walk

in type space for a given lineage [Yi-Cheng Zhang et al., 1990] in which the

mean population position ‖µ‖(t) = ‖
√∑N

i=1

∑D
d=1(x

d
i )2/N‖ ∝

√
ut at time

t. Therefore scaling space as x′ = x/η requires scaling mutation rate as u′ =

u/η2. The correlated fitness landscape in the unprimed variables is described

statistically by the random fitness landscape in the primed variables.

Of course, correlations in fitness are important for a range of parameter

values [Wilke et al., 2002] and our landscapes consider only the extreme cases.

Sufficiently large random correlated landscapes for a finite number of loci require

a great amount of care to construct [Laird and Jensen, 2006] and are therefore

not considered here. The random landscape is generated by using a pseudo-

random number generator with seed given by the location in type space x.

Landscape 2: The truncation fitness landscape is an extreme example of a

correlated landscape, given by:

F (x; s) = 1, if all |x(α)| < L,

= 1− s, if any |x(α)| ≥ L. (2)
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As before, the label α ∈ (1, D) refers to directions in type space. Equation 2

describes a ‘top hat’ function such that fitness decreases by an amount s outside

a square (in D dimensions) of side 2L. This represents type spaces with a single

well defined fit area, and has been well studied in the past [e.g. Kimura and

Crow, 1978]. As before the maximum fitness gradient is s.

Landscape 3: The linear fitness landscape has fitness increasing linearly in

all dimensions:

F (x; s) = 1 + s

D∑
α=1

x(α). (3)

Again the maximum fitness difference between neighbouring types is s, but

the maximum fitness difference over the whole population is unbounded (unlike

in landscapes 1 and 2). Here each allele contributes additively to fitness, but

alternatively multiplicative contributions could be considered. Since such a

landscape is more strongly selective than the additive case, it is less relevant to

neutral evolution and is therefore not considered here.

3 Theory

The nearly-neutral case with high mutation rates is difficult to approach analyti-

cally, and so we use simple semi-rigorous but informative ‘mean-field’ arguments

which are backed by numerical simulation. The size of the ‘neutral regime’ is

considered, i.e. the range of selection strengths for which effectively neutral

dynamics are observed.

3.1 Characterisation of neutral dynamics

Since neutral evolution is itself dynamically rich, a careful characterisation is

necessary. To describe a neutrally evolving population statistically we use some

theoretical properties of neutral evolution summarised by Lawson and Jensen
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[2007] without repeating the derivations. A correct model of neutral dynamics is

useful for calculations when selection is small but significant, which are usually

expanded around the neutral case [e.g. Traulsen et al., 2006].

A neutrally evolving population is described as a statistical distribution with

two important properties. The average type (or mean position) µ(t) is a vector

of the average alleles for each locus. The standard deviation w(t) describes the

variation in the population (which is referred to as a width in the reference).

The variables µ(t) and w(t) are random variables with known behaviours. The

average type µ(t) drifts in time [following a ‘random walk’, e.g. Bailey, 1964]

characterised by:

〈‖µ‖〉(t) ∝ tβ (4)

with β = 1/2 in a euclidean type space, where 〈‖µ‖〉 is the expected value of the

modulus of the average position. On less connected neutral networks β takes

different values [de Almeida et al., 2000].

The variation fluctuates strongly around a well defined time-averaged limit

w∗ defined as:

w∗ = lim
Tm→∞

1
Tm

∫ Tm

t=0

w(t)dt. (5)

Both the limit w∗ and its fluctuations can be calculated but for our purposes

we only need that the fluctuations are not zero for any population size N > 1.

We measure 〈w〉, the same quantity as w∗ without the limit Tm →∞.

We consider two possible statistically relevant effects of weak selection on

the neutral population distribution. The first is a change in β: an increase

corresponds to directional selection, and a decrease corresponds to stabilising

selection towards some fit type. The second effect is a change in 〈w〉 mean-

ing that selection changes either the variation in the population, or how this

fluctuates with time.
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To detect a change in variation, we note that the time-averaged variation

w∗ takes a different value to the ‘equilibrium’ variation wequil, defined to be the

value for which the expected change in time is zero:

〈dw

dt
〉w=wequil = 0. (6)

This is because there are asymmetric fluctuations in w around w∗. Selection

that acts to keep w(t) more constant will produce a contraction of 〈w〉 towards

wequil, and conversely for selection that increases the variation of w(t). A change

in wequil will likewise produce a change in the time-averaged variation 〈w〉. Thus

〈w〉 is an accessible measure characterising neutral dynamics and captures all

‘typical’ changes to the type distribution (since it characterises several aspects

of the distribution at once).

Because 〈w〉 depends on both the average variation in the population, and

the fluctuations in time of the variation, it is a robust indicator of neutral

dynamics. Although coalescent methods would have to be used to determine

with certainty whether the genealogy was affected by selection, 〈w〉 will capture

‘typical’ deviations away from neutrality. For example, a quantity of practical

importance is the distribution of genetic distances within a population. For

〈w〉 to be constant with changing selection despite a changing genetic distance

distribution, specific distribution changes must occur which are not typically

expected. Numerical simulations (see Appendix A) confirm that 〈w〉 captures

the genetic distance distribution with regard to effectively neutral dynamics.

3.2 Two competing types

It is instructive to review results of ”nearly-neutral theory” described by Ohta

[2003], which we recover in our model when mutation rates are low and only

two types compete at a given time. The derivation given here differs from the
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standard one because generations are continuous rather than discrete and our

focus is on a haploid population, but the result is the same. The higher mutation

rate cases are compared to this simple case.

A mutation occurs in a haploid population of N individuals with fitness

F = 1. The mutant type i is less fit with F (i) = 1− s. For no selection (s = 0),

the mutant type becomes extinct with probability 1− 1/N and so N attempts

are needed on average for fixation of the mutant type. The dynamics are called

effectively neutral for s 6= 0 if a less fit type fixates in O(N) attempts.

The problem is solved under the name of ‘Gambler’s Ruin’ [see e.g. Ash,

1970]. The ratio of the probability of ni increasing to the probability of decreas-

ing is 1− s + O(s2), with s considered small. By comparison to the Gambler’s

Ruin problem with this ratio, a population of the poor type i of initial size

ni(0) = 1 in a total population of N will eventually reach population size N

with probability:

ppoor =
s

(1 + s)N − 1
. (7)

The neutral case with s = 0 succeeds with probability p0 = 1/N . The ratio

ppoor/p0 is ‘exponential like’ in s with the characteristic scale:

s∗ =
2
N

, (8)

or equivalently, effectively neutral evolution is observed for s < s∗ = 2/N . s∗ is

called the critical selection value.

Selection acts in this case by preventing fixation of less fit mutant types,

and so ‘pinning’ the population to a fit type. In this case the above argument

can be extended to fitness landscapes with multiple high and low fitness areas.

Aranson et al. [1997] perform such an argument mathematically in a slightly

different fitness landscape to ours. By analogy to pinning in anomalous diffusion
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[Bouchaud and Georges, 1990, Ralf Metzler and Joseph Klafter, 2000], if there

is some maximum to the time the population can spend at fit sites then a

rescaling of the mutation rate will recover standard mutation-drift dynamics.

In this case fitness variation is irrelevant over long times. Alternatively, if the

time taken to leave fit types is unbounded then the absolute fixation rate of

mutants decreases with time - this is know as ‘subdiffusion’. Mathematically,

the average root-mean-square position 〈‖µ‖〉(t) ∝ tβ , with β < 1/2 and the

dynamics are not statistically neutral.

As u increases a range of types can coexist. We will address whether the

existence of a population distribution around a high fitness type allows faster

transitions between distant fit types, or if the low fitness of the surrounding

types prevents the establishment of a wide population distribution.

To summarise the nearly-neutral theory, if mutations are rare (Nu ¿ 1)

and selection is weak (s ¿ 1), effectively neutral evolution is expected for

s < s∗ ∝ N−1.

3.3 Predictions for a large population in a fitness land-

scape

When mutation rates are high, analytical techniques become difficult and we

will resort to simulation. However, some previous results yield predictions which

are summarised where available.

Landscape 1: the random uncorrelated fitness landscape as discussed repre-

sents a correlated landscape upon rescaling u. The critical selection s∗ ∝ N−α

is not simple to model theoretically and is the main target of the simulation

study.

Landscape 2: the truncation fitness landscape can be understood theoret-

ically as described mathematically by van Nimwegen et al. [1999] for a more
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general case. The population dynamics between the fit region and the unfit

region are related to the two-type case with mutation rate across the fitness

boundary depending on the specific population distribution. Within a single

region the dynamics are neutral. Since there are effectively only two types com-

peting regardless of D, the dynamics follow the low mutation rate case above

with the upper bound in selection strength for neutral dynamics s∗ ∝ N−1.

Landscape 3: the linear fitness landscape can also be understood theoretically

at large mutation rates, as discussed in detail by Kessler et al. [1997] for arbitrary

selection strength. The variation w ∝ (uN)1/2 for all selection s, and therefore

the effective fitness difference of individuals within the population is sdiff ∝
s(uN)1/2. The best and worse types compete with small effective mutation rate

as in the two type case with s∗diff ∝ N−1. Therefore s∗diff ∝ s∗(uN)1/2 and

by rearrangement the upper bound in selection strength for neutral dynamics

s∗ ∝ N−3/2. Additionally, the mean type performs a biased random walk in

the usual way [e.g. Bailey, 1964], with deterministic drift component v ∝ sdiffu

and variance component σ2 ∝ 1/N2. Deterministic drift dominates the random

walk if v > σ, or sdiff > s∗diff ∝ (Nu)−1 and again s∗ ∝ N−3/2. This holds for

arbitrary dimension D as all mutations have an equal chance of increasing or

decreasing fitness.

4 Results

Since the theoretical predictions for landscapes 2 and 3 correctly describe the

simulation results, we focus on the case of landscape 1, the random fitness

landscape. Results for all landscapes are presented in summary form. Non-

neutral dynamics are observed for s > s∗, where s∗ = min(s∗w, s∗µ) is the critical

selection found by observing changes to either the average variation (observed

for s > s∗w) or mean type (observed for s > s∗µ).
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We perform ensemble averaging over a large number (100+) of simulations at

a range of parameters, and use statistical bootstrapping techniques [Davison and

Hinkley, 1997] to provide accurate standard errors. The focus is the relationship

between population size and effectively neutral dynamics. To avoid repetition,

detailed results are given for the case of low dimension which is well under-

stood theoretically under truly neutral dynamics [Lawson and Jensen, 2007]. It

is important to stress that the general features discussed extend to arbitrary

dimension, including the genetically relevant infinite dimension limit.

We use the ‘data collapse’ method in order to evaluate the functional de-

pendence of the average variation and type on the selection strength s and

population size N . This works by applying simple transformations to data

from several different values of N to obtain the same functional form in s; see

Appendix B for details.

4.1 Effects on the average variation

As discussed, the time-averaged variation in a population provides a strong in-

dicator of neutral dynamics in a population. Fig. 1 (left) shows the average

variation in the population as a function of selection s. Each population size

displays a different ”effectively neutral” region s < s∗w(N, u, D) for which selec-

tion is invisible and the variation w(s) = w(0). As selection is increased above

s∗w the time-average variation decreases, either as a result in a change to the

equilibrium variation or the nature of fluctuations in the variation.

Considering only the effect of N on s∗w, the neutral data can be collapsed

as s′ = s/s∗w(N) and w′(s) = w(s)/w(s = 0) shown in Fig. 1 (right), with

s∗w shown as a vertical line. Accurate confidence intervals for s∗w are found by

statistical bootstrapping as described in Appendix B. For D = 1 the critical

selection is s∗(N) = 8N−0.94 (see Fig. 2 for error margins). The data collapse
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is intended only for s < s∗, though in this case holds over the whole parameter

region. The region s > s∗ corresponds to non-neutral dynamics. The critical

selection observed via a change in the average variation is of the general form:

s∗w = aN−α(D,u)Dβ(u), (9)

where a is a constant, β is an exponent for the dimension dependence and α

for population size dependence. We focus on the case of constant u such that

s∗w ∝ N−α(D) and measure α(D).

The data for landscape 2 (the top-hat fitness landscape) is fit similarly to the

Random Landscape. For landscape 3 (the linear fitness landscape), the fitting

procedure is more difficult since a general nonlinear form must be used for w(s),

so averages and plausible ranges of s∗ are estimated by eye for this case only.

The details for all cases and dimensions are summarised in Fig. 2. Theoret-

ical predictions for the scaling of the critical selection s∗ ∝ N−α are supported:

for landscape 2: the truncation landscape α = 1, and for landscape 3: the linear

landscape α = 3/2. For landscape 1: the random fitness landscape there is

a clear relationship with dimension, starting in D = 1 at a value away from

α = 1 and decreasing (close to linearly) with dimension towards α = 0 where it

remains for D →∞. The gradient of the decrease is mutation-rate dependent.

4.2 Changes in the average type

In the neutral case, the average type is a random variable performing a ‘random

walk’, that is, it undergoes drift according to 〈‖µ‖〉(t) ∝ tβ with β = 1/2.

When selection leads to fixation of a high fitness type then β < 1/2, and in a

fitness gradient β > 1/2. Using Eq. 4 a simplistic method to find the diffusion

exponent β is as the regression coefficient when plotting ‖µ‖ as a function of

time t on double logarithmic axes.
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The evolution of a population in a random fitness landscape is related to the

behaviour of a random walker in a random potential. Studying this numerically

is notoriously difficult [Bouchaud and Georges, 1990] and the above method

poorly captures the asymptotic behaviour. However, the short and medium

time scales that are of relevance to biological evolution are captured in β as

measured by the above regression method.

As expected from Eq. 4, β = 1/2 is observed for neutral dynamics as seen

for all selection strengths s < s∗µ (not shown). The critical selection observed

s∗µ in the mean position has the form

s∗µ = bDγ(u), (10)

for some constant b and exponent γ, with no dependence on population size N

for all N ≥ 500.

4.3 Variation as the important measure

Using the definition of s∗ = min(s∗w, s∗µ) and Equations 9 and 10, the dynamics of

the mean type provide an important constraint on neutral dynamics if s∗µ < s∗w.

By rearrangement:

α log(N) + (γ − β) log(D) < [log(a)− log(b)]. (11)

Therefore the signs of (γ − β) and [log(a)− log(b)] determine which constraint

holds as N and D become large. By regression in the dimension variable D,

these are empirically observed as positive over all tested parameter values. For

example, at u = 0.05 in the random landscape (γ−β) = 4.5± 0.7 and [log(a)−
log(b)] = 6.9 ± 0.8. The signs of the combined constants imply all terms in

Equation 11 are positive. Therefore at low N and D a change in the mutational
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drift rate can be observed before the population distribution changes shape.

However, if N → ∞ or D → ∞ then s∗w < s∗µ and s∗ = s∗w, i.e. we need only

observe the time-averaged variation.

4.4 Interpreting the results

A statistical description of neutral evolution was used to characterise the effect

of selection on a population distribution. This defined a ‘neutral regime’ in

which the population as a whole evolved effectively neutrally.

For low mutation rates Nu ¿ 1 all individuals are distributed over a maxi-

mum of two types that compete with each other. In this case neutral dynamics

are observed for s < s∗ ∝ N−α with α = 1, as is found in classical models. This

occurs regardless of the distribution of fitter types in the fitness landscape.

For high mutation rates Nu ≥ 1 the population forms a distribution over

many types. The relevant selection parameter s measures the maximum range

of fitnesses experienced by the population. Fitness landscapes with a single

maxima (Eq. 2), or with long range trends (Eq. 3 with s redefined as sdiff) also

have critical selection s∗ ∝ N−α with α = 1. However, fitness landscapes with

large fluctuations but no long distance trend (Eq. 1) allow neutral dynamics

to be observed for a larger range of population sizes N . In suitably connected

fitness landscapes such as that of genotypes (D → ∞) there is no effect of

population size on the critical selection strength s∗. When selection is below s∗,

taking the limit N → ∞ results in a neutral model. The uncorrelated random

fitness landscape is important because correlated random landscapes tend (as

1/
√

N) to uncorrelated ones as N →∞.

In the neutral regime for high mutation rates, the population contains a

large number of types with differing fitness. The fitness difference may be large

enough to be measured as selectively important at the level of single mutations,
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but is ignored at the population distribution level. Fig. 3 illustrates how distinct

fit neutral types may be connected by less fit types. Neutral types do not have

to be adjacent, but only within fluctuation range of each other, which is of

extension
√

uN mutations. It is only when selection strength s > s∗ (of order

1) that crossing unfit regions becomes unlikely.

Fig. 3 illustrates the importance of connectivity and hence the dimensional

dependence for neutral dynamics to be observed. Percolation theory [Grimmett,

1999] has been used to describe evolution on holey fitness landscapes [Gravner

et al., 2007], but it is difficult to apply to our case because the population forms

a wide distribution. As N → ∞ the proportion of truly neutral types tends

to zero and the fluctuation region becomes infinite. The fluctuation region

of a fit type contains intermediate fitness types (grey in Fig. 3) for which

the extinction is deterministically sure but occurs slowly. There is no well

determined threshold for these types as it depends on the distance from a fit

type. Hence the percolation argument as presented here should not be taken

beyond an illustrative ‘cartoon’, although the simple linear relationship of α

with dimension in Fig. 2 is indication that an analytical approach may be

fruitful. Using an alternative argument, van Nimwegen and Crutchfield [2000]

evaluate the time taken to cross variable sized fitness barriers, but the argument

does not extend easily to the case of a random fitness landscape.

5 Discussion

5.1 Relation to other works

We have described a mechanism by which a neutral network may form for

large clonal populations when fitness variation can occur on every mutation.

This provides theoretical support to models representing large populations with
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neutral networks [van Nimwegen, 2006] and holey fitness landscapes [Gavrilets,

1999, Drossel, 2001]. The model shows that a neutral network can form without

a-priori assuming that all types are equally viable.

Alternative models have been proposed that observe effectively neutral dy-

namics under selective conditions. Gillespie [2001] examines strong selection

and recombination, and finds that strong linkage of a neutral locus to a highly

selected locus permits neutral dynamics at the neutral locus at a rate indepen-

dent of population size. Lynch [2006] discusses how a similar effect is produced

by Eucaryotic genetic structure. Our result is the first that explains the prepon-

derance of apparently neutral selection for the large populations of effectively

clonal, prokaryotic organisms such as Bacteria.

The underlying mechanism for neutral dynamics occurring in non-equal

types is the formation of an effectively neutral network of types via a rugged

fitness landscape produced by gene interactions. The NK model for gene interac-

tions [Kauffman and Levin, 1987] provides one theoretical framework in which

very rugged fitness landscapes can occur in sexually reproducing organisms,

which has been studied [Ohta, 1997] in the nearly neutral model of molecular

evolution for low mutation rates.

An opposing effect in which neutral dynamics may lead to observed selection

can be seen for evolution on a neutral network [van Nimwegen et al., 1999,

Wilke, 2001, Forster et al., 2006]. This selection for mutational robustness

leads to populations spending the majority of their evolutionary time away from

unfit areas. Two differences may explain the apparent contradiction: firstly,

our model does not consider loci for which a large loss of fitness can occur on

a mutation. Secondly, we consider ‘fitness’ to be an unobservable modelling

tool, and therefore detect neutrality via changes to mutational drift rather than

considering the average fitness in a population. A deeper understanding of the
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relation between these models is needed.

In many other theoretical studies a large population N → ∞ is assumed.

This limit is not consistent with the assumption of small mutation Nu ¿ 1

and therefore a distribution of types must be considered. Under weak selec-

tion, we found stochastic evolution models are more typically appropriate to

the high dimensional space of genotypes (justifying the Coalescent [Donnelly

and Tavare, 1995]) or perhaps complex ecological traits (relating to Ecological

Neutral Theory [Hubbell, 2001]). Deterministic evolution models such as Adap-

tive Dynamics [Waxman and Gavrilets, 2005] are more appropriate to strong

or directed selection and simple phenotypic traits. Our model therefore pro-

vides important links between previously unrelated models, and provides an

explanation of the large number of cryptic asexual species.

5.2 Biological implications

The reproductive ability of real organisms is not well described by a static fitness

landscape over evolutionary time. Reproductive success is caused by a wide

range of features including environmental effects and interaction of individuals.

However, each of the landscapes discussed may qualitatively describe individuals

in a population for a time. The linear fitness landscape describes directional

selection, the truncation fitness landscape describes stabilising selection, and the

random fitness landscape is appropriate when there is fitness variation without

long range trends. We would therefore expect to observe each behaviour only

in a subset of type space for a given evolutionary environment.

The most important contribution from our model is a theoretical justification

for the widespread use of stochastic models of genetic evolution for large popu-

lations. Neutral or nearly neutral evolution can be a reasonable assumption for

large clonally reproducing populations even when there is fitness variation be-
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tween types. It is important to integrate the effects of large mutation rates and

high population sizes into the current theoretical frameworks. Although pop-

ulation size cannot be inferred from genetics data alone [Stephens, 2007] our

model demonstrates that the qualitative nature of dynamics need not change

with population size. Hence stochastic models for changing population sizes

experiencing weak selection are also reasonable. Our model is not directly ap-

plicable to genetics data, but does translate conceptually to problems involving

mutation of DNA. Neutral dynamics may naturally occur under different se-

lective conditions for recombining and non-recombining areas, which may be

important to inference about mitochondrial DNA [William et al., 1995, Rand

et al., 1994] and the Y chromosome (e.g. [Handley et al., 2006]).

The most useful model of biological evolution will differ from situation to

situation, particularly depending on the speed of recombination. Our model

best describes low recombination rates and therefore asexual populations. It

predicts that neutral dynamics can persist for much larger selection strength and

population sizes than standard models for sexual species predict. This explains

the existence of cryptic asexual species. The conditions required for our model

are that mutation rate is not small compared to the inverse population size,

and that genes interact to determine fitness. In this case a surprisingly ‘large’

selective advantage may be present in a population and neutral dynamics can

still be observed.

A Genetic distance within the population

We compare the measurement of 〈w〉 to the measurement of the time-average

population genetic distance 〈d〉 and a measure of its variance 〈d2〉. Fig. 4

illustrates a typical case for N = 100 and D = 3. All three measures show the

same critical selection strength s∗ = 0.16 and the average variation and genetic
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distance show the same variability. The measure 〈d2〉 is more variable because

it is a higher moment, but displays the same value of s∗.

Comparisons over multiple D ∈ (1, 5) and N ∈ (100, 1000) show the same

behaviour, with a correlation of > 0.99 between 〈w〉(s) and 〈d〉(s) and same

observed s∗ in all cases (not shown). Higher values of N have not been tested

as calculating 〈d〉 is computationally demanding and sampling from 〈d〉 reduces

accuracy.

B Data collapse

The data are collapsed to a single curve for s < s∗ by normalising the variation

and selection. The variation is normalised to 1 at zero selection, for which truly

neutral dynamics are observed. Selection is normalised to s′ = s/Nα, where α

is a dimension dependent constant to be determined.

To determine α we fit a broken-stick model to the data, i.e. a piecewise

linear function with two pieces. This is defined by log(w) = c1 for s < s∗, and

log(w) = c2 + c3 log(s) for s > s∗. This is fit by maximum likelihood of the

model parameters given the datapoints.

To determine confidence intervals for s∗ and α we use a ‘bootstrap’ method.

Since observations were taken at specific values of selection si there is uncer-

tainty in the values of w for the s in between. Sample si are obtained by

perturbing each si by an amount xi, with a ‘tent’ distribution of mean si and

extension (si+1 − si−1)/4 (i.e. the mean halfway point to its neighbouring

points). Sample variations wi for each value of selection si are obtained via a

bootstrapping of the n runs (that is, the average of resampling n values with

replacement). This provides a distribution of wi and si. These are once again

bootstrapped, so that each wi is sampled and a maximum likelihood s∗ is ob-

tained, giving a distribution for s∗. A linear regression is obtained for log(s∗) as
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a function of log(N), giving −α as the slope. Confidence intervals are obtained

via the regression variance.
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Figure 1: Ensemble averaged variation against selection for fitness landscape
1 (random and uncorrelated) as described by Eq. 1 with mutation probability
u = 0.5 and dimension D = 1, for a range of population sizes N . Left: Ensemble
averaged variation against selection. Each curve is flat for s < s∗w(N) i.e. w(s <
s∗w) = w(0). Right: The normalised variation against normalised selection for
the same data, collapsed using the method from the Appendix. The critical
selection s∗w ∝ N−0.94 is shown as a vertical line as an aid to the eye. Each
datapoint is the time average (over 50000 generations) of a simulation after
it has reached equilibrium, ensemble averaged over 200 independent runs with
standard deviations calculated using statistical bootstrapping.
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Figure 2: Exponent α for the population size dependence s∗w ∝ N−α as a
function of dimension. Error bars are 95% confidence intervals for the regression
fit for α (linear regression on a log-log scale for selection s against population
N). Shown are the data the for random fitness landscape (Eq. 1) at u = 0.5 and
u = 0.05, the ‘top-hat’ correlated fitness landscape (Eq. 2), and the linear fitness
landscape (Eq. 3). Dashed lines correspond to theoretical values. Horizontal
perturbations to the dimension have been made for visibility and do not reflect
fractal dimensions.
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Figure 3: Illustration of ‘connectivity’ in the random landscape model (Eq. 1)
for D = 2 and N = 100. The fitness landscape itself is shown. Selection values
are (left) s = 0.02, (middle) s = 0.04 and (right) s = 0.08. Types with fitness in
the range (0.99, 1) compete truly neutrally and are shown in black. Types in grey
have fitness in the range (0.98, 0.99) which is high enough to survive by chance
for moderate times at low population levels. The low mutation rate neutral
regime (left) is characterised by a connected network of neutrally competing
types (coloured black). However, the neutral regime considered in this paper
(middle) allows linking of neutrally competing types by slightly less fit types
(coloured grey). At higher selection, connectivity breaks down into isolated
clusters and non-neutral dynamics are observed (right).
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Figure 4: Comparison of 3 different time-averaged neutral indicators for D = 3
and N = 100, showing (solid line) the variation 〈w〉, (dashed line) the mean
genetic distance in the population 〈d〉, and (dotted line) the means square ge-
netic distance 〈d2〉, all as a function of selection strength. The critical selection
strength s∗ is identical under all indicators and is shown as a vertical line.

29


