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With millions of Single Nucleotide Polymorphisms (SNPs) and hundreds of individuals, v I H I

many population samples cannot be dealt with using standard techniques (e.qg. | 1 1 Populations |
STRUCTURE, Pritchard Et al. 2000) which treat each SNP separately. Dense SNPs will - O(10*%)  op

be linked by common descent and so provide correlated information about ancestry. Step 1: -

What is needed is a data reduction strategy capturing the essential signal, together with Painting 568

a model for ancestry suitable for that data. Population level information can then be N Step 2: bopA

used for further analysis. We solve this using a two step approach that keeps almost all Individuals Finestructure

of the information in the original signal.

O(10%*)

Cartoon of the process: In step 1, SNPs are converted to detailed
co-inheritance information. In step 2 we analyse the population
structure.

The Solution: step 1, painting

One possible painting for A over a short genome segment with
2 other individuals treated as fixed. A has ‘copied’' 4 chunks
from B and 3 from C. We take the expectation over all
paintings and recombination events.

l l Ancestry information for sexually reproducing organisms is primarily stored as the frequency
> that particular chunks of DNA are inherited, because recombination occurs more frequently
Genome than mutations. We therefore describe an individual by the frequency with which it co-

iInherits (“copies”) a segment of DNA with another individual in the sample. We use a
“painting” algorithm following Li & Stephens (2003) to find the recombination points and the
individual for which each chunk has the most recent common ancestor. Unlike their
algorithm we don't impose an ordering, and we take the expectation over all possible
pairings, weighting according to the mutation process.

Data representation:
The painting process gives three square matrices of size NxN (N=number of individuals): Linkage vasy W :
the frequency individuals copy chunks from each other, the average length of those l\)";siecl’on el A I . bl
chunks, and the mutation rate. These contain different aspects of the ancestry history, Li & : More signal, 2 |, IR
and almost completely summarize population ancestry. Stephens” ” ¢ less noise O © Di;tinguish%@ o
painting ~ * .. " |populations .* “ |
We focus on the chunk count matrix. When the loci are unlinked, this matrix is a linear T compenenmt T Componema
transform of the standard Principal Components Analysis (PCA) matrix. When the loci I oo s
are linked, our painting correctly accounts for this and produces a “linkage corrected” | A ISENRY >yl . .
matrix with greater contrast between populations. I‘ég:'”ked : ; :
model 5 : 5 3 -
BantuSouthAfécaS ! 1 : : Step 2, g . |
Bﬁhutlg%nl%ﬂ . 1 T - 0 o o0 ) o o
MBHHE = i 1 | . omponent 1 . . Component 3
tgi%ai Eﬁzﬁ# ‘ ‘ PO p U Iatl on PCA on dense simulated data with population structure. Qur
BantySouATica] w002 “nainting” linkage model allows for better resolution of populations.
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The finestructure model applied to the whole world.
Colours are continents. Labelled populations are
shown, as is bipartition certainty.

A big advantage of our representation over PCA
IS that the matrix elements are interpretable.
We are looking for a set of populations, each of
which has a distinctive chunk copying
frequency vector P_, and chunks are copied

iIndependently. Therefore the rows of the copy
count matrix X are multinomial:
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X;;  q,=Population
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X |P = Z aSSIgnmen Im1 i s Usually there are f============= 4.807
pA Number of L more chunks Q
i,j=1 q, Zv(%\ggtl{g/;g? sarcinians 1| I8 w:thm populations... T
and we can apply a (conjugate) Dirichlet Prior | e ffff_ffff

for P_in order to integrate them out (Pella &

Masuda 2003) and obtain the probability of a | s

given population split. Markov-Chain Monte-
Carlo allows us to integrate over possible e

population assignments, and is efficient @~ [§ mixture of porth.... === .and south of Europe. ==
because few parameters must be inferred. The | s — .
model has the same* power and accuracy as | _ ! I
STRUCTURE in large datasets. orcadians EEESEEY S

Orcadian 12 = BIEENE @$9 (=EE=EEEH E jiEmni— 1317
* The models are equivalent to first order in N when loci are unlinked, drift is weak and
genotyped SNPs are not very rare.

Results: Finestructure =

We can apply our method to huge datasets.

The HGDP dataset has 938 individuals and s f " _ sl ol
~650,000 SNPs. The painting is relatively fast Results for Europe. On the continental scale, our mode

finds more populations and allows for readable
summaries of the signal in the chunk count matrix.
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i The Druze have many relatives sampled
1=<— who form their own populations. But we

W iiii. can simply merge them in the tree.

08534 —

and is parallelisable over individuals. The
population structure model takes O(N?)
iterations to fully converge, hours for a single

continent on a desktop PC and a few days for Important future work: modelling admixture between
the whole dataset. ~ We find over 180 55 ations, and accounting for correlations in the drift rate
populations in the world HGDP data, confirmed between populations (to find all populations in one go).

as real by splitting the genomic data into two

halves. We can group them using 'similarity under our model' by forcing merges to obtain a tree; this finds
populations that are similar but still distinct. The data can be represented as a 'population level' matrix to see
signals of ancestry, and the rich information contained in the 3 data matrices describe may hide historical
population structure such as bottlenecks, inbreeding, both ancient and recent admixture, and more.
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