
Three statistical approaches to sessionizing network

flow data

Patrick Rubin-Delanchy†,

Daniel John Lawson

Heilbronn Institute

School of Mathematics

University of Bristol

Bristol, UK

†Email: patrick.rubin-delanchy@bristol.ac.uk

Melissa J. Turcotte

Advanced Computing Solutions

Los Alamos National Laboratory

Los Alamos, US

Nicholas Heard

and Niall Adams

Department of Mathematics

Imperial College London

London, UK

and

Heilbronn Institute, University of Bristol

Abstract—The network traffic generated by a computer, or a
pair of computers, is often well-modelled as a series of sessions.
These are, roughly speaking, intervals of time during which a
computer is engaging in the same, continued, activity. This article
explores a variety of statistical approaches to re-discovering ses-
sions from network flow data using timing alone. Solutions to this
problem are essential for network monitoring and cyber-security.
For example overlapping sessions on a computer network can be
evidence of an intruder ‘tunnelling’.

I. INTRODUCTION

Network flow data, including Cisco Systems’ Netflow, are
data collected by routers recording activity on a computer
network. The data typically comprise a sequence of records,
each called a flow, representing a communication (or some
part of) between two computers. A flow contains a time-stamp
denoting the start of the communication, a source internet
protocol (IP), a destination IP, and further information about
the communication (e.g. the ports used). Importantly, a flow
does not retain any of the transferred data and so the routers’
collection generates data of many orders of magnitude smaller
than the amount of traffic on the network. Still, the widespread
and indiscriminate use of the internet and internal network
services in modern corporations and institutions creates huge
network flow data stores. For example Imperial College Lon-
don, a leading university in the UK with around 10000 students
and 3000 academic and research staff, generates about 14
Terabytes of flow data in a month. For Los Alamos National
Laboratory, a major US research institution specialising in
science and technology for nuclear deterrence, the figure is
roughly 30 Gigabytes a day.

For businesses and institutions the loss of confidential
personnel records, intellectual property or information on
business negotiations and strategy can be very damaging.
Therefore protecting these data from malevolent outside actors
is an important aspect of these organisations’ cyber-security. A
specific risk and recurring intrusion pattern is an attacker (say
X) somehow compromising a computer on the network (say
Y) and then proceeding from there to find valuable data on
other machines — thereby bypassing firewall defences. The
point is that Y is rarely the intended target but rather an
opportunistically infected machine, for example by its user
accidentally installing malware attached to an email. This

pattern of attack is described in detail in [1]. In this strategy
to perform any operation on a target computer (say Z) the
attacker must typically create a remote session from X to
Y and then another from Y to Z. This behaviour may be
detectable in network data from the fact that the session from
X to Y envelopes the session from Y to Z in the temporal
sense, that is, the first session’s start (resp. end) is earlier (resp.
later) than the second’s start (resp. end) [2]. Of course such an
analysis presupposes that sessions can be identified in network
flow data. This is the focus of the present article.

The Open Systems Interconnection model [3] provides a
conceptual model for how computer networks and the internet
operate, in seven layers of abstraction. To some extent network
flow data can be seen as data collected at the fourth layer of
abstraction, called the Transport Layer, whereas the concept of
a session appears in the fifth layer of abstraction, the (aptly-
named) Session Layer. However our definition of a session
is somewhat more general. In this article we call a session
any period of time where two computers engage in the same,
continued activity.

This article explores a number of statistical techniques
to perform sessionization, that is, the operation of extracting
sessions from network traffic. To set out the parameters of the
problem precisely, consider a sequence of flows generated by
communications between a client computer X and a server
Y . Over a period of observation [0, T] we will assume that
the start times of the flows form an (ordered) sequence of
distinct events, 0 ≤ t1 < . . . < tn ≤ T . (These are treated
as continuous random variables, even though in practice times
can only be measured and stored at a finite resolution.) Our
analysis focusses on sessionization using only those events.
Typically there would be other clues in the sequence of
flows, for example, in the TCP flags, the ports used, or the
flow end times. However using this additional information
also makes the task more complex because communication
protocols and router collection policies differ. Hence as a
preliminary investigation it is useful to understand how much
can be achieved using only timing information.

The remainder of this article is structured into three main
parts, corresponding to three statistical approaches to the
problem. In Section II we investigate a simple time expiry
policy, where sessions are started on events and closed if

the time since the last event exceeds a certain threshold. In
Section III we view the problem from a clustering perspective,
and show that various ideas from the literature on spatial point
patterns can be made relevant. Finally Section IV proposes
a regime-switching process to model the data, and discusses
some computational issues related to that approach.

II. A TIME EXPIRY POLICY

In this section we analyse the following procedure. Pro-
cessing the events sequentially in time, a session is closed
whenever the time since the most recent event exceeds a user-
supplied threshold B, and a new session is opened on the
next event. The pattern of open and close times provides a
sessionization of the data.

One advantage of this procedure is that it is very well suited
to real-time monitoring. Even when there is no requirement to
process the data in real time, the fact that this can sessionize
the data in one pass (assuming it is already time ordered) can
be crucial when processing large data sets.

The procedure has one tunable parameter, the threshold B.
The choice of how it should be set can be related to some
concepts in statistical hypothesis testing. There, two forms of
error are identified [4]. A type I error is committed if the null
hypothesis holds, but is rejected. A type II error is committed
when the alternative hypothesis is true, but we fail to reject
the null hypothesis. If a session is closed prematurely then we
have wrongly detected a change in activity, and so in a sense
a type I error has been committed. Similarly failing to close a
session when it has ended can be seen as a type II error.

Suppose that while a session is active, the inter-event times
∆1 = t2− t1,∆2 = t3− t2, . . . (remember the events are flow
start times) are independent replicates of a random variable ∆
with known distribution. The temptation might be to choose
B as a quantile of ∆. For example, following the hypothesis
testing tradition we might choose B so that Prob[∆ ≥ B] =
5%, thereby closing a session whenever the time since the most
recent event is significant at the 5% level. A problem with this
approach is that the rate of false closure is a function of the
rate of events, not time itself, so that more active processes
are opened and closed more often.

To address this issue it is useful to view the time since
the most recent event as a stochastic process evolving in time,
denoted Z(t). An example of Z is shown in Figure 1b). The
time-expiry policy closes a current session if Z crosses the
boundary B and then opens a new session at the next event.
Denote by si the current session start time as computed by the
algorithm. The session will be closed at ei = inf(t : Z(t) ≥
B, t ≥ si). In the language of stochastic processes, e1, e2, . . .
are stopping-times, and the choice of B can be motivated by
trying to control their statistical behaviour relative to the ‘true’
session end times. If the ei tend to under-estimate then sessions
are closed prematurely, producing a fractured picture of the
network behaviour. If the ei tend to overestimate then we risk
merging sessions.

Naturally we must have ei ≥ si + B. Outside of this, the
probabilistic behaviour of ei is unfortunately non-trivial, even
for simple models for the events within a session. As a result
in further investigations we may need to rely on simulation.

0 Ta) Network flow events

0 Tb) Session expiry

Z(t)
y=B
Sessions

Fig. 1. Schematic of sessionization based on a time expiry policy. Figure
a) shows simulated network flow events. Figure b) shows the time since the
most recent event process, Z(t), the chosen threshold B and the resulting
sessionization of the data.

If it is possible to simulate a sample of event times from a
given model then it is straightforward to simulate a set of
boundary-crossing times e1, e2, . . ., as in Figure 1b). Of course,
a new challenge arises if there is uncertainty about the model
generating the data within a session. In this case we may need
an adaptive boundary B(t), the height varying as we learn
more about the process generating the session.

III. CLUSTER ANALYSIS

Instead of treating network flow events as a sequence of
times, here we view the data as points on a one-dimensional
space. From this perspective events being grouped into sessions
can be restated as the points exhibiting clustering behaviour.
The advantage of this insight is that it makes a large body
of statistical literature on spatial point patterns relevant to the
problem (even if they are normally motivated by 2 or 3D data).

Although it is known that network activity often occurs
in sessions, in principle the signal might not be detectable in
the data. The literature on spatial point processes helps answer
this detectability question. Ripley’s K-function, introduced by
Ripley in two seminal papers [5] and [6], is a popular tool
for measuring second-order dependence between points on a
space. It can be used here as a preliminary check that there is
‘session-like’ behaviour in the data. To this end we compute

K̂(d) =
∑

k(x, y)TN−2,

where T is (as before) the length of the observation period,
the summation is over all ordered pairs of points x, y ∈

{t1, . . . , tn}, x 6= y that are within d of each other, and
k(x, y) = 2 if y is more than x or T−x of x, and 1 otherwise.
k(x, y) provides an edge correction for when x is close to the
observation boundary (0 or T): it is inversely proportional to
the chance that y would have been observed given its distance
from x. (This correction is proposed by Ripley for a more
general space: k is then the inverse of the proportion of the
sphere circumference within the observation region.)

As a diagnostic for clustering behaviour the K-function can
be computed and plotted for a range of values of d. Figure 2

shows K̂ for the previously presented data (see Figure 1).
This curve can be compared to that generated by completely
spatially random (CSR) points, i.e. points that are uniformly

scattered over [0, T]. Call this curve K̂0. For small d we

should have K̂0(d) ≈ 2d. To calibrate the observed difference

between K̂ and K̂0, a confidence band can be simulated around
K̂0. Figure 2 shows a 95% confidence band (for each d,

K̂0(d) is within the band with probability 95%). K̂ falling far
above the band for small d is evidence of clustering behaviour.

As a passing remark, K̂(d) passing below K̂0(d) for small
d would constitute evidence of self-inhibiting behaviour. We
would expect to see this occasionally in flow data, because
each flow is in fact not a point but a small interval of time.

0.00 0.05 0.10 0.15 0.20

0
.0

0
.1

0
.2

0
.3

0
.4

d

K
^

(d)

K
^

0(d) (95% CB)

Fig. 2. The K-function. The black line shows the estimated curve K̂, for the

data presented in Figure 1. In red we show a 95% confidence band for K̂0

in case of CSR. K̂ being largely above this band is evidence of ‘session-like’
behaviour.

The K-function also provides an inspiration for the follow-
ing one-dimensional clustering algorithm (which is related to
the 2D algorithm used in [7]). For a given range d compute
Nd(x) =

∑

y 6=x k(x, y), for each x ∈ {t1, . . . , tn}. To
standardise this quantity, note that for CSR we would expect
Nd(x) to be 2(n − 1)d/T on average. To see this consider
that we are constructing an interval of length 2d around each
point, forming a region that is 2d/T smaller than the original
for the n−1 remaining points to fall into. The edge correction
makes this hold approximately even when the interval would
otherwise extend outside the observation region. For each point

we therefore compute Ld(x) = TN(x)/[2(n − 1)d] so that
Ld(x) > 1 indicates that x is more clustered than expected
under CSR. Then for a threshold τ assign all points Ld(x) ≥ τ
to a session, by making a link between any two that are
not more than 2d apart and obtaining the resulting connected
components, leaving the remaining unclustered.

Figure 3 illustrates this algorithm using τ = 1, a reasonable
default choice. Figure 3b) shows Ld(x) for a given d, illus-
trated in the top-right corner. Figure 3c) shows the resulting
sessionization of the points, with the open circles indicating
which points are left unclustered.

0 Ta) Network flow events

0
1

2
3

4

L
d
(x

)

2d

0 Tb) L function

0 Tc) Sessions

Fig. 3. Schematic of the L-clustering strategy. a) is a plot of the original data.
In b) the black stars show Ld(x) computed at each x ∈ {t1, . . . , tn} and
the threshold τ = 1 is shown in red. c) presents the resulting sessionization
of the data, the open circles indicating which are left unassigned to a session.

We next investigate the choice of d and τ . From Figure 3
it is clear that the algorithm is sensitive to these settings since,
for example, just a slightly smaller τ would have caused the
second session to also contain the point directly to its left.

Consider that every combination of d and τ gives a pro-
posed grouping of the events. Each proposal can be represented
by a vector of labels ℓ = [ℓ1, . . . , ℓn] using the convention
that unclustered points are assigned the special label 0, and all
points sharing a non-zero label belong to the same cluster. In
order to rank each proposal, we can devise a model for the
data given ℓ, p(t1, . . . , tn|ℓ), and formulate a Bayesian prior
probability for each ℓ, p(ℓ). Then each proposal has a posterior
probability

p(ℓ|t1, . . . , tn) ∝ p(t1, . . . , tn|ℓ)p(ℓ), (1)

This can be used as a basis for choosing d and τ .

Let c0, . . . , cm denote the groups formed by ℓ. ck contains
the indices of the points contained in group k with c0 con-
taining the indices of the non-clustered points. Each cluster k

contains nk points, which are denoted t
(k)
1 , . . . , t

(k)
nk

. A simple
example of a generative model for t1, . . . , tn given ℓ is the
following: for each group ck, k ≥ 1 draw the session start
and end times by generating two independent Uniform random
variables U1, U2 over [0, T], (re)-labelled so that U1 ≤ U2. Let

t
(k)
1 = U1 and t

(k)
nk

= U2. The remaining points of the cluster
are then CSR over [U1, U2]. Non-clustered points are CSR over
[0, T]. After some manipulation we find

p(t1, . . . , tn|ℓ) =
n0!

Tn0

m
∏

k=1

2

T 2

(nk − 2)!
[

t
(k)
nk

− t
(k)
1

](nk−2)
.

Combined with a prior on ℓ this formula can be used to
optimise Equation (1) with respect to d and τ .

Note that in this perspective the L-clustering strategy is just
a search procedure for optimising Equation (1). Other possible
approaches to the problem include:

1) Agglomerative clustering [8]: starting with all points
assigned to c0, iteratively merge clusters until an
optimum is found.

2) k-means [9]: for each m minimise

m
∑

k=1

nk
∑

i=1

[t
(k)
i − µk]

2,

where µk is the mean of cluster k. Then choose m
to optimize Equation (1).

3) Kernel density clustering [10]: centre a kernel at each
point with a given bandwidth w. The sum of the
kernels is a multi-modal curve. Hill-climb from each
point to the local mode, thus grouping together points
that go to the same mode. Optimize Equation (1) with
respect to w.

IV. A REGIME SWITCHING PROCESS

A regime switching process (RSP) is a time-evolving
stochastic process where, at random points in time, the gener-
ative model for the data changes. Thus the process is said to
switch between regimes, each regime being the model driving
the data between two consecutive changepoints.

To obtain a partition of the timeline that can be interpreted
as a sessionization we allow a special regime, denoted r0,
during which events occur at a very low or zero rate. Then
the sessions inferred by the RSP are the periods between pairs
of consecutive changepoints, excluding those driven by r0.

This approach is both very general and very powerful, but
it also presents various challenges. The first is statistical: how
can we jointly learn the regimes and changepoints from the
data? Naı̈ve modelling strategies can give spurious results, for
example, by placing pairs of changepoints tightly around every
event. This happens to be the most compelling explanation for
the data, that the rate of events was zero where there were
no events and infinite at every event. As a result to obtain
sensible results one must usually take a Bayesian approach or
use a penalised likelihood.

The second challenge is computational. The Pruned Exact
Linear Time (PELT) method [11] provides a fast solution for
finding changepoints, assuming some regularity conditions on

the objective function. This could be a Bayesian posterior, or
a penalised likelihood, or some other measure of goodness-of-
fit. As its name suggests the method can be as fast as linear
in the number of events. On the other hand, if a Bayesian
approach is taken then proper inference will typically require
some form of stochastic approximation. For instance as part
of a very influential research paper describing Markov Chain
Monte Carlo on general probability spaces, [12] proposes a
solution to the multiple changepoint problem when the rates
between changepoints are IID. This implementation is possible
here after changing the prior on the rates to be a bimodal
distribution — a high mode for active periods and low for
r0. However to fit a more complicated model would require a
specifically tailored algorithm, especially if we want to allow
for repeated regimes and shared parameters.

V. CONCLUSION

We have presented three statistical perspectives on session-
ization of network flow data, leading to a variety of algorithmic
approaches to the problem. These differ in their computational
complexity, what they assume about the data and whether they
can be deployed in real time.

Throughout this article we have almost exclusively fo-
cussed on the start times of network flow data, ignoring all
other information. Whilst this is motivated by a need for a
simple and robust solution, there is clear scope for improve-
ment by using the other information in the flows. However, our
hope is that the sessions constructed by these relatively simple
approaches are already enough to feed through to higher-level
network analyses.

REFERENCES

[1] J. Neil, C. Hash, A. Brugh, M. Fisk, and C. Storlie, “Scan statistics for
the online detection of locally anomalous subgraphs,” Technometrics,
vol. 55, no. 4, pp. 403–414, 2013.

[2] D. Lawson, P. Rubin-Delanchy, N. Heard, and N. Adams, “Statistical
frameworks for detecting tunnelling in cyber defence using big data,”
School of Mathematics, University of Bristol, Tech. Rep., 2014.

[3] H. Zimmermann, “OSI reference model–the ISO model of architecture
for open systems interconnection,” Communications, IEEE Transactions

on, vol. 28, no. 4, pp. 425–432, 1980.

[4] E. Lehmann and J. Romano, Testing statistical hypotheses. Springer,
2006.

[5] B. Ripley, “The second-order analysis of stationary point processes,”
Journal of applied probability, pp. 255–266, 1976.

[6] ——, “Modelling spatial patterns,” Journal of the Royal Statistical

Society. Series B (Methodological), pp. 172–212, 1977.

[7] D. Williamson, D. Owen, J. Rossy, A. Magenau, M. Wehrmann,
J. Gooding, and K. Gaus, “Pre-existing clusters of the adaptor lat do
not participate in early T cell signaling events: supplementary material,”
Nature immunology, vol. 12, no. 7, pp. 655–662, 2011.

[8] S. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32,
no. 3, pp. 241–254, 1967.

[9] S. Lloyd, “Least squares quantization in PCM,” Information Theory,

IEEE Transactions on, vol. 28, no. 2, pp. 129–137, 1982.

[10] A. Hinneburg and H.-H. Gabriel, “Denclue 2.0: Fast clustering based
on kernel density estimation,” in Advances in Intelligent Data Analysis

VII. Springer, 2007, pp. 70–80.

[11] R. Killick, P. Fearnhead, and I. Eckley, “Optimal detection of change-
points with a linear computational cost,” Journal of the American

Statistical Association, vol. 107, no. 500, pp. 1590–1598, 2012.

[12] P. Green, “Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination,” Biometrika, vol. 82, no. 4, pp. 711–732,
1995.

