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Cont... Anal. NT-16

1. Recall that the arithmetic functions µ, ϕ,Λ and 1 are defined by

µ(n) =


1, if n = 1,

(−1)k, if n is a product of k distinct primes,

0, otherwise,

ϕ(n) = #{a mod n : (a, n) = 1},

Λ(n) =


0, if n = 1,

log p, if n is a positive power of the prime p,

0, otherwise,

1(n) = 1.

(a) i. (3 marks) Show that ∑
d|n

µ(d) =

{
1, if n = 1

0, if n > 1.

ii. (5 marks) For a fixed positive integer k, show that∑
n≤x

(n,k)=1

1

n
=
ϕ(k)

k
log x+O(1).

You may assume that ∑
m≤y

1

m
= log y +O(1).

(b) i. (2 marks) Show that Λ ∗ 1 = log.

ii. (5 marks) Prove that

Λ(n) = −
∑
d|n

µ(d) log d.

iii. (5 marks) Ignoring issues of convergence, show that

∞∑
n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)
.

(c) The Liouville function is defined to be λ(n) = (−1)Ω(n), where Ω(n) denotes the total
number of prime factors of n (counted with multiplicity).

i. (2 marks) Show that λ(n) is a completely multiplicative function.

ii. (3 marks) Ignoring issues of convergence, show that

∞∑
n=1

λ(n)

ns
=
ζ(2s)

ζ(s)
.

Continued...
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Cont... Anal. NT-16

2. (a) i. (4 marks) Prove that for Re(s) > 1 we have

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx,

where {x} denotes the fractional part of x.

ii. (6 marks) Let D = {s ∈ C : Re(s) > 0}. Prove that the equation in (i) gives an
analytic continuation of (s− 1)ζ(s) to the region D.

(b) i. (4 marks) Prove that ∑
n≤x

log n = x log x+O(x).

ii. (5 marks) Using Q1 part (b)(i), or otherwise, show that∑
n≤x

Λ(n)

n
= log x+O(1).

You may assume that π(x) = O(x/ log x).

iii. (2 marks) Show that ∑
n≤x

Λ(n)

n
=
∑
p≤x

log p

p
+O(1).

iv. (4 marks) Hence prove that∑
p≤x

1

p
= log log x+O(1).

Continued...
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3. (a) i. (3 marks) Prove that for any θ ∈ R

3 + 4 cos(θ) + cos(2θ) ≥ 0.

ii. (5 marks) Use the previous part to prove that for any σ > 1 and any t ∈ R

3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)| ≥ 0.

iii. (5 marks) Deduce that ζ(1 + it) 6= 0 for any t ∈ R with t 6= 0. You may assume
that

lim
σ→1

(σ − 1)ζ(σ) = 1.

(b) i. (4 marks) Recall that the Gamma function is given by the analytic function

Γ(s) =

∫ ∞
0

xs−1e−xdx,

for Re(s) > 0. Show that Γ(s) can be extended to a meromorphic function on C.

ii. (3 marks) Give a complete list of all zeros and poles (with multiplicities) of Γ(s).

iii. (5 marks) Using the functional equation

π−s/2Γ
(s

2

)
ζ(s) = π(s−1)/2Γ

(
1− s

2

)
ζ(1− s),

determine (with proof) all zeros of ζ(s) that lie outside of the region

{s ∈ C : 0 ≤ Re(s) ≤ 1}.

You may assume that ζ(s) 6= 0 for Re(s) > 1.

Continued...
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4. Suppose that q is a positive integer.

(a) i. (2 marks) Define what it means for a function χ : Z → C to be a Dirichlet
character modulo q.

ii. (2 marks) Define the Gauss sum τ(χ) associated to a Dirichlet character χ
modulo q. Assuming that χ is primitive, what is the value of |τ(χ)|? (You do
not need to include a proof.)

iii. (4 marks) Prove that if χ is a Dirichlet character modulo q, which is not the
trivial character, then

q∑
n=1

χ(n) = 0.

(b) i. (5 marks) If χ is a Dirichlet character modulo q then define χ̂ : Z→ C by

χ̂(m) =
1
√
q

q∑
n=1

χ(n)e

(
−mn
q

)
,

where e(z) = exp(2πiz). Prove that if χ is a Dirichlet character modulo q then

χ(n) =
1
√
q

q∑
m=1

χ̂(m)e

(
mn

q

)
.

ii. (4 marks) Let χ be a Dirichlet character modulo q and let m ∈ Z satisfy (m, q) =
1. Prove that

χ̂(m) = χ̄(m)χ̂(1).

(c) i. (2 marks) State the Pólya–Vinogradov inequality.

ii. (6 marks) Let χ be a non-trivial Dirichlet character modulo q and let f = 1 ∗χ,
where 1(n) = 1 for all positive integers n. Show that∑

n≤x

f(n) = xL(1, χ) +O(
√
q log q).

End of examination.
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