9. ARITHMETIC FUNCTIONS

Definition 9.1. A function f : N — C is called an arithmetic function.

Some examples of arithmetic functions include:

(1) the identity function
1 ifn=1

0 ifn>1;

(2) the constant function 1(n) = 1;
(3) the divisor function, d(n) = #{d € N:d | n} (sometimes denoted 7(n));
(4) the Euler totient function p(n) = #{a € N:a <n and (a,n) = 1};
(5) the Mé&bius function,
1 ifn=1,
p(n) =< (=1)" if n =p;---p, for distinct primes p;,
0 otherwise;

(6) the von Mangoldt function A(n);
(7) the function N(n) = n.

Definition 9.2. Let f, g be arithmetic functions. Then their Dirichlet convolution is the
arithmetic function f % g defined by

Frgmn) =" f(d)g(n/d).
dln

For example we have d = 1 % 1. Let A denote the set of arithmetic functions. It is
straightforward to see A is a commutative ring with respect to Dirichlet convolution (and
the usual +), with identity element I(n). In fact:

Lemma 9.3. A is an integral domain.
Proof. Exercise. (Show that f % ¢ = g * f and that A has no zero divisors.) U
Lemma 9.4. px1=1.

Proof. We have (= 1)(1) = p(l) = 1. Let n > 1 with n = p{* ...
Then

piand p; < -+ < p,.

r

(n*1)(n Z“ Z (HPJ>—Z )#J:i:(l:)(_l)k

dn JC{l,..ry \jeJ

This means that p is the inverse of 1 under Dirichlet convolution. As a simple corollary,

we obtain:
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Theorem 9.5 (M&bius inversion). Let f € A and define g(n) = 3_,, f(d). Then
Z g(d)u(n/d).
dln
Proof. We have g = f % 1 if and only if f = g * pu. 0J

Definition 9.6. An arithmetic function f has at most polynomial growth if there exists
o € R such that f(n) = O(n?).

Let us denote by AP°Y the set of f € A of at most polynomial growth. Then one can
show that AP°Y is a subring of A (exercise). For f € AP°Y | the associated Dirichlet series
S>>, f(n)n™* defines an analytic function on some half plane R(s) > o + 1. This turns out
to be a very useful device for understanding the ring structure of AP°Y:

Theorem 9.7. Let f,g € A*Y. Then
) (Zoo g(n))
ns |’
n=1

Zf*g <Z
>y fmlal) g 5 Smate) zf*g

Proof. Expanding the rlght—hand side, we obtain
m=1n=1 r=1 mn=r

which is the left-hand side. O

In other words, the map f — >.°°  f(n)n™* is a ring homomorphism from AP*Y to the
ring of functions that are analytic on a right half plane, and in fact this map is injective
(exercise).

We have

_ Z (1 *;)(n> _ C(3)2-

n=1 n=1
Definition 9.8. An arithmetic function f is multiplicative (resp. completely multiplicative)
if f(mn) = f(m)f(n) whenever (m,n) =1 (resp. for all m,n).

If f € AP°Y is multiplicative and non zero then, generalising the proof of the Euler product

formula for (, one finds that
2
n) 1] (Hf(z:) N f(z;s) +)
» p p

If f is completely multiplicative then the inner series is geometric, so that

-T1 1
1= f(p)p™
Example. p is multiplicative. Thus

OO“SZ):H( ul()zs?) ugju...):rp[(l_é):ﬁ,

n=1 p

for R(s) > 1
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Lemma 9.9. If f,g € A are multiplicative then f x g is multiplicative.
Proof. Let (m,n) = 1. Then

(f xg)(mn) = Z f(d)g(mn/d) = Z Zf (drda)g <d1d2)

dmn di|m da|n
where
H p" and dy = H .
plm, p"|ld pln, p7||d

(Here p"||d means p” | d but p"™' t d.) But then it follows from multiplicativity that

(o) = 3 5 st siaaa () o (3) = (0 x om0

di|m da|n

O

Remark. If f € A is not the zero function and f is multiplicative then f(1) = 1. Indeed, we
have f(n) = f(n-1) = f(n) (1)
There are lots of identities between elements of A:

Lemma 9.10. ¢ = ux N where N(n) = n.

Proof. We have
= D 1= > pd) =3 ud)

a<n a<n d|(a,n) a<n dla
(a,n)=1 dn

since p * 1 = I. Switching the order of summation we get
S Y 1= S = e )
djn a<n, d|a dln
O

It follows from this result that ¢ is multiplicative (since both p and N are). If n = p” is
a prime power then

_ - 1
SO(p’/‘):pr_p'r 1:p (1_2_9)
Hence it follows that

Applying Mobius inversion to ¢ = ux N we deduce that o x 1 = N; i.e.
> pld) =
dln

for any n € N.
Since ¢ = pu*x N, we can easily calculate the Dirichlet series associated to the Euler totient

function as
—p(n) o~ wxrN)n)  [op)) (= 1) 1)
Z ns _Z ns _ (n:1 ns ) <Z ns—l) o C(S> '
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In particular we have o, = 0. = 2 for this Dirichlet series.
Lemma 9.11. A x1 = log.
Proof. Recall that A(1) =0 and

ek
An) = {logp if n = p"~,

0 otherwise.

Write n = pi* ... p% . Then

ZA(d) = Z Z A(pf) = Z a; log p; = logn.

dn i<r a<a; i<r

Next we claim that
= " p(d)logd.
djn
This obviously true for n = 1. For n > 1, Mébius inversion gives

:ZM( log(n/d) = Z,u (logn —logd) = Z,u ) log d,

dln dln din

as required, since px 1 = 1.
More examples of arithmetic functions:
(1) If n=p{*...p¢% with py <--- < p, then w(n) =r and Q(n) =a; + - -- + a,.
(2) The sum of divisors function is o5(n) = >_,, d" for s € R. (Note that d = 0o and
one usually writes o for oy.)

Returning to the divisor function, we have already seen that d = 1 1. Hence Lemma 9.9
implies that d(n) is a multiplicative arithmetic function. It is not completely multiplicative
(why?). It is easy to see that 2¢(" < d(n) < 2% (exercise).

Arithmetic functions can be quite erratically behaved and in the next section we will
study their behaviour on average. By multiplicativity we have d(n) = (a; +1)...(a, + 1)
if n =pi*...p¢. In particular d(p) = 2 for all primes p, but sometimes d(n) can be much
bigger:

Lemma 9.12. Let k € N. Then d(n) > (logn)* for infinitely many n € N.
Proof. Let py = 2,py =3, ..., pry1 be the first k£ + 1 primes. Put n = (p1ps...prr1)™. Then

dlm) = (m + Ukﬂ > m = (logpllzgn pk+1) 2 {log n)k,

if logn > (logpips ... pry1)®™. Thus, providing that m > (logpips ... prs1)®, we have
d(n) > (logn)k. O

On the other hand d(n) can’t be too big. The following result shows, in particular, that
the divisor function belongs to AP°Y

Lemma 9.13. We have d(n) = O.(n®) for any € > 0.
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Proof. Given ¢ > 0, we have to show that there is a positive constant C(g) such that
d(n) < C(g)n® for every n € N. By multiplicativity we have

dn) a+1

ne - H e )

pln

We decompose the product into two parts according to whether p < 21/¢ or p > 21/2. In the

second part p® > 2, so that
a+1 < a+1 <1

paa - 2(1 -
Thus we must estimate the first part. Notice that

1 1
e L I
paa pas 610g2

since aelog 2 < %1982 = 29 < p® Hence

11 (1 + 81;2) = O(e).

p<2l/e
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