

UNIVERSITY OF BRISTOL

Examination for the Degrees of B.Sc. and M.Sci. (Level M)

ANALYTIC NUMBER THEORY
MATH M0007
(Paper Code MATH-0007)

May 2015, 2 hours and 30 minutes

*This paper contains **five** questions
A candidate's **FOUR** best answers will be used for assessment.
Calculators are **not** permitted in this examination.*

Do not turn over until instructed.

1. Let $\zeta(s)$ denote the Riemann zeta function.

- (a) i. **(2 marks)** Define the *divisor function* $\tau(n)$.
ii. **(4 marks)** Show that

$$\sum_{n \leq x} \frac{1}{n} = \log x + \gamma + O(1/x) \quad (x \geq 1)$$

for some $\gamma \in \mathbb{R}$.

- iii. **(6 marks)** Show that

$$\sum_{n \leq x} \tau(n) = x \log x + (2\gamma - 1)x + O(x^{1/2}),$$

for some $\gamma \in \mathbb{R}$.

- (b) Recall that the *Möbius function* is given by

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1, \\ (-1)^k, & \text{if } n \text{ is a product of } k \text{ distinct primes} \\ 0, & \text{otherwise.} \end{cases}$$

- i. **(3 marks)** Show that

$$\sum_{d|n} \mu(d) = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } n > 1. \end{cases}$$

- ii. **(2 marks)** Ignoring issues of convergence, show that

$$\zeta(s)^{-1} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}.$$

- (c) i. **(2 marks)** Define *Euler's totient function* $\varphi(n)$.

- ii. **(3 marks)** Show that

$$\varphi(n) = \sum_{d|n} \mu(d) \frac{n}{d}.$$

- iii. **(3 marks)** Ignoring issues of convergence, show that

$$\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}.$$

Continued...

2. (a) The *Gamma function*, denoted by $\Gamma(s)$, is defined for $\operatorname{Re}(s) > 0$ by

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx.$$

- i. (2 marks) Using the identity

$$\int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy = 1,$$

or otherwise, show that $\Gamma(1/2) = \sqrt{\pi}$.

- ii. (4 marks) Explain why $\Gamma(s)$ is analytic in the region $\{s \in \mathbb{C} : \operatorname{Re}(s) > 0\}$.
 iii. (2 marks) Show that

$$\Gamma(s) = \Gamma(s+1)/s \quad (\operatorname{Re}(s) > 0).$$

- (b) i. (4 marks) Show that $\Gamma(s)$ can be extended to a meromorphic function on \mathbb{C} . Where are its poles?
 ii. (2 marks) Show that $\Gamma(s)$ has a simple pole at $s = 0$ with residue 1.
- (c) One can define an entire function $\xi(s)$ by

$$\xi(s) = \frac{1}{2} s(s-1) \pi^{-s/2} \Gamma(s/2) \zeta(s).$$

It satisfies the functional equation

$$\xi(1-s) = \xi(s).$$

- i. (6 marks) Show that

$$\zeta(0) = -1/2.$$

- ii. (5 marks) Using the functional equation, determine (with proof) all zeros of $\zeta(s)$ that lie *outside* of the region

$$\{s \in \mathbb{C} : 0 \leq \operatorname{Re}(s) \leq 1\}.$$

Continued...

3. (a) i. **(4 marks)** Let $a, b \in \mathbb{Z}$ with $a < b$, and let $f(x)$ be a function with a continuous derivative in the interval $[a, b]$. Recall that the *Euler–Maclaurin summation formula* states that

$$\sum_{a < n \leq b} f(n) = \int_a^b f(x)dx + \int_a^b (\{x\} - \frac{1}{2})f'(x)dx + \frac{1}{2}(f(b) - f(a)),$$

where $\{x\}$ denotes the fractional part of x . Use this to prove that

$$\zeta(s) = \frac{1}{s-1} - s \int_1^\infty \frac{\{x\} - \frac{1}{2}}{x^{s+1}} dx + \frac{1}{2},$$

for $\operatorname{Re}(s) > 1$.

- ii. **(6 marks)** Let $D = \{s \in \mathbb{C} : \operatorname{Re}(s) > 0\}$. Prove that the equation in (i) gives an analytic continuation of $(s-1)\zeta(s)$ to the region D .

- (b) Let $\pi(x)$ be the number of primes $p \leq x$. *Chebyshev's functions* are given by

$$\theta(x) = \sum_{p \leq x} \log p \quad \text{and} \quad \psi(x) = \sum_{n \leq x} \Lambda(n),$$

where the summation in $\theta(x)$ is over primes $p \leq x$ and $\Lambda(n)$ is the *von Mangoldt function*.

- i. **(5 marks)** Show that $\psi(x) = \theta(x) + O(x^{1/2} \log x)$.
ii. **(5 marks)** Use partial summation to prove that

$$\pi(x) = \frac{\theta(x)}{\log x} + \int_2^x \frac{\theta(t)}{t(\log t)^2} dt.$$

- iii. **(5 marks)** Let $E(x)$ be an increasing function of x with $E(x) \geq x^{1/2} \log x$, such that $\psi(x) = x + O(E(x))$. Use (i) and (ii) to show that

$$\pi(x) = \operatorname{L}(x) + O(E(x)),$$

where

$$\operatorname{L}(x) = \frac{x}{\log x} + \int_2^x \frac{dt}{(\log t)^2}.$$

Continued...

4. Suppose that q is a positive integer and let $\varphi(q)$ be the *Euler totient function*.
- (2 marks) Define what it means for a function $\chi : \mathbb{Z} \rightarrow \mathbb{C}$ to be a *Dirichlet character* modulo q .
 - (5 marks) Let a be an integer which is coprime to q and let n be an integer such that $n \not\equiv a \pmod{q}$. Show that

$$\sum_{\chi \pmod{q}} \overline{\chi(a)} \chi(n) = 0,$$

where the summation is over all Dirichlet characters modulo q .

- i. (8 marks) State the Pólya–Vinogradov inequality. For any odd prime p use it to prove that the interval $[1, x]$ contains

$$\frac{p-1}{2p}x + O(p^{1/2} \log p)$$

integers coprime to p which are quadratic residues modulo p .

- ii. (4 marks) Let χ be a non-trivial Dirichlet character modulo q . For any $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 0$ and any $x \geq 1$, show that

$$L(s, \chi) = \sum_{n \leq x} \frac{\chi(n)}{n^s} + O\left(\frac{|s|q^{1/2} \log q}{\sigma x^\sigma}\right),$$

where $\sigma = \operatorname{Re}(s)$.

- iii. (6 marks) Prove that for any $\sigma > 1/2$,

$$\sum_{\chi \neq \chi_0} L(\sigma, \chi) = \varphi(q) + O(q^{1/2} + q^{3/2-\sigma} \log q),$$

where the summation is over all non-trivial Dirichlet characters modulo q .

Continued...

5. The *Ramanujan sum* is defined to be

$$c_q(n) = \sum_{\substack{a=1 \\ (a,q)=1}}^q e(an/q),$$

for positive integers n and q , where $e(x) = \exp(2\pi ix)$.

(a) Let

$$g(q) = \sum_{b=1}^q e(bn/q)$$

for positive integers n and q .

i. (4 marks) Show that

$$g(q) = \begin{cases} q, & \text{if } q \mid n, \\ 0, & \text{otherwise.} \end{cases}$$

ii. (4 marks) By extracting common factors between b and q , show that

$$g(q) = \sum_{d \mid q} c_{q/d}(n).$$

iii. (5 marks) Use Möbius inversion to deduce from (i) and (ii) that

$$c_q(n) = \sum_{d \mid (n,q)} d\mu(q/d).$$

iv. (2 marks) Show that

$$\mu(q) = \sum_{\substack{a=1 \\ (a,q)=1}}^q e(a/q),$$

for any positive integer q .

- (b) i. (5 marks) Let $[q_1, q_2] = q_1 q_2 / (q_1, q_2)$ denote the least common multiple of positive integers q_1, q_2 . Show that if $q_1 \neq q_2$ then

$$\sum_{n=1}^{[q_1, q_2]} c_{q_1}(n) c_{q_2}(n) = 0.$$

ii. (5 marks) For any positive integer q show that

$$\sum_{n=1}^q c_q(n)^2 = q\varphi(q).$$

End of examination.