9. Arithmetic functions

Definition 9.1. A function $f: \mathbb{N} \to \mathbb{C}$ is called an arithmetic function.

Some examples of arithmetic functions include:

(1) the identity function

$$I(n) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n > 1; \end{cases}$$

- (2) the constant function $\mathbf{1}(n) = 1$;
- (3) the divisor function, $d(n) = \#\{d \in \mathbb{N} : d \mid n\}$ (sometimes denoted $\tau(n)$);
- (4) the Euler totient function $\varphi(n) = \#\{a \in \mathbb{N} : a \leq n \text{ and } (a, n) = 1\};$
- (5) the Möbius function,

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^r & \text{if } n = p_1 \cdots p_r \text{ for distinct primes } p_i, \\ 0 & \text{otherwise;} \end{cases}$$

- (6) the von Mangoldt function $\Lambda(n)$;
- (7) the function N(n) = n.

Definition 9.2. Let f, g be arithmetic functions. Then their *Dirichlet convolution* is the arithmetic function f * g defined by

$$f * g(n) = \sum_{d|n} f(d)g(n/d).$$

For example we have d = 1 * 1. Let \mathcal{A} denote the set of arithmetic functions. It is straightforward to see \mathcal{A} is a commutative ring with respect to Dirichlet convolution (and the usual +), with identity element I(n). In fact:

Lemma 9.3. \mathcal{A} is an integral domain.

Proof. Exercise. (Show that f * g = g * f and that \mathcal{A} has no zero divisors.)

Lemma 9.4. $\mu * 1 = I$.

Proof. We have $(\mu * \mathbf{1})(1) = \mu(1) = 1$. Let n > 1 with $n = p_1^{a_1} \dots p_r^{a_r}$ and $p_1 < \dots < p_r$. Then

$$(\mu * \mathbf{1})(n) = \sum_{d|n} \mu(d) = \sum_{J \subseteq \{1,\dots,r\}} \mu\left(\prod_{j \in J} p_j\right) = \sum_{J} (-1)^{\#J} = \sum_{k=0}^r \binom{r}{k} (-1)^k$$
$$= (1-1)^r$$
$$= 0.$$

This means that μ is the inverse of 1 under Dirichlet convolution. As a simple corollary, we obtain:

Theorem 9.5 (Möbius inversion). Let $f \in \mathcal{A}$ and define $g(n) = \sum_{d|n} f(d)$. Then

$$f(n) = \sum_{d|n} g(d)\mu(n/d).$$

Proof. We have $g = f * \mathbf{1}$ if and only if $f = g * \mu$.

Definition 9.6. An arithmetic function f has at most polynomial growth if there exists $\sigma \in \mathbb{R}$ such that $f(n) = O(n^{\sigma})$.

Let us denote by $\mathcal{A}^{\text{poly}}$ the set of $f \in \mathcal{A}$ of at most polynomial growth. Then one can show that $\mathcal{A}^{\text{poly}}$ is a subring of \mathcal{A} (exercise). For $f \in \mathcal{A}^{\text{poly}}$, the associated Dirichlet series $\sum_{n=1}^{\infty} f(n) n^{-s}$ defines an analytic function on some half plane $\Re(s) > \sigma + 1$. This turns out to be a very useful device for understanding the ring structure of $\mathcal{A}^{\text{poly}}$:

Theorem 9.7. Let $f, g \in \mathcal{A}^{\text{poly}}$. Then

$$\sum_{n=1}^{\infty} \frac{f * g(n)}{n^s} = \left(\sum_{n=1}^{\infty} \frac{f(n)}{n^s}\right) \left(\sum_{n=1}^{\infty} \frac{g(n)}{n^s}\right).$$

Proof. Expanding the right-hand side, we obtain

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{f(m)g(n)}{(mn)^s} = \sum_{r=1}^{\infty} \sum_{mn=r} \frac{f(m)g(n)}{r^s} = \sum_{r=1}^{\infty} \frac{f * g(r)}{r^s},$$

which is the left-hand side.

In other words, the map $f \mapsto \sum_{n=1}^{\infty} f(n)n^{-s}$ is a ring homomorphism from $\mathcal{A}^{\text{poly}}$ to the ring of functions that are analytic on a right half plane, and in fact this map is injective (exercise).

We have

$$\sum_{n=1}^{\infty} \frac{d(n)}{n^s} = \sum_{n=1}^{\infty} \frac{(1*1)(n)}{n^s} = \zeta(s)^2.$$

Definition 9.8. An arithmetic function f is multiplicative (resp. completely multiplicative) if f(mn) = f(m)f(n) whenever (m, n) = 1 (resp. for all m, n).

If $f \in \mathcal{A}^{\text{poly}}$ is multiplicative and non zero then, generalising the proof of the Euler product formula for ζ , one finds that

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p} \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \cdots \right).$$

If f is completely multiplicative then the inner series is geometric, so that

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p} \frac{1}{1 - f(p)p^{-s}}.$$

Example. μ is multiplicative. Thus

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \prod_{p} \left(1 + \frac{\mu(p)}{p^s} + \frac{\mu(p^2)}{p^{2s}} + \dots \right) = \prod_{p} \left(1 - \frac{1}{p^s} \right) = \frac{1}{\zeta(s)},$$

for $\Re(s) > 1$.

Lemma 9.9. If $f, g \in \mathcal{A}$ are multiplicative then f * g is multiplicative.

Proof. Let (m, n) = 1. Then

$$(f * g)(mn) = \sum_{d|mn} f(d)g(mn/d) = \sum_{d_1|m} \sum_{d_2|n} f(d_1d_2)g\left(\frac{mn}{d_1d_2}\right),$$

where

$$d_1 = \prod_{p|m, \ p^r \parallel d} p^r$$
 and $d_2 = \prod_{p|n, \ p^r \parallel d} p^r$.

(Here $p^r || d$ means $p^r || d$ but $p^{r+1} \nmid d$.) But then it follows from multiplicativity that

$$(f * g)(mn) = \sum_{d_1 \mid m} \sum_{d_2 \mid n} f(d_1) f(d_2) g\left(\frac{m}{d_1}\right) g\left(\frac{n}{d_2}\right) = (f * g)(m)(f * g)(n).$$

Remark. If $f \in \mathcal{A}$ is not the zero function and f is multiplicative then f(1) = 1. Indeed, we have $f(n) = f(n \cdot 1) = f(n)f(1)$.

There are lots of identities between elements of A:

Lemma 9.10. $\varphi = \mu * N \text{ where } N(n) = n.$

Proof. We have

$$\varphi(n) = \sum_{\substack{a \le n \\ (a,n)=1}} 1 = \sum_{a \le n} \sum_{d|(a,n)} \mu(d) = \sum_{a \le n} \sum_{\substack{d|a \\ d|n}} \mu(d),$$

since $\mu * \mathbf{1} = I$. Switching the order of summation we get

$$\varphi(n) = \sum_{d|n} \mu(d) \sum_{a \le n, \ d|a} 1 = \sum_{d|n} \mu(d) \frac{n}{d} = (\mu * N)(n).$$

It follows from this result that φ is multiplicative (since both μ and N are). If $n=p^r$ is a prime power then

$$\varphi(p^r) = p^r - p^{r-1} = p^r \left(1 - \frac{1}{p}\right).$$

Hence it follows that

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right).$$

Applying Möbius inversion to $\varphi = \mu * N$ we deduce that $\varphi * \mathbf{1} = N$; i.e.

$$\sum_{d|n} \varphi(d) = n$$

for any $n \in \mathbb{N}$.

Since $\varphi = \mu * N$, we can easily calculate the Dirichlet series associated to the Euler totient function as

$$\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^s} = \sum_{n=1}^{\infty} \frac{(\mu * N)(n)}{n^s} = \left(\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}\right) \left(\sum_{n=1}^{\infty} \frac{1}{n^{s-1}}\right) = \frac{\zeta(s-1)}{\zeta(s)}.$$

In particular we have $\sigma_a = \sigma_c = 2$ for this Dirichlet series.

Lemma 9.11. $\Lambda * 1 = \log$.

Proof. Recall that $\Lambda(1) = 0$ and

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k, \\ 0 & \text{otherwise.} \end{cases}$$

Write $n = p_1^{a_1} \dots p_r^{a_r}$. Then

$$\sum_{d|n} \Lambda(d) = \sum_{i \le r} \sum_{a \le a_i} \Lambda(p_i^a) = \sum_{i \le r} a_i \log p_i = \log n.$$

Next we claim that

$$\Lambda(n) = -\sum_{d|n} \mu(d) \log d.$$

This obviously true for n = 1. For n > 1, Möbius inversion gives

$$\Lambda(n) = \sum_{d|n} \mu(d) \log(n/d) = \sum_{d|n} \mu(d) (\log n - \log d) = -\sum_{d|n} \mu(d) \log d,$$

as required, since $\mu * \mathbf{1} = I$.

More examples of arithmetic functions:

- (1) If $n = p_1^{a_1} \dots p_r^{a_r}$ with $p_1 < \dots < p_r$ then $\omega(n) = r$ and $\Omega(n) = a_1 + \dots + a_r$. (2) The sum of divisors function is $\sigma_s(n) = \sum_{d|n} d^s$ for $s \in \mathbb{R}$. (Note that $d = \sigma_0$ and one usually writes σ for σ_1 .)

Returning to the divisor function, we have already seen that d = 1 * 1. Hence Lemma 9.9 implies that d(n) is a multiplicative arithmetic function. It is not completely multiplicative (why?). It is easy to see that $2^{\omega(n)} < d(n) < 2^{\Omega(n)}$ (exercise).

Arithmetic functions can be quite erratically behaved and in the next section we will study their behaviour on average. By multiplicativity we have $d(n) = (a_1 + 1) \dots (a_r + 1)$ if $n = p_1^{a_1} \dots p_r^{a_r}$. In particular d(p) = 2 for all primes p, but sometimes d(n) can be much bigger:

Lemma 9.12. Let $k \in \mathbb{N}$. Then $d(n) \geq (\log n)^k$ for infinitely many $n \in \mathbb{N}$.

Proof. Let $p_1 = 2, p_2 = 3, \ldots, p_{k+1}$ be the first k+1 primes. Put $n = (p_1 p_2 \ldots p_{k+1})^m$. Then

$$d(n) = (m+1)^{k+1} > m^{k+1} = \left(\frac{\log n}{\log p_1 p_2 \dots p_{k+1}}\right)^{k+1} \ge (\log n)^k,$$

if $\log n \geq (\log p_1 p_2 \dots p_{k+1})^{k+1}$. Thus, providing that $m \geq (\log p_1 p_2 \dots p_{k+1})^k$, we have $d(n) \ge (\log n)^k$.

On the other hand d(n) can't be too big. The following result shows, in particular, that the divisor function belongs to $\mathcal{A}^{\text{poly}}$

Lemma 9.13. We have $d(n) = O_{\varepsilon}(n^{\varepsilon})$ for any $\varepsilon > 0$.

Proof. Given $\varepsilon > 0$, we have to show that there is a positive constant $C(\varepsilon)$ such that $d(n) \leq C(\varepsilon)n^{\varepsilon}$ for every $n \in \mathbb{N}$. By multiplicativity we have

$$\frac{d(n)}{n^{\varepsilon}} = \prod_{p^a \mid \mid n} \frac{a+1}{p^{a\varepsilon}}.$$

We decompose the product into two parts according to whether $p < 2^{1/\varepsilon}$ or $p \ge 2^{1/\varepsilon}$. In the second part $p^{\varepsilon} \ge 2$, so that

$$\frac{a+1}{p^{a\varepsilon}} \leq \frac{a+1}{2^a} \leq 1.$$

Thus we must estimate the first part. Notice that

$$\frac{a+1}{p^{a\varepsilon}} \le 1 + \frac{a}{p^{a\varepsilon}} \le 1 + \frac{1}{\varepsilon \log 2},$$

since $a\varepsilon \log 2 \le e^{a\varepsilon \log 2} = 2^{a\varepsilon} \le p^{a\varepsilon}$. Hence

$$\prod_{p<2^{1/\varepsilon}} \left(1 + \frac{1}{\varepsilon \log 2}\right) = C(\varepsilon).$$