Imperial College London

An analytical method for neutral evolution in a type space

Daniel LawsonBioinformatics and Statistics Scotland

Work with

Henrik Jeldtoft Jensen, Imperial College London

Background

- Neutrality is important in studying the evolution within a species
- Because Species as a concept doesn't always apply!
- Description instead at the level of distributions of individuals are required.
- Our method describes a phenotype.

The Lineage

The Neutral Model

- Assume that all individuals are 'equal'
 - Valid for Phenotypes that do not have function
 - Genotype not coding for protein synthesis (12% of Human DNA is variable! Redon et al. Nature. doi:10.1038/nature05329)
 - Each individual has the same probability to die (p_k), or give birth (p_b), in a time step
 - For simplicity, assume the total population (N) has reached equilibrium $(p_k = p_b)$
- Reproduction is asexual and imperfect small changes can occur

A neutral evolution model

 Consider N individuals each labeled by a type position:

TIMESTEP:

- Pick an individual (from N) and mark it to die.
- 2. Pick an individual (from N) and copy it. With probability p_m Mutate to a similar type.
- 3. Kill the marked individual.

The Lineage (2)

- If mutations occur at random on an "infinite length" genotype:
- All mutations are 'away'. Equivalent to analysing the lineage.
- Reference: B. Derrida and L. Peliti, Bull. Math. Biol. 53, 355 (1991).
- Question: Is considering a Type a "unit" of similar individuals - useful for understanding diversity?

Diversity measures

- Measured diversity depends on diversity measure:
 - Species Richness:

$$D_{Raw} = \sum_{i} 1$$

Sum over species i

Simpson Diversity:

$$S_S = 1 - \sum_i p_i^2$$

$$D_S = \frac{1}{1 - S_S}$$

Proportion of species i from total population N

Rao Index:

$$D_{Rau} = \sum_{i,j} d_{ij} p_i p_j$$

"Difference" between types

Diversity of asexual lineages

Phenotype Distribution

- Consider 1 dimensional case: mutations can be either to the left or to the right.
- Expected pattern is a Normal Distribution:

Test Problem

Observations of number of spots per leaf of *Imaginarius Forma* (Made up thought experiment for a self pollinating plant)

So what does the neutral phenotype model do?

Evolution of 10000 individuals

Evolution of 10000 individuals

Evolution of 10000 individuals

Test Problem

Observations of number of spots per leaf of *Imaginarius Forma* (Made up thought experiment for a self pollinating plant)

Moss Bioss

Solution

- Instead of a "species", use a conceptual model of a "peak":
- A Normal Distribution with <u>dynamic</u> mean μ and width w.
 - (1) Select death location x
 - (2) Select birth location y, mutated by 1 with probability P_m
 - (3) Remove individual from death location and place at birth location
 - (4) Update μ and w

Solution method

- Write down equations for:
 - Changes to the mean, $\langle d\mu \rangle$, $\langle (d\mu)^2 \rangle$, ...
 - Changes to the width, $\langle dw \rangle$, $\langle (dw)^2 \rangle$, ...
- Take continuous limit to obtain Stochastic Differential Equations
- Solve!

Solving for the width

$$d(w^2) =$$

Mutation Generation distance time
$$\begin{pmatrix} & & & & \\ & & & & \\ & p^* - \frac{2w^2}{N} \end{pmatrix} dT$$

$$+\frac{2w^2}{\sqrt{N}}dW$$
+ Random, mean 0

Change in variance (in a = timestep)

Deterministic part

+ Noise part

Solution at steady state:

$$p(w)dw = \frac{(Np_m)^2}{2w^5} e^{\frac{Np_m}{2w^2}} dw$$

Power-law decay at large w

Neutral Clustering results

Mean width:

$$\langle w \rangle = \sqrt{\frac{Np_m \pi}{8}}$$

Fluctuations in $w \ also \sim N^{0.5}$

Drift of Position:

$$\langle x \rangle_{\text{RMS}} = \sqrt{T(p_m + w^2)} \approx \sqrt{\frac{p_m T}{2}}$$
With the general sequence $\langle x \rangle_{RMS}$
independent of the sequence $\langle x \rangle_{RMS}$

With time in generations... $<\chi>_{RMS}is$ independent of

N!

Neutral evolution results

- Selection produces a stable peak, neutrality produces an unstable peak.
- Characteristic peak width, but large fluctuations (multiple clusters).
- Evolution speed independent of population size!
- Evolution is important for Ecological questions: non-trivial phenotype distributions are probable.
- The Genotype Distribution evolves similarly....
- Also relevant for sexual populations

Reference

Lawson and Jensen:

"Neutral Evolution as Diffusion in phenotype space: reproduction with mutation but without selection" Physics Review Letters, March 07 (98, 098102)

www.arxiv.org/abs/q-bio/0609009

Thank you for your attention!

Cut material

Time average distribution of evolution process around the mean

compared with a normal distribution at same standard deviation (N=10000) 0.015 evolution average normal distribution t=1000t = 2000Time average is a 0.01 **Normal Distribution** t = 3000p(x')- No higher order effects, on average 0.005 -400-200 200 600 $0 \qquad 0 \qquad 2$ $x' = x - \langle x \rangle$ 400 -600

Solution: first try (1)

$$p_b(a) = \frac{n_a}{N} (1 - p_m) + \frac{p_m}{2} \frac{n_{a+1} + n_{a-1}}{N}$$

$$p_k(a) = \frac{n_a}{N}$$

Solution: first try (2)

Consider average behaviour:

$$\langle n_a(t+1) - n_a(t) \rangle = p_b(a) - p_k(a)$$

- Expect this to be valid when N large?
- This becomes:

$$\langle n_a(t+1) - n_a(t) \rangle = \frac{p_m}{2N} [n_{a+1}(t) + n_{a-1}(t) - 2n_a(t)]$$

This is just the diffusion of N particles!

Diffusion of 10000 particles

Defining Asexual Diversity

- We want the "number" of different species or types
- Requires definition of species:
 - Biological Species Concept?
 - Phenotypically distinct?
 - Genotypic Species Concept?

HOWEVER:

- "Species" don't exist though individuals cluster in type space
- Instead examine the similarity between types