
BioSS Introduction to Mathematical Modelling

1 Practical Session 1 1 hour

Use paper, pencil and a ruler to analyze the following, very simple models for population growth
(acetates and markers provided where needed),

• The first exercise is aimed at manipulating and graphically representing a discrete-
time model, as well as illustrating ideas on limit-cycle and chaotic behaviour. After
iterating the model on the graphs, plot the results on acetate using a coloured pen.
A brief discussion will follow in which everyone is invited to show their results on a
projector.

• In the second exercise we consider a continuous-time version of the above model.
The two models are equivalent if only small changes in the population are allowed
for (i.e. small values of the constant a - see below). This model provides an example
where an exact (analytical) solution can be obtained in terms of the time variable
and the parameters. This solution is explicitly given and you are asked to study its
features.

1.1 Discrete-time logistic growth.

Consider a population of organisms:

(a) whose members are identical and share resources identically;

(b) that is not affected by outside factors;

(c) in which changes occur only in short and uniformly spaced intervals of time (our unit of
time). This is a reasonable assumption, for example, in some insects that have a short
period of activity in the summer but are dormant the rest of the year;

(d) that is large enough to neglect stochastic effects in the changes that occur, i.e. the model
is deterministic: whenever the population has a given size N the same amount of change
follows.

A possible model giving the population Nt+1 at time t + 1 in terms of the population size Nt

at time t when it last changed, is the following discrete-time equation:

Nt+1 = aNt

(
1− Nt

K

)
(1)

= Nt + (a− 1)Nt − a
N2

t

K
, (2)

where a > 1 and K are constant positive numbers, or simply positive constants. The growth
term (a−1)Nt states that each individual produces (a−1) offspring per unit time. The control
term −aNt/K states that the rate of death per individual and per unit of time is proportional
to the total number of individuals Nt: this models competition for resources by bounding
population growth.
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As the population size must be positive (Nt+1 > 0) this model is only defined for 0 ≤ Nt ≤ K.
Hence K is termed the carrying capacity of the model ecosystem. Without any loss of generality
we set K = 1 by rescaling Nt/K → Nt at all times. Now Equation (1) now reads

Nt+1 = aNt(1−Nt) . (3)

An equilibrium point is reached if there is no further change, i.e., Nt+1 = Nt ≡ N∗. This
requires a balance between births and deaths.

• Show that the equilibrium levels are: N∗ = 0 and

N∗ =
a− 1

a
, (4)

with the second solution meaningful only if a > 1 (since N∗ must be positive).

• Given that the function x→ x(1− x) has its maximum at x = 1/2, show that the maximum
value that Nt+1 can possibly take (if Nt = 1/2 is reached) is Nmax = a/4. This implies, since
Nt+1 ≤ 1, that the model is biologically meaningful only for a ≤ 4. From (4) we then conclude
that we are interested in the range

1 < a ≤ 4 . (5)

A property of the equilibrium point N∗ is that, once it is reached the system can not subse-
quently move away from it (at least for a deterministic model). As the population changes by
discrete amounts controlled by a, for large values of a the population may never reach N∗ and
may thus keep changing forever. In fact, this happens for a ≥ 3.

There are three types of long-term behaviour of the model

• Use the graphs provided to find what the behaviour is in the cases a = 2.5, 3.3, 3.52, and 3.9.

(a) Consider the parabolic graph (Nt+1, Nt) in the annexed pages. Start with, say X = N0 =
0.1, and draw a vertical line until it crosses the parabola [Y = Nt+1 = aNt(1−Nt)]; this
gives the point (N0, N1). Mark this point.

(b) Draw a horizontal line from (N0, N1) until it meets the straight line [Nt+1 = Nt]. From
this point draw a vertical line and obtain (N1, N2). Mark this point too.

(c) Simultaneously, project the horizontal lines to mark the points (t, Nt) on the adjacent
graph. This will plot the changes in the population as a series in time, with time t being
the number of iterations. This time series will help you to see whether the behaviour has
stabilized or not.

(d) Repeat a), b) and c) until a pattern of behaviour becomes apparent (typically after a dozen
iterations or so).

• Calculate the equilibrium population size N∗ from (4). Does the system reach equilibrium?
If not, what is the relation between the long-term behaviour and equilibrium?

The time it takes to reach a steady mode of behaviour varies with N0 and a, but if a pattern of
behaviour is reached its quantitative features should not depend on N0. The convergence time
varies with a and N0 in a way that is not simple and is apparently erratic. We have carefully
chosen the values of a (for the given N0) so that fairly optimal convergence was obtained for
each type of behaviour.
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1.2 Continuous-time logistic growth.

We now consider a population of simple organisms under the same assumptions as in Example
1, but modify assumption (c): changes (births and deaths) can now occur at any instant in
time at given rates per unit time. A simple model describing how the population size N(t)
evolves with time t is the differential equation

dN(t)

dt
= rN(t)

(
1− Nt

K

)
, (6)

with r and K positive constants. This is a continuous-time version of (1), called the logistic
equation, whose birth and death terms on the right-hand-side are easily identified. The constant
K has the same meaning as before; r is the growth rate, and is proportional to the multiplication
factor a− 1 in the discrete-time model. Equation (6) has an analytic solution given by

N(t) =
K

1 + [K/N0 − 1] exp (−rt)
, (7)

where N0 is the initial population size at t = 0. (At first sight this expression may look off-
putting but, given values of K, N0, r and t, it can easily be evaluated on a hand calculator, or
using a computer package such as Excel.)

• Substitute t = 0 into (7) and check that N(0) = N0 [hint: exp (0) = 1].
The exact solution allows us to understand the behaviour of the model for all values of r, K and
N0. (Note that K is a redundant parameter, as we could set K = 1 by rescaling N(t)/K → N(t)
and N0/K → N0 as before.)

• Find the limit of N(t) when t is large [hint: exp−x→ 0 as x→∞].

Figure 1 below shows the general shape of N(t) with N0 = 0.01 and K = 1, in two cases; (a)
r = 1 and (b) r = 2.

• Identify which graph corresponds to which value of r.

• Use the graphs to estimate the time for a population of size N0 = 0.01 to grow 50 fold in both
cases (a) and (b). Compare your estimates with the values obtained from the exact solution
(7). What is the relation between the two times?

• In Figure 1 N0 < K. What happens to the population if its initial size is larger than K [hint:
use Equation (6) for the rate of change of the population].

0.0 2.0 4.0 6.0 8.0 10.0
0.0

0.2

0.4

0.6

0.8

1.0

time

N(t)

Figure 1: Solution (7) to the logistic equation (6) with N0 = 0.01; r = 1, 2; K = 1
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BioSS Introduction to Mathematical Modelling

Solutions - Example 1.1

Equilibrium population levels

• Stable equilibrium: Nt+1 = Nt = N∗

From Equation (1) (from the notes: Practical Session 1) with K = 1 we find

⇒ N∗ = N∗ + (a− 1)N∗ − a(N∗)2

N∗ [(a− 1)− aN∗] = 0

This then tells us that

N∗ = 0 if a ≤ 1

N∗ = (a− 1)/a if a > 1

• Maximum of Nt+1:

Since the maximum value of N(1−N) occurs at N = 1/2 then ....

From Equation (3) (from the notes: Practical Session 1) we see

max [Nt+1] = a max [Nt(1−Nt)]

= a max [(1/2)(1− (1/2))]

= a/4

• Long-term behaviour:

The results of the iteration for N0 = 0.1 and the given values of a are shown in the graphs
below.

The three types of behaviour are:
a = 2.5 : stable equilibrium
a = 3.3 : limit cycle with period 2
a = 3.52 : limit cycle with period 4
a = 3.9 : chaos - no readily discernible pattern.

• Equilibrium values:

The equilibrium population size for a > 1 is N∗ = (a− 1)/a .
Substituting the values 2.5, 3.3, 3.52 and 3.9 for a gives:

N∗ = 0.600, 0.697, 0.716, 0.744 .

Relation to equilibrium state:
a = 2.5 : equilibrium is reached
a = 3.3 : the two values in the limit cycle are either side of N∗

a = 3.52 : the four values in the limit cycle are half one side and half the other side of N∗

a = 3.9 : the values of Nt appear (almost randomly) distributed on both sides of N∗.
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Solutions - Example 1.2

• What is N(0)?:
Putting t = 0 in Equation (7) (from the notes: Practical Session 1) gives

Since exp (0) = 1 N(0) =
K

1 + [K/N0 − 1]

=
K

K/N0

= N0

• Limit when t→∞:

Since exp (−∞)→∞ N(t) → K

1 + 0
→ K

• Which graph is which?:
The larger the growth rate r the faster the population grows.
Hence the top graph is the one with r = 2.

• Estimate of growth times:
We want to know the time when the population reaches the size N = 50 ∗ 0.01 = 0.5.
From the graphs:

for r = 1, t ≈ 4.6

for r = 2, t ≈ 2.3

Substituting N0 = 0.01, K = 1 and N(t) = 0.5 in Equation (7) (Practical Session 1):

1

2
=

1

1 + [1/0.01− 1] exp (−rt)
=

1

1 + 99 exp (−rt)

⇒ 2 = 1 + 99 exp (−rt)

⇒ exp (rt) = 99

⇒ rt = ln (99) ≈ 4.595

⇒ for r = 1, t ≈ 4.595

for r = 2, t ≈ 4.595/2 ≈ 2.298

which agrees with the graphical estimates.

N.B. As the exact solution only depends on time t through the scaled variable rt, a
doubled growth rate gives the same population size in half of the time.
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• What if N0 < K?:
Whenever N(t) > K then from Equation (6) (Practical Session 1)

dN(t)

dt
< 0 .

This means that N decreases until dN(t)/dt = 0, which happens when N(t) = K.
This behaviour is illustrated below.
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Figure 2: Solution (7) (Practical Session 1) to the logistic equation with N0 = 1.5; r = 1, 2;
K = 1
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BioSS Introduction to Mathematical Modelling

2 Practical Session 2 1 hour 30 minutes

2.1 Predator-prey model

Let us assume that we have a population F whose intrinsic growth rate is described by the
continuous-time logistic of Example 1.2. However, to make the model slightly more realistic,
we introduce a second population P which preys on our original population. Each member of
P consumes members of F at a certain rate so that the rate of change in F is now given by

dF

dt
= rF

(
1− F

K

)
− IP ,

where I is the feeding or uptake rate per predator, and as before r is the growth rate, and K
the carrying capacity for the prey population.

This uptake rate is normally considered to be a simple function of the prey population density:

I =
ImaxF

F + F0

,

where Imax and F0 are constants.

You should be able to sketch I as a function of F and illustrate how varying the two constants
affects the graph.

We will assume that the predator population can change as follows. We will assume that the
reproductive rate of an individual is proportional to its prey intake rate but that death rate is
constant. The rate of change in the predator population is then

dP

dt
= εIP − µP ,

where ε and µ are constants.

If you substitute zero for both F and P in the equations above, you should see that both rates
of change are zero. Thus, (F = 0, P = 0) is a simple equilibrium state of the system. Also
check that there is another trivial equilibrium when the predator population is zero and the
food population is at its carrying capacity. In addition to these two, there is a third and more
interesting equilibrium where both populations are non-zero. By setting the two differential
equations to zero and using simple algebra, you should be able to form expressions for the
equilibrium populations in terms of the 6 constant parameters (K, r, Imax, F0, ε and µ).
You should also be able to form two conditions for both these equilibrium populations to be
strictly positive (assuming that all the parameters are positive). Try to understand the physical
meaning of each condition, and from that understanding, speculate as to which of the two trivial
steady states this system will return if either one of the conditions is not met.

Suppose that F represents a crop and P a pest. A farmer wishing to increase crop yield could
either add fertilizer to increase the crop growth rate r or could increase the acreage, thereby
increasing the carrying capacity K. You should see from your steady state values that somewhat
counter-intuitively neither of these actions changes the steady state crop population level. This
effect is known as the paradox of enrichment.
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Although we can obtain the steady state values of the system analytically, we cannot write down
analytic solutions for P (t) and F (t) (contrast this with Example 1.2). In order to investigate
the non-equilibrium behaviour of the model we must evaluate our model equations numerically.
A program has been written to this: open a new window onto the software section of the course
website. From there launch the Deterministic Predator Prey model. A new browser
window will appear with a form showing the following values

Imax = 10 F0 = 1 Maximum Time = 100
µ = 4.0 ε = 0.5 Number of observations = 1000
r = 10 K = 8

taken by the model parameters. You will modify these later, but can reset to these values at
any time by clicking on the Defaults button. For now just click on the Run Model button at
the bottom of the page. After a few moments the window will refresh and display the output
of the model run.

The display shows the solution of the differential equations which are obtained by numerical
integration using the RK-4 method discussed in the notes. The results are provided in two
formats. Initially you see a timeseries plot of the predator and prey populations. You should
see that both equations settle down to equilibrium values. Check these against your analytic
values. Since the two populations are attracted to the steady state: we say that the equilibrium
is stable.

The second format provided is a phase plot (or phase portrait) where the predator population
size is plotted against that of the prey. Before you click on the Phaseplot tab think about
what this plot should look like. Make sure you understand how the phase plot relates to the
earlier time plot (note: toggle between the timeseries and phase plots using the tabs under the
graphs).

Investigate the effect of increasing the carrying capacity K on the trajectories of the two
populations. To achieve this do several calculations each time increasing K by a small amount
(0.25, say). Using time plots you should observe that, as K increases, the transient state (that
is, before the solution settles to equilibrium) lasts for longer and longer. Eventually the system
never settles down, but continues to oscillate around the steady state. The steady state is now
said to be unstable.

As you go along observe the effect this has on the phase plots, and make sure that you can see
the link with the time plots.

Once you have obtained a value of K for which the equilibrium is unstable, continue to increase
K slowly and investigate the effect this has on the amplitude and frequency of the oscillations.

Introducing stochasticity

The stochastic version of this predator prey model is defined by the events and rates shown
below. Note that the rates are lifted straight from the deterministic model.

Description Event Rate
Birth of prey F → F + 1 rF (1− F/K)
Death of prey F → F − 1 IP
Birth of predators P → P + 1 εIP
Death of predators P → P − 1 µP

Run the Stochastic predator-prey model. What do you find? Can you fix it?
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As you will have noticed it is extremely difficult to prevent extinction of the predator popula-
tion? Typically the predators become extinct whilst prey numbers rise to the carrying capacity.
This instability is a well known problem with models of predator-prey and host-parasite inter-
actions. Since biological predator-prey populations are able to maintain themselves we must
ask what is wrong with our model? Introducing a spatial element to the model, with movement
of both predators and prey, not only adds realism but also stabilises the dynamics. The idea is
that prey can find refuge in areas where predator numbers are low, and predators can move to
regions with sufficient prey. addition real predator prey systems are

Launch the Stochastic and spatial predator-prey model. In this model the animals
exist on a set of connected patches. The dynamics within each patch are controlled by the
nonspatial stochastic model discussed above, whilst the spatial aspects are controlled by five
parameters(Mr, Mc, λ, λprey, s). The number of rows (Mr) and columns (Mc) define the
size (N=Mc*Mr) and shape of the lattice. The dispersal of predators is controlled by the
movement rate λ and the parameter s which determines the size of the neighbourhood the
animal may move to. For s = 0 movement is uniform across the entire lattice whilst s > 0
gives a probability of movement between two patches which decays with the distance between
them. s ≥ 10 corresponds to nearest neighbour movement only. The dispersal of prey is also
controlled by s and the movement rate λprey. The propensity of animals to move to a new
patch increases with λ and λprey.

Experiment with different movement rates. Can you stabilise the predator population? Start
with the default 5 × 5 lattice. Increase the movement rates of the predator and prey (e.g.
λ = 0, λprey = 0 (nonspatial); λ = 10, λprey = 1; λ = 100, λprey = 10 λ = 10, λprey = 100;
now change the random number seed to 9999!). Although movement does allow the predator
population to persist for longer extinction still occurs in a relatively short time. Try increasing
the size of the lattice to 10 × 10 and try the following movement rates: λ = 10, λprey = 1
λ = 1, λprey = 10; λ = 10, λprey = 10. Have a look at the histograms of the population
sizes as you do this. Now, paying attention to the phase plots, try the following sequence:
λ = 1, λprey = 1 λ = 10, λprey = 1; λ = 100, λprey = 100. What do you notice?

What do you think are the significance of these results to conservation biology and habitat
fragmentation?

2.2 Childhood Illnesses

Childhood illnesses are one of the classic applications of mathematical modelling. The collation
of case reporting by public health bodies provides particularly rich, even uniquely detailed data
of an ecological system. Much progress has been made in the last ten years in understanding
the persistence of diseases such as measles. In this section we will look at two recent debates
from this field; the first is the role of chaos in biological systems; and the second relates to
persistence of childhood disease in cities. As we shall see these issues are related.

One hotly debated subject in mathematical biology is that mathematical models suggest that
chaos should be a common occurrence. However, few (if any) biological time series have been
shown to exhibit chaos. Time series of the numbers of reported cases of childhood illnesses (e.g.
measles, chicken-pox etc.) in cities are considered by some to exhibit signs of chaos.

The most popular model of childhood diseases is the SEIR model presented below. People
are considered to be born into a class labeled susceptible (S). On contact with a person who
has the disease and is infectious (I) the susceptible moves into a category which contains the
those who have the disease but are not yet infectious (E). After a short number of days the
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person then leaves this exposed category (E) and becomes infectious (I). After another short
period the person recovers and moves to the category (R) where they remain until death. The
population as a whole is assumed to be constant (N), with births matching deaths. This system
is described by the following equations:

dS

dt
= mN −mS − bSI

dE

dt
= bSI −mE − aE

dI

dt
= aE −mI − gI

dR

dt
= gI −mR

S + E + I + R = N

Make sure that you understand the structure of the model and the significance of each of the
constants. You should be able to solve these equations for the non-trivial steady state and
find the minimum value of the total population for which the disease persists. Discuss how the
current slowdown in birth rates and increased lifespan, seen in the developed world, affects this
value.

Sensitivity Analysis

Current thinking suggests that the contact rate parameter (b) should not be a constant but
should vary with time, since children are more at risk in winter when they are at school than
in summer when they are not. One (crude) way to represent this is given below:

b = b0(1 + b1 cos (2πt)) ,

where t is the time in years.

The best fit values of these parameters to a measles data set are:

m = 0.02 ,

g = 55.0 ,

a = 50.0 ,

b0 = 0.001

b1 = 0.28 .

However, here we will investigate the effect of varying the parameter b1 between 0 and 0.3 on
the dynamics of the disease in a population of 1,000,000 using the Deterministic Seir model.
The default values are those shown above, but start with b1 = 0.0 and increase this value slowly.

The graphs Timeseries and Histogram show the numbers of infectives, whilst Phaseplot shows
the numbers of people in the categories I and E. You should observe that the system becomes
chaotic at high values of b1. Have a look at the phase plot in this case; the resultant pattern
is a so-called strange attractor. As the system evolves in time the trajectory in phase-space
(i.e. the values of I and E) move around this strange attractor in a rather complicated way.
This is in contrast to the simple motion around limit cycle attractors which we found in the
predator-prey model (and for low values of b1 in the SEIR model).
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Introducing stochasticity

The stochastic version of the SEIR model follows as before from the explicitly defined rates
and implicitly assumed events in the deterministic model. These are shown below.

Description Event Rate
Birth of susceptibles S → S + 1 m(S + E + I + R)
Death of susceptibles S → S − 1 mS
Infection S → S − 1 & E → E + 1 bSI
Death in exposed class E → E − 1 mE
End of latent stage E → E − 1 & I → I + 1 aE
Death in infective class I → I − 1 mI
End of infectious stage I → I − 1 & R → R + 1 gI
Death from recovered class R → R− 1 mR

Run the Stochastic SEIR model. What do you find?

Infact the infection can be made to persist, but only for population sizes of around 10 million
and above. This is generally considered to be too large to be realistic, and it is widely accepted
that the only way to stabilise the dynamics for realistically sized cities is to add a background
infection rate:

Description Event Rate
Background infection S → S − 1 & E → E + 1 νS

This acknowledges the fact that cities are not isolated but that people move between them and
other urban and rural areas. A realistic background rate of infection for a city with population
of a million is considered to be ν = 0.0001. Try this. Look at the difference between the
stochastic and deterministic dynamics. Do you notice anything strange about the deterministic
dynamics?

Take a look at the Fadeout fraction shown below the figures on the output screen. This is the
fraction of observed times when the disease was not present. Whilst the disease now persists
(infact it couldn’t do anything else as we have a regular importation of cases) the fadeout
fraction is much higher than observed in a range of data from North American and British
cities and from small island data. One way to reduce the fadeout is to increase the background
infection to unrealistically high levels - try it. However, this is unsatisfactory and it is now
generally accepted that the best way of reconciling models and data is to (yes you’ve guessed
it!) introduce a spatial element into the model structure.

Adding spatial structure

A standard way of introducing spatial structure into models of childhood epidemics is to divide
the population into a set of districts and then assume that infection within districts has a
contact rate b (overall rate bSI) as above, but that contacts between districts are reduced by
a mixing parameter λ (rate λbSI) . Thus λ = 1 corresponds to the nonspatial model whilst
λ < 1 introduces spatial heterogeneity. This model has been implemented as the Spatial and
stochastic SEIR model. Try λ = 1 and various levels of heterogeneity. What impact does
this have on the Fadeout fraction?

Although we have defined our spatial structure in terms of districts, it can also be thought of in
terms of social structure. In other words defining the contact structure between social groups.
The overlap between the two is perhaps most easily understood if you assume that people who
live in the same district send their children to the local school. However, if people send their

13



kids to a more remote school they may in effect be in closest contact with people in another
district.

Modelling Experiments

Improved medical treatment could be represented in the model in one of three ways:

(i) reduced infectiousness (reducing b0 try a 10,20 and 30% reductions)

(ii) reduced latency period (increasing a)

(iii) reduced infectious period (increasing g)

Assuming that b1 = 0.28, ν = 0.0001 and λ = 0.001 investigate the effect of these on the
dynamics of the population.

Addendum

The current state of the art in terms of modelling measles dynamics is a little more complex
than the SEIR model considered here. The Realistic Age Structured (RAS) model divides the
population into age classes and then each age class into S,E,I and R compartments. The time
varying nature of the contact rate b is still crucial although a more realistic model is often
used which assumes one level on school days and a lower level during school holidays. In the
RAS model the infection can only be made to persist by adding a background rate of infection,
but again for realistic levels of ν the fadeout fraction is found to be greater than observed.
Adding spatial heterogeneity reduces fadeout to realistic levels. The critical population size is
defined to be the smallest population for which the fadeout fraction becomes zero. In the case
of measles data this is seen to be around 250, 000− 500, 000 and this is correctly predicted by
the spatially heterogeneous RAS model. (A good review article is the chpater by Ferguson,
May and Anderson in Tilman and Kareiva, 1997))
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BioSS Introduction to Mathematical Modelling Course

Solutions - Example 2.1

Form of the uptake rate

For the uptake rate

I(F ) =
ImaxF

F + F0

,

of prey by the predators it is straightforward to see that

I(F = 0) = 0 ,

I(F =∞) = Imax ,

I(F = F0) =
1

2
Imax .

Thus F0 is the value of F for which I(F ) attains half its maximum value (Imax): increasing
F0 slows down the increase of I with F , as is shown below.
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Ι(F)
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Increasing F0

Figure 3: Uptake rate with Imax = 1 and F0 = 0.1, 1.0, 2.0

The three equilibria

Recall that our predator-prey model is described by the following equations,

dF

dt
= rF

(
1− F

K

)
− IP ,

dP

dt
= εIP − µP ,

and the steady states occur when

dF

dt
=

dP

dt
= 0 .
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There are three such fixed points of the system dynamics:

(a) Both populations extinct (F = 0,P = 0):

dF

dt
= r × 0×

(
1− 0

K

)
− I × 0 = 0 ,

dP

dt
= εI × 0− µ× 0 = 0 .

(b) Predators extinct, prey at carrying capacity (F = K,P = 0):

dF

dt
= rK

(
1− K

K

)
− I × 0 = 0 ,

dP

dt
= εI × 0− µ× 0 = 0 .

(c) Stable point where both predator and prey co-exist (F = F ∗,P = P ∗):

Take dP
dt

= 0, this leads to

⇒ εIP − µP = 0

⇒ εIP = µP

⇒ εI = µ

⇒ I =
µ

ε
(*)

⇒ ImaxF

F + F0

=
µ

ε

⇒ ImaxF =
µ

ε
F +

µ

ε
F0

⇒ F
[
Imax −

µ

ε

]
=

µ

ε
F0

⇒ F =
µ
ε
F0[

Imax − µ
ε

]
⇒ F = F ∗ =

µF0

εImax − µ
(8)

Taking dF
dt

= 0 leads to

⇒ rF
(
1− F

K

)
− IP = 0

⇒ IP = rF
(
1− F

K

)
⇒ P =

rF

I

(
1− F

K

)
⇒ P = P ∗ =

εrF ∗

µ

(
1− F ∗

K

)
, (9)

where in the last line we used the fact that at equilibrium I = µ/ε (see (*)).

Positivity of equilibrium (c)

From (8) for F ∗ to be positive we require

εImax − µ > 0 (A)
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To see the physical meaning of this recall that

dP

dt
= (εI − µ)P ,

Thus, condition (A) says that the predator population must grow (dP/dt > 0) when they are
feeding at the maximum uptake rate Imax. If the predator population does not grow even when
feeding at this maximal rate then there is no stable state where both populations co-exist: the
predators die out and the prey reach the carrying capacity K (i.e. system returns to steady
state (b)).

From (9) for P ∗ to be positive we require

1− F ∗

K
> 0

Thus we require the predator population level to be below the carrying capacity, namely F ∗ < K

⇒ µF0

εImax
< K

⇒ µF0 < εImaxK − µK

⇒ µ(F0 + K) < εImaxK

⇒ µ <
εImaxK

(F0 + K)
. (B)

This condition is similar to condition (A) but more strict. This is because whilst the maximum
value of the uptake I is Imax, in this system the maximum attainable uptake is limited to

ImaxK

(F0 + K)
,

since the prey population level may not exceed the carrying capacity K. If the predator death
rate µ is too high and condition (B) not met then the predators will become extinct and the
prey population will reach the carrying capacity.

The paradox of enrichment: Note from (8) that the equilibrium value of F does not depend on
either r or K, but is set purely by the predator.

You should find that the equilibrium (c) (where both species co-exist) becomes unstable around
K = 9.0. As the carrying capacity K increases further the amplitude of the oscillations in-
creases, but their frequency decreases.

Phase space plots:

Stable equilibrium ⇒ trajectory settles to a single point.

Unstable equilibrium ⇒ trajectory eventually moves around a closed loop.

Solutions - Example 2.2

Meaning of parameters

m - birth and death rate
all individuals born into susceptible category at to total rate mN
individuals die from each category at per capita rates: mS, mE, mI, mE.
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b - contact rate
per capita rate at which susceptibles become exposed (E)per infected individual
i.e., total rate of infection: bSI

a - rate at which exposed individuals (E) become infected (I)
i.e., total rate: aE

g - rate at which infected individuals (I) recover (R)
i.e., total rate: gI

Equilibrium values

At equilibrium the model in example 4 satisfies the following equations

dS

dt
= mN −mS − bSI = 0

dE

dt
= bSI −mE − aE = 0

dI

dt
= aE −mI − gI = 0

dR

dt
= gI −mR = 0 .

In reverse order, the last three of these lead to

R =
g

m
I ,

E =
(m + g)

a
I , and

S =
(m + a)E

bI
=

(m + a)(m + g)

ab
,

respectively, which are all positive so long as I > 0. Since the total population is constant we
also obtain S + E + I + R = N

⇒ (m + a)(m + g)

ab
+ I +

(m + g)

a
I +

g

m
I = N

⇒ I =
N − (m+a)(m+g)

ab

1 + m+g
a

+ g
m

.

Thus, if I is to be positive we require

N >
(m + a)(m + g)

ab
.

For the parameter values given (m = 0.02, a = 50, g = 55 and b = b0 = 50) this means the
population must be larger than 55, 042.

Demographic change

The reduction in birth rates and the lengthening of lifespan both reduce the parameter m.
Suppose we reduce m by a factor of 100, the critical value

N >
(m + a)(m + g)

ab
= 55, 000 ,
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is virtually unchanged. Thus, demographic change does reduce the size of the population
necessary to allow long term persistence of the disease, but the effect is marginal.

Although these results are correct for the deterministic model thier value is questionable in
light of the behaviour of the stochastic model.
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BioSS Introduction to Mathematical Modelling

1. Logistic map Y = aX(1−X) (bottom) and time-series graph (top).
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2. Logistic map Y = aX(1−X) (bottom) and time-series graph (top).
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3. Logistic map Y = aX(1−X) (bottom) and time-series graph (top).
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4. Logistic map Y = aX(1−X) (bottom) and time-series graph (top).
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