Modelling with uncertainty in the Magic Model

A simple overview

What we know:

Approximate parameter values, with errors

Soil depth =
$$5m \pm 1.2m$$

Soil porosity =
$$45\% \pm 10\%$$

Approximate/observations, with errors

What we *want* to know:

- Predictions and hindcasting of various catchment properties (e.g. nitrogen deposition)
- Estimates for certainty in those predictions
- Hence we need to know both the errors in the *parameters* and resulting *predictions* for the model

Errors in the parameters:

This is (Bayes Formula)

- Likelihood is just the "distance" of the simulation prediction from the data
- Errors define what a big or small distance means

Choosing new parameter values

- Final task is to sample parameters.
- Can't solve (too hard!) or do it at random because most parameters are unlikely.
- So use MCMC (Markov-Chain Monte Carlo):
 - Change current parameters by a random small amount
 - Accept the new parameters with probability proportional to posterior

Example MCMC

Example MCMC

Example MCMC

Prediction using the parameter distribution

Work within the project

- Apply method to local sites
- Extend method to allow missing data
- Use regional scale data to make predictions
 - Compare certainty from fine scale land data to lower quality data
 - Methods for well studied catchments to inform lower data quality catchments (such as correlations between neighbours)

People

Rachel Helliwell – *Project Leader*

Nikki Bagaley – *Catchement*

Martyn Futter – *Catchement*

Daniel Lawson – *Statistics*

Special thanks to:

- Thorjørn Larssen writing the McMagic code
- George MacDougall making the code useful