
9. Arithmetic functions

Definition 9.1. A function f : N→ C is called an arithmetic function.

Some examples of arithmetic functions include:

(1) the identity function

I(n) =

{
1 if n = 1,

0 if n > 1;

(2) the constant function 1(n) = 1;
(3) the divisor function, d(n) = #{d ∈ N : d | n} (sometimes denoted τ(n));
(4) the Euler totient function ϕ(n) = #{a ∈ N : a ≤ n and (a, n) = 1};
(5) the Möbius function,

µ(n) =


1 if n = 1,

(−1)r if n = p1 · · · pr for distinct primes pi,

0 otherwise;

(6) the von Mangoldt function Λ(n);
(7) the function N(n) = n.

Definition 9.2. Let f, g be arithmetic functions. Then their Dirichlet convolution is the
arithmetic function f ∗ g defined by

f ∗ g(n) =
∑
d|n

f(d)g(n/d).

For example we have d = 1 ∗ 1. Let A denote the set of arithmetic functions. It is
straightforward to see A is a commutative ring with respect to Dirichlet convolution (and
the usual +), with identity element I(n). In fact:

Lemma 9.3. A is an integral domain.

Proof. Exercise. (Show that f ∗ g = g ∗ f and that A has no zero divisors.) �

Lemma 9.4. µ ∗ 1 = I.

Proof. We have (µ ∗ 1)(1) = µ(1) = 1. Let n > 1 with n = pa11 . . . parr and p1 < · · · < pr.
Then

(µ ∗ 1)(n) =
∑
d|n

µ(d) =
∑

J⊆{1,...,r}

µ

(∏
j∈J

pj

)
=
∑
J

(−1)#J =
r∑

k=0

(
r

k

)
(−1)k

= (1− 1)r

= 0.

�

This means that µ is the inverse of 1 under Dirichlet convolution. As a simple corollary,
we obtain:
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Theorem 9.5 (Möbius inversion). Let f ∈ A and define g(n) =
∑

d|n f(d). Then

f(n) =
∑
d|n

g(d)µ(n/d).

Proof. We have g = f ∗ 1 if and only if f = g ∗ µ. �

Definition 9.6. An arithmetic function f has at most polynomial growth if there exists
σ ∈ R such that f(n) = O(nσ).

Let us denote by Apoly the set of f ∈ A of at most polynomial growth. Then one can
show that Apoly is a subring of A (exercise). For f ∈ Apoly, the associated Dirichlet series∑∞

n=1 f(n)n−s defines an analytic function on some half plane <(s) > σ + 1. This turns out
to be a very useful device for understanding the ring structure of Apoly:

Theorem 9.7. Let f, g ∈ Apoly. Then
∞∑
n=1

f ∗ g(n)

ns
=

(
∞∑
n=1

f(n)

ns

)(
∞∑
n=1

g(n)

ns

)
.

Proof. Expanding the right-hand side, we obtain
∞∑
m=1

∞∑
n=1

f(m)g(n)

(mn)s
=
∞∑
r=1

∑
mn=r

f(m)g(n)

rs
=
∞∑
r=1

f ∗ g(r)

rs
,

which is the left-hand side. �

In other words, the map f 7→
∑∞

n=1 f(n)n−s is a ring homomorphism from Apoly to the
ring of functions that are analytic on a right half plane, and in fact this map is injective
(exercise).

We have
∞∑
n=1

d(n)

ns
=
∞∑
n=1

(1 ∗ 1)(n)

ns
= ζ(s)2.

Definition 9.8. An arithmetic function f is multiplicative (resp. completely multiplicative)
if f(mn) = f(m)f(n) whenever (m,n) = 1 (resp. for all m,n).

If f ∈ Apoly is multiplicative and non zero then, generalising the proof of the Euler product
formula for ζ, one finds that

∞∑
n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·

)
.

If f is completely multiplicative then the inner series is geometric, so that
∞∑
n=1

f(n)

ns
=
∏
p

1

1− f(p)p−s
.

Example. µ is multiplicative. Thus
∞∑
n=1

µ(n)

ns
=
∏
p

(
1 +

µ(p)

ps
+
µ(p2)

p2s
+ · · ·

)
=
∏
p

(
1− 1

ps

)
=

1

ζ(s)
,

for <(s) > 1.
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Lemma 9.9. If f, g ∈ A are multiplicative then f ∗ g is multiplicative.

Proof. Let (m,n) = 1. Then

(f ∗ g)(mn) =
∑
d|mn

f(d)g(mn/d) =
∑
d1|m

∑
d2|n

f(d1d2)g

(
mn

d1d2

)
,

where
d1 =

∏
p|m, pr‖d

pr and d2 =
∏

p|n, pr‖d

pr.

(Here pr‖d means pr | d but pr+1 - d.) But then it follows from multiplicativity that

(f ∗ g)(mn) =
∑
d1|m

∑
d2|n

f(d1)f(d2)g

(
m

d1

)
g

(
n

d2

)
= (f ∗ g)(m)(f ∗ g)(n).

�

Remark. If f ∈ A is not the zero function and f is multiplicative then f(1) = 1. Indeed, we
have f(n) = f(n · 1) = f(n)f(1).

There are lots of identities between elements of A:

Lemma 9.10. ϕ = µ ∗N where N(n) = n.

Proof. We have

ϕ(n) =
∑
a≤n

(a,n)=1

1 =
∑
a≤n

∑
d|(a,n)

µ(d) =
∑
a≤n

∑
d|a
d|n

µ(d),

since µ ∗ 1 = I. Switching the order of summation we get

ϕ(n) =
∑
d|n

µ(d)
∑

a≤n, d|a

1 =
∑
d|n

µ(d)
n

d
= (µ ∗N)(n).

�

It follows from this result that ϕ is multiplicative (since both µ and N are). If n = pr is
a prime power then

ϕ(pr) = pr − pr−1 = pr
(

1− 1

p

)
.

Hence it follows that

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

Applying Möbius inversion to ϕ = µ ∗N we deduce that ϕ ∗ 1 = N ; i.e.∑
d|n

ϕ(d) = n

for any n ∈ N.
Since ϕ = µ∗N , we can easily calculate the Dirichlet series associated to the Euler totient

function as
∞∑
n=1

ϕ(n)

ns
=
∞∑
n=1

(µ ∗N)(n)

ns
=

(
∞∑
n=1

µ(n)

ns

)(
∞∑
n=1

1

ns−1

)
=
ζ(s− 1)

ζ(s)
.
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In particular we have σa = σc = 2 for this Dirichlet series.

Lemma 9.11. Λ ∗ 1 = log.

Proof. Recall that Λ(1) = 0 and

Λ(n) =

{
log p if n = pk,

0 otherwise.

Write n = pa11 . . . parr . Then∑
d|n

Λ(d) =
∑
i≤r

∑
a≤ai

Λ(pai ) =
∑
i≤r

ai log pi = log n.

�

Next we claim that

Λ(n) = −
∑
d|n

µ(d) log d.

This obviously true for n = 1. For n > 1, Möbius inversion gives

Λ(n) =
∑
d|n

µ(d) log(n/d) =
∑
d|n

µ(d) (log n− log d) = −
∑
d|n

µ(d) log d,

as required, since µ ∗ 1 = I.
More examples of arithmetic functions:

(1) If n = pa11 . . . parr with p1 < · · · < pr then ω(n) = r and Ω(n) = a1 + · · ·+ ar.
(2) The sum of divisors function is σs(n) =

∑
d|n d

s for s ∈ R. (Note that d = σ0 and

one usually writes σ for σ1.)

Returning to the divisor function, we have already seen that d = 1 ∗ 1. Hence Lemma 9.9
implies that d(n) is a multiplicative arithmetic function. It is not completely multiplicative
(why?). It is easy to see that 2ω(n) ≤ d(n) ≤ 2Ω(n) (exercise).

Arithmetic functions can be quite erratically behaved and in the next section we will
study their behaviour on average. By multiplicativity we have d(n) = (a1 + 1) . . . (ar + 1)
if n = pa11 . . . parr . In particular d(p) = 2 for all primes p, but sometimes d(n) can be much
bigger:

Lemma 9.12. Let k ∈ N. Then d(n) ≥ (log n)k for infinitely many n ∈ N.

Proof. Let p1 = 2, p2 = 3, . . . , pk+1 be the first k+ 1 primes. Put n = (p1p2 . . . pk+1)m. Then

d(n) = (m+ 1)k+1 > mk+1 =

(
log n

log p1p2 . . . pk+1

)k+1

≥ (log n)k,

if log n ≥ (log p1p2 . . . pk+1)k+1. Thus, providing that m ≥ (log p1p2 . . . pk+1)k, we have
d(n) ≥ (log n)k. �

On the other hand d(n) can’t be too big. The following result shows, in particular, that
the divisor function belongs to Apoly

Lemma 9.13. We have d(n) = Oε(n
ε) for any ε > 0.

39



Proof. Given ε > 0, we have to show that there is a positive constant C(ε) such that
d(n) ≤ C(ε)nε for every n ∈ N. By multiplicativity we have

d(n)

nε
=
∏
pa‖n

a+ 1

paε
.

We decompose the product into two parts according to whether p < 21/ε or p ≥ 21/ε. In the
second part pε ≥ 2, so that

a+ 1

paε
≤ a+ 1

2a
≤ 1.

Thus we must estimate the first part. Notice that

a+ 1

paε
≤ 1 +

a

paε
≤ 1 +

1

ε log 2
,

since aε log 2 ≤ eaε log 2 = 2aε ≤ paε. Hence∏
p<21/ε

(
1 +

1

ε log 2

)
= C(ε).

�
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