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S1 Clustering score based on the ChromoPainter ma-
trix

The score measuring the ratio of observed to expected variance within a popu-
lation is constructed by measuring the empirical variance for each pair of popu-
lations a and b. Consider the matrix of chunk counts donated to population a
from population b, i.e. xij with i ∈ a and j ∈ b. These pairs take values that
are expected to be exchangable if there is no substructure. Moreover, the distri-
bution is known from Propositions 1–4 of Lawson et al. (2012) and is effectively
the FineSTRUCTURE model. The vector xi is multinomial with probability pqj

where qj = b is the population to which individual j belongs. Therefore (ignoring
correlations between populations) xij is (marginally) a binomial distribution with
probability parameter pab and number of samples Li =

∑
j xij . In practise there

is little value to allowing each individual to have its own L and so we instead use
the model

xij ∼ Binomial(p̂ab, La) (S1)

where p̂ab = xab/La, the number of samples La =
∑

b xab/(n∗
an

∗
b), and xab =∑

i∈a,j∈b xij . n∗
a is the number of individuals in population a, and n∗

b is the number
of individuals in population b (minus one if a = b as we exclude the elements where
i = j). The expected variance under this model is V E

ab = Lap̂ab(1− p̂ab). This can
be compared to the empirical observed variance V O

ab of the xij .
We form an N by N matrix of these score ratios V O/V E , i.e. for each pair of

individuals. The reported score for each individual is the average score for each
row of this matrix (and is the same for all individuals in a population). We note
that this test will identify substructure if the distribution of xij does not fit the
model. It will not identify substructure when the distribution fits the model but
neverless contains block structure, even though FineSTRUCTURE may identify
substructure in this case.

Note that the application of this score to any non-ChromoPainter matrix has
no intrisic meaning as there is no ‘effective number of chunks’ to define the overall
normalisation of the matrix. However, note that rescaling a similarity matrix Z
to Zc2 divides the score by c for all pairs of populations. Therefore we can still
evaluate the score, but normalise the ‘effective number of chunks’ in the binomial
to make the average score 1 (as is done for IBD in Figure 5 of the main text).
Although the score now has no absolute meaning, it still describes the relative
variance within the population to between populations, and as is observed from
the figure this still captures some types of clustering error.
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S2 Additional approaches

Although a comprehensive review is not practical given the breadth of subjects
considered here, it is worth listing some approaches that have been considered
but that we have not evaluated directly.

1. i2ppca Intarapanich et al. (2009): we did try to evaluate this program
but did could not identify more than 2 populations with 50 simulated data
regions. This does not mean that it cannot be made to work on our dataset
however. The approach uses the covariance matrix, and then Spectral de-
composition using either the Tracy-Widom or ‘Eigendev’ Limpiti et al.
(2011) criterion for choosing the number of Eigenvectors. Clustering is done
via a varient of K-Means (‘fuzzy K-Means’). The approach uses a unique
type of hierarchical analysis, which removes sections of the covariance ma-
trix that are ‘distant’. Although this will add robustness against outliers or
strong signals in other parts of the data, it will also discard information.

2. The approach of Biswas et al. (2009), which uses the normalised covariance
matrix and PCA decomposition, with the Tracy-Widom statistic. This is in
order to select the SNPs (i.e. thinning) that most correlate with population
structure (i.e. the large PCs), for application of STRUCTURE Pritchard
et al. (2000).

3. AWClust Gao and Starmer (2007) uses the Allele Sharing Distance, and
then applies the Ward (1963) criterion directly to the similarity matrix.
The number of populations is estimated by the gap statistic Tibshirani
et al. (2001). We did not evaluate the gap statistic here, but it is not likely
Lee et al. (2009) to be better than the BIC used by MCLUST.

4. The approach of Reeves and Richards (2009) uses the Jaccard similarity
measure which for haploids is YilYjl/fl +(1−Yil)(1−Yjl)/(1−fl) per SNP l.
This falls between the covariance and normalised covariance matrix. They
then clusters all components using the MODECLUS procedure in SAS 9.1
(SAS Institute, Cary, NC), which is one of many ‘density valley finding’
techniques.

5. The approach of Liu and Zhao (2006) uses a diffent similarity measure,
the cosine similarity Y ′

i · Y ′
j /(‖Y ′

i ‖‖Y ′
j ‖. This is first normalised in a non-

standard way for population genetics, by as Y ′
il = (

∑
l Yil/L) ∗ log(1/fl),

called ‘term frequency - inverse document frequency’ (tf-idf) for these re-
spective components. See Manning et al. (2008) for more details of these
and many other measures used in information retreaval problems. For read-
ing this literature it is useful to think of individuals as ‘documents’ and SNPs
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as ‘terms’. SVD is applied to the similarity matrix, and both an MCLUST-
like and K-Means clustering is obtained for the full set of Eigenvalues. Gap
statistics are used to estimate K.

6. POPSTRUCT of Nakamura et al. (2005) uses the Allele Sharing Distance
and applies hierarchical k-means based on Ward’s criterion to the raw dis-
tance matrix. The number of clusters K is determined by cross-validation.

7. Gao and Martin (2009) provide a list of papers using Identity-By-State
and/or Allele Sharing Distance, and develop some theory for clustering on
the ASD.

S3 HGDP Results

For application of Spectral approaches to the CPL data, we find that the MAP
criterion keeps 12 Eigenvalues, PA keeps 5, and Tracy-Widom keeps 14. Direct
application of MCLUST and K-means finds only 2 populations (Japanese vs non-
Japanese). Perhaps surprisingly Spectral MCLUST with all choices of Eigenvalue
retained finds a different (though correlated) set of 9 populations, and Spectral
K-Means finds 10. For the CPU data, the MAP criterion keeps 9 Eigenvalues,
PA keeps 4, and Tracy-Widom 10. As on the CPL data, all Spectral MCLUST
methods find 9 populations on CPU data, Spectral K-Means find 10 populations
but the direct method finds only noise. On the IBD matrix, the MAP criterion
keeps 11 EVs, the PA keeps 5, and the TW keeps 35 (which is indicative of a
problem in the assumptions, and indeed clsutering is very poor this measure).
Although some populations are robustly found, there is no overall consistency
and all clusterings differ on a substantial point, both for different criteria on the
same similarity matrix and across similarity matrices.

Figure S5 shows the results for the unlinked Coancestry matrix, which should
be compared to the linked Coancestry matrix from Figure 4 of the main paper.
Again the fineSTRUCTURE results are clear, with a slightly different breakdown
of the Han and fewer population splits identified. The MCLUST results are again
questionable, for related reasons. Whilst some Han individuals are incorrectly
placed in with the Tu, again the most serious mistake is to again place the 2 Naxi
and 2 She individuals together. As with the linked matrix K-Means merges the
Han inappropriately due to admixture, this time with the She.

Figure S7 shows the Spectral IBD clustering results for the Tracy-Widom
criterion (m = 35), which performs very poorly indeed. MCLUST incorrectly
splits the Japanese and splits the Tu and K-Means arbitrarily splits the Yi/Naxi
cluster. Both make mistakes with other individuals. Figure S8 shows the Spectral
IBD clustering results for the Horn criterion (m = 5), which is better. MCLUST
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makes a few mistakes (one Yi individual is clearly wrong) and K-Means incorrectly
merges the Yi and Han/Tujia/Han.NChina groups, again due to admixture.

S3.1 HGDP Spectral Correlation

Comparison of Figures S6 and S9 is illustrative of how information might be lost
by use of naive Spectral methods. Focusing on the She1/She4 pair, which are
always clustered with the Naxi3/Naxi6 pair, the correlation between the Eigen-
values (Figure S6) shows that these individuals are distinguishable by being poorly
correlated with any individuals in the sample. However, the correlation between
the their similarity scores (Figure S9) finds them to be strongly correlated with
their true populations (the remaining She and Naxi respectively). It is therefore
only plausible to cluster these individuals together in the Spectral representation.

Note however that the features that distinguish each pair of individuals as
a cluster (their high relatedness) are always present, and a ‘corrected’ spectral
clustering algorithm might still be able to distinguish these pairs as clusters in
their own right. The Eigenvalues are not theoretically relevant for clustering as
they do not contain any information about the individuals. They simply scale the
acceptable variance in each component, a feature that we believe is important in
the determination of what we believe a population really is in this case.

S4 Details of algorithms

The data were simulated using SFS CODE Hernandez (2008) as described in
detail in Lawson et al. (2012). The file format was converted first with a bespoke
script into PHASE format, then converted to BEAGLE Browning and Brown-
ing (2011) format using the script phase2beagle.pl. This and several other useful
scripts can be downloaded from the www.paintmychromosomes.com website. A
bespoke R script was used to convert to PLINK Purcell et al. (2007) format,
which could be used to combine output files. The similarity measures were gen-
erated in the following way:

• BEAGLE FastIBD (IBD) was run with the command:

beagle.sh missing=? fastibd=true unphased=$inputfile.bgl
markers=$inputfile.markers ibdpairs=$outputfile.ibdpairs
out=$outputfile

then each pair was summed over all datafiles and all SNPs using a bespoke
script.

• FastPHASE (FHS) was run with the command
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fastPHASE -K20 -T1 -S$seed -Pp -B -H-3 -n -o$outfile.part1 $phasefile
fastPHASE -K20 -T1 -S$seed -Pzp -H-3 -n -S-3 -C0 -I$outfile.part1
-o$outfile $phasefile

which is appropriate because the simulated data is pre-phased (otherwise a
slightly more lengthly phasing step replaces the first command). The pair-
wise distance given in Supplementary Section 4.8 Jakobsson et al. (2008)
was computed with a bespoke script, which was very time consuming to
run.

• ChromoPainter (CPL and CPU) matrices were generated as detailed in
Lawson et al. (2012), and additionally described on the www.paintmychromosomes.
com website.

• PLINK Purcell et al. (2007) was used to generate the main IBS measure
using

plink-1.07-x86_64/plink --file $file --out ${file}ids3
--cluster --matrix

• COV, NCOV(a) and IBS(a) measures were computed from the equations
given in Table 1 of the main text.

• PLINK PED/MAP files were converted to EIGENSTRAT format using the
‘convertf’ program in the EIGENSTRAT package. For the linked (ESL)
model the smartpca program was run directly using ”altnormstyle: NO,
numoutevec: 100 and nsnpldregress: 10”. For the standard model (ESU)
the ”smartpca.perl” script was run with the options ”-m 5 -t 100 -s 6.0 -k
100”.

The non-standard clustering algorithms were run in the following way:

• FineSTRUCTURE was run as detailed in Lawson et al. (2012), and addi-
tionally described on the www.paintmychromosomes.com website.

• AWClust Gao and Starmer (2007) could not read in the whole dataset
of 2.5M SNPs in one go. We therefore performed thinning on the SNPs
first (removing SNPS that are highly correlated with other SNPs) using
the PLINK ”–indep-pairwise 50 10 0.05” option, which keeps around one
quarter of all SNPs. This was converted to AWClust input format using a
bespoke script. The gap statistic estimation is too costly on this dataset
so we ‘cheated’ by choosing the K that maximised the correlation with the
truth.
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• i2ppca Intarapanich et al. (2009) was run similarly to AWClust, i.e. on
the thinned data converted by a bespoke script. It would not run with more
than 50 regions, and on 50 regions it found K = 2 and had a low correlation
with the truth. We therefore did not explore this method further.
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Figure S1: Visualisation of the similarity matrices as an image for one hundred
5Mb regions of simulated data. On the top row from left to right are: IBS
(Identity-by-state as computed by PLINK), IBSa (as computed using the equa-
tion from Table 1 of the text) and COV (Raw Covariance). On the second row
is NCOVa (as computed using the equation from Table 1 of the main text), ESU
(Eigenstrat ‘unlinked’), and ESL (Eigenstrat ‘linked’, i.e. using regression cor-
rection with K = 10). The third row is: CPU (ChromoPainter unlinked), FHS
(FastPHASE Haplotype Sharing), IBD (FastIBD Identity By Descent). Finally
CPL (ChromoPainter Linked) is on the fourth row. Each matrix has the diagonal
removed as this is not informative about population structuring. The raw range
is given above each matrix, but all plots are normalised by removing the diagonal,
subtracting the row means and making the standard deviation 1.
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Figure S3: Correlation with the truth as a function of the number of 5Mb sim-
ulated data regions, for MCLUST (MC, left), K-Means(KM) and UPGMA (UP)
and Ward’s minimum variance criterion (WA, right). The top row shows the re-
sults for application to the ‘raw’ data. The bottom row shows the Spectral (PCA)
results using the Tracy-Widom criterion, repeating some of the information from
Figure 3 of the main text. Shown are the clustering performance based on different
similarity matrices: IBS (Identity-by-state), COV (Covariance), ESU (Eigenstrat
Unlinked), FHS (FastPHASE Haplotype Sharing), IBD (FastIBD Identity By De-
scent) and CPL (ChromoPainter Linked). FineSTRUCTURE is applied directly
to the coancestry matrix only (FS-CPU for unlinked and FS-CPL for the linked
ChromoPainter Coancestry matrix), and is repeated on each plot for reference.
AWClust Gao and Starmer (2007) results are shown in the ‘raw Ward’ figure
as it relates to this approach.
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Figure S4: PCA decomposition of the first 8 Eigenvalues for the East Asian HGDP
ChromoPainter Linked (CPL) similarity matrix. The individuals marked with a
cross are the misplaced Naxi/She relative pairs. The colour coding of populations
is consistent throughout the plots. Note that the EVs (Eigenvectors) are not
plotted in order; EV’s 4 and 7 have been plotted together as they simply separate
the related pairs.
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Figure S5: HGDP clustering results and coancestry matrix for the ChromoPainter
unlinked (CPU) dataset. The main image shows the Coancestry matrix. The
boxes (white for FineSTRUCTURE, green for Spectral MCLUST and brown for
Spectral K-means both using the Tracy-Widom criterion) show the pairwise co-
incidence of the Maximum Aposteriori clustering for each method. The ordering
has been chosen so as to minimise off-diagonal elements for the MCLUST method
whilst respecting the FineSTRUCTURE clustering. The Coancestry matrix has
been capped at 7900 to maximise contrast.
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Figure S6: East Asian HGDP ChromoPainter Linked (CPL) similarity matrix
MCLUST clustering results, with the Spectral correlation matrix for the Chro-
moPainter linked (CPL) dataset. The main image shows the Spectral correlation
matrix, formed by taking the product EET of the m = 14 retained Eigenvectors
E (with m chosen by the Tracy-Widom criterion). The boxes reflect pairwise co-
incidence of the MCLUST Maximum Aposteriori clustering for different choices of
m: green for the Tracy-Widom criterion with m = 14, white for the PA criterion
with m = 5, and brown for the MAP criterion with m = 12. The correlation is
capped at a minimum of −0.05 and a maximum of 0.15 to maximise contrast.
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Figure S7: HGDP similarity matrix for the FastIBD dataset. The main image
shows the FastIBD similarity measure applied to the East Asian individuals, as
shown in Figure 6 of the main text. Spectral results using the Tracy-Widom
(m = 35) statistic are shown; these should be compared to Supplementary Figure
S8. Green boxes are drawn around pairs found which coincide in the Spectral
MCLUST populations, and brown boxes for Spectral K-means. The ordering is
formed from the FineSTRUCTURE tree. The similarity matrix has been capped
at 10000 to maximise contrast.
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Figure S8: HGDP similarity matrix for the FastIBD dataset. The main image
shows the FastIBD similarity measure applied to the East Asian individuals, as
shown in Figure 6 of the main text. Spectral results using the PA criterion
(m = 7) are used as these were subjectively the best; these should be compared
to Supplementary Figure S7. Green boxes are drawn around pairs found which
coincide in the Spectral MCLUST populations, and brown boxes for Spectral
K-means. Other details are as Supplementary Figure S7.
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Figure S9: HGDP MCLUST clustering results and similarity correlation ma-
trix for the ChromoPainter unlinked (CPU) dataset. The main image shows the
‘PCA reconstructed similarity’ correlation matrix, formed by taking the product
EDiag(λ)ET of the m = 14 retained Eigenvectors E (with m chosen by the Tracy-
Widom criterion). The information content is identical to that of Figure S6, but
the eigenvalues have been used to scale the EVs. The boxes reflect the same
Spectral MCLUST clusterings in Figure S6. Correlation is capped at a minimum
of −20 and a maximum of 200 to maximise contrast.
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Figure S10: Correlation with the truth as a function of both the number of re-
gions, and the number of Eigenvalues retained for fitting, for (top) the MCLUST
model, (centre) the K-means model, and (bottom) the UPGMA model. MCLUST
runs that failed to estimate K are white. From left to right are: IBS (Identity-by-
state), COV (Covariance), ESU (Eigenstrat Unlinked), FHS (FastPHASE Haplo-
type Sharing), IBD (Identity By Descent) and CPL (ChromoPainter Linked). The
grey line corresponds to the number of Eigenvectors according to the MAP crite-
rion, green lines to the PA criterion, and red lines to the Tracy-Widom criterion.
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