
11. Dirichlet characters

Our next goal is Dirichlet’s theorem on primes in arithmetic progression, for which we
need some algebra.

Definition 11.1. Let G be a group. A character of G is a group homomorphism χ : G→ C∗,
where C∗ is the multiplicative group of non-zero complex numbers. The set of characters of
G is written Ĝ.

By homomorphy we have χ(ab) = χ(a)χ(b) for all a, b ∈ G and χ(eG) = 1, where eG is the

identity element of G. We denote by χ0 ∈ Ĝ the trivial character

χ0(a) = 1, for all a ∈ G.

(This is sometimes called the principal character.) We henceforth assume that G is finite.

Lemma 11.2. If G is finite then Ĝ is also a finite group.

Proof. Let g ∈ G, which by assumption has finite order; i.e. gn = eG for some n ∈ N. Then
1 = χ(eG) = χ(gn) = χ(g)n. Hence |χ(g)| = 1 and χ(g) is an nth root of unity. Moreover,
n = ord(g) | #G.

For χ1, χ2 ∈ Ĝ define χ1χ2 by χ1χ2(a) = χ1(a)χ2(a) for all a ∈ G. Clearly χ1χ2 ∈ Ĝ.

Moreover, if χ ∈ Ĝ then also χ̄ ∈ Ĝ (where χ̄(a) := χ(a)) and χχ̄(a) = χ(a)χ(a) = |χ(a)|2 =

1, for all a ∈ G. Hence χχ̄ = χ0, where χ0 is the identity of Ĝ. Closure and associativity
are obvious and so it follows that Ĝ is a group. Finally, it is a finite group since since χ(a)

is a (#G)th root of unity for all χ ∈ Ĝ and for all a ∈ G. �

A useful property of characters is encoded in the following definition.

Definition 11.3. Let G be a finite group. We say that G has orthogonality of characters if∑
g∈G

χ(g) =

{
#G if χ = χ0,

0 if χ 6= χ0,

and ∑
χ∈Ĝ

χ(g) =

{
#Ĝ if g = eG,

0 if g 6= eG,

This property is enjoyed by all finite cyclic groups, as the following result shows.

Theorem 11.4. Assume that G is a finite cyclic group of order n, generated by a. Then:

(1) Ĝ has exactly n elements

χk(a
m) = e

(
km

n

)
, k = 1, . . . , n,

where e(x) = exp(2πix).
(2) G has orthogonality of characters.

(3) Ĝ is a cyclic group and it is generated by χ1 (so G ∼= Ĝ).
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Proof. Let χ ∈ Ĝ. Then χ(a) = e(k/n) for some k ∈ {1, . . . , n}. Hence

χ(am) = χ(a)m = e

(
km

n

)
,

proving part (1), since all n characters are distinct.

By (1) Ĝ is cyclic and generated by χ1, so G ∼= Ĝ, as required for part (3).
To prove (2) we need to check the identities in Definition 11.3. We show that∑

g∈G

χ(g) =

{
#G if χ = χ0,

0 if χ 6= χ0.

This is trivial for χ = χ0, so suppose that 1 ≤ k ≤ n− 1. Then∑
g∈G

χ(g) =
n−1∑
m=0

χk(a
m) =

n−1∑
m=0

e

(
km

n

)
=

1− e(kn/n)

1− e(k/n)
= 0,

as required. Finally the remaining identity follows from this one by by duality. �

Lemma 11.5. Let G1, G2 be finite cyclic groups and let G = G1×G2. Let χi ∈ Ĝi for i = 1, 2
and define χ : G→ C∗ via χ(g1, g2) = χ1(g1)χ2(g2). This is a character. Conversely, if χ ∈
Ĝ then there exists a unique choice of χ1 ∈ Ĝ1 and χ2 ∈ Ĝ2 such that χ(g) = χ1(g1)χ2(g2).

Furthermore, G has orthogonality of characters and Ĝ ∼= Ĝ1 × Ĝ2.

Proof. Recall from Theorem 11.4 that G1 and G2 both have orthogonality of characters. We
confirm the claims:

• It is clear that χ is a character.
• To check the converse, let χ ∈ Ĝ and define χi ∈ Ĝi by χ1(g1) = χ(g1, eG2) and

χ2(g2) = χ(eG1 , g2). Then clearly χ = χ1χ2 and χ ∈ Ĝ. Moreover, the χi are unique:
if g = (g1, eG2) then

χ(g) = χ(g1, eG2) = χ1(g1)χ2(eG2) = χ1(g1).

Similarly for χ2(g2).
• ∑

g∈G

χ(g) =
∑
g1∈G1

χ1(g1)
∑
g2∈G2

χ2(g2) =

{
#G1#G2 if χ1 = χ0 and χ2 = χ0,

0 otherwise.

• ∑
χ∈Ĝ

χ(g) =
∑
χ1∈Ĝ1

χ1(g1)
∑
χ2∈Ĝ2

χ2(g2) =

{
#G1#G2 if g = (eG1 , eG2) = eG,

0 otherwise.

• It is clear that Ĝ ∼= Ĝ1 × Ĝ2.

�

Corollary 11.6. Let G be a finite abelian group. Then G ∼= Ĝ and G has orthogonality of
characters.

Proof. The fundamental theorem of abelian groups implies that G ∼= C1×· · ·×Cr for suitable
cyclic groups C1, . . . , Cr. Now apply Lemma 11.5 repeatedly. �
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We now come to the particular characters that will occupy our attention for some time to
come.

Definition 11.7. (1) Let q ∈ N. A Dirichlet character mod q is a character of the
multiplicative group (Z/qZ)∗.

(2) If χ is a Dirichlet character mod q, we extend χ to an arithmetic function χ : Z→ C
via

χ(n) =

{
χ(n mod q) if (n, q) = 1,

0 if (n, q) > 1.

Hence a Dirichlet character mod q is a completely multiplicative arithmetic function χ :
Z → C of period q such that χ(n) = 0 if (n, q) > 1. Conversely, any such function is a
Dirichlet character mod q. Corollary 11.6 implies that the number of Dirichlet characters
mod q is ϕ(q). The trivial Dirichlet character is given by

χ0(n) =

{
1 if (n, q) = 1,

0 if (n, q) > 1.

Further examples:

(1) q = 4. Then there are ϕ(q) = ϕ(4) = 2 Dirichlet characters mod 4. These are χ0 and
χ1, where

χ1(n) =


+1 if n ≡ 1 mod 4,

−1 if n ≡ 3 mod 4,

0 if 2 | n.

(2) q = p > 2 a prime. Then χ(n) = (n
p
) is a Dirichlet character mod p.

The following result is a direct consequence of Corollary 11.6:

Corollary 11.8 (Orthogonality of Dirichlet characters). Let q ∈ N. Then

q∑
n=1

(n,q)=1

χ(n) =

{
ϕ(q) if χ = χ0,

0 if χ 6= χ0,

and ∑
χ mod q

χ(n) =

{
ϕ(q) if n ≡ 1 mod q,

0 otherwise,

where the latter sum is over all Dirichlet characters mod q.

The following result is very useful for detecting congruence conditions in counting prob-
lems.

Corollary 11.9. Let q ∈ N and let a ∈ Z such that (a, q) = 1. Then for any n ∈ Z we have

1

ϕ

∑
χ mod q

χ̄(a)χ(n) =

{
1 if n ≡ a mod q,

0 otherwise.
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We now distinguish between “primitive” and “imprimitive” Dirichlet characters mod q.
Suppose d | q and let χ∗ be a character mod d. Put

χ(n) =

{
χ∗(n) if (n, q) = 1,

0 otherwise.

Then χ is a Dirichlet character mod q. In this situation we say that χ∗ induces χ.

Remark. If there is a prime p | q such that p - d then χ does not have period d. If q and d
share the same primes factors then χ(n) = χ∗(n) for all n.

Definition 11.10. Let χ be a character mod q. We say d is a quasiperiod of χ if χ(m) = χ(n)
whenever m ≡ n mod d and (mn, q) = 1. The least quasiperiod of χ is called the conductor
of χ.

Lemma 11.11. Let χ be a Dirichlet character mod q. The conductor of χ is a divisor of q.

Proof. Let d be a quasiperiod of χ and put g = (d, q). We show that g is also a quasiperiod
of χ. Suppose m ≡ n mod g and (mn, q) = 1. Euclid’s algorithm implies that there exist
x, y ∈ Z such that m− n = dx+ qy. Thus

χ(m) = χ(m− qy) = χ(dx+ n) = χ(n).

Thus g is a quasiperiod of χ. �

Definition 11.12. A Dirichlet character χ mod q is said to be primitive when it has con-
ductor q.

By convention the trivial character χ0 mod q is imprimitive.

Theorem 11.13. Let χ be a Dirichlet character mod q with conductor d. Then there exists
a unique primitive character χ∗ mod d that induces χ.

Proof. Lemma 11.11 implies that d | q. Let

r =
∏
pa‖q
p-d

pa.

Now let n ∈ Z. If (n, q) = 1 then we define χ∗(n) = χ(n). If (n, q) > 1 but (n, d) = 1 we
choose any k ∈ Z such that (n+ kd, q) = 1 and define

χ∗(n) = χ(n+ kd).

Note that such an integer exists, for it suffices to have (n + kd, r) = 1. (To see this we
choose a ∈ (Z/rZ)∗ and then choose k such that n + kd ≡ a mod r.) Moreover, we note
that although there are many possible choices of k, there is only value of χ(n + kd) when
(n+ kd, q) = 1. We extend this definition of χ∗ by setting χ∗(n) = 0 when (n, d) > 1. Then
χ∗ is a Dirichlet character mod d. If χ0 is the principle character mod q then

χ(n) = χ∗(n)χ0(n)

and so χ∗ induces χ. It is clear that χ∗ has no quasiperiod less than d, since otherwise so
would χ, which contradicts minimality.
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It remains to establish uniqueness. Suppose that χ1 is another character mod d that
induces χ. Then, on choosing k as above, for all n with (n, d) = 1 we have

χ∗(n) = χ∗(n+ kd) = χ(n+ kd) = χ1(n+ kd) = χ1(n),

as required. �

The following result gives a useful criterion for primitivity of a Dirichlet character.

Lemma 11.14. Let χ be a Dirichlet character mod q. The following are equivalent:

(1) χ is primitive;
(2) if d | q, with d < q, then there exists an integer c ≡ 1 mod d which is coprime to q

such that χ(c) 6= 1;
(3) if d | q, with d < q, then for any a ∈ Z we have

q∑
n=1

n≡a mod d

χ(n) = 0.

Proof. (1) ⇒ (2): Suppose d | q with d < q. Since χ is primitive there exist m,n ∈ Z such
that m ≡ n mod d, with χ(m) 6= χ(n) and χ(mn) 6= 0. Choose c coprime to q such that
cm ≡ n mod q.

(2)⇒ (3): Let c be as in (2). As k runs over residues modulo q/d, the numbers n = ac+kcd
run through all residues modulo q for which n ≡ a mod d. Thus the sum is

S =

q∑
n=1

n≡a mod d

χ(n) =

q/d∑
k=1

χ(ac+ kcd) = χ(c)S.

Hence S = 0 since χ(c) 6= 0.
(3) ⇒ (1): Suppose d | q with d < q. Take a = 1 in (3). Then χ(1) = 1 is one term

in the sum. But the sum is zero and so there exists another term χ(n) such that χ(n) 6= 1
and χ(n) 6= 0. But n ≡ 1 mod d and so d is not a quasiperiod of χ. This implies that χ is
primitive. �

Lemma 11.15. Suppose that (q1, q2) = 1 and let χi be a Dirichlet character mod qi for
i = 1, 2. Then χ = χ1χ2 is primitive mod q1q2 if and only if χ1 and χ2 are both primitive.

Proof. Let q = q1q2.

“⇒” Let di be the conductor of χi. If (mn, q) = 1 and m ≡ n mod d1d2 then χi(m) = χi(n)
and hence d1d2 is a quasiperiod of χ. Thus d1d2 = q since χ is primitive. Thus d1 = q1

and d2 = q2 since di | qi for i = 1, 2.
“⇐” Let d be the conductor of χ and put di = (d, qi). We show that d1 is a quasiperiod

of χ1. Suppose (mn, q1) = 1 and m ≡ n mod d1. Choose m′, n′ ∈ Z such that

m′ ≡ m mod q1, m′ ≡ 1 mod q2, n′ ≡ n mod q1, n′ ≡ 1 mod q2.

Thus m′ ≡ n′ mod d and (m′n′, q) = 1. It follows that χ(m′) = χ(n′). But χ(m′) =
χ1(m) and χ(n′) = χ1(n), whence χ1(m) = χ1(n) and so d1 is a quasiperiod of χ1.
Since χ1 is primitive this implies that d1 = q1. Similarly, d2 = q2, whence d = q.

�
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If one wants to classify primitive Dirichlet characters the latter result implies that it suffices
to determine the primitive characters mod pa. Let χ be a character mod pa.

Suppose first that p > 2 and let g be a primitive root of pa (i.e. a generator for the cyclic
group (Z/paZ)∗). Then according to Theorem 11.4 we have

χ(n) = e

(
k indg(n)

ϕ(pa)

)
, for some k ∈ Z,

where indg(n) is the index of n, defined via n = gindg(n). We now argue according to the
value of a:

a = 1: χ is primitive if and only if χ 6= χ0. (This is if and only if (p− 1) - k.)
a > 1: χ is primitive if and only if p - k. (The only proper divisor of pa is pb for 0 ≤ b < a,

and e(k indg(n)/ϕ(pa)) = e(k′ indg(n)/ϕ(pb)) if and only if p | k.)

Next we suppose that p = 2.

a = 1: We have only the trivial character χ0, which is imprimitive.
a = 2: We have already seen that there are two characters χ0 (imprimitive) and χ1 (primi-

tive).
a > 2: The analysis of this case is a bit more complicated since there is no primitive root of 2a

when a ≥ 3. However, for any n ∈ (Z/2aZ)∗ there exists µ ∈ Z/2Z and ν ∈ Z/2a−2Z
such that n ≡ (−1)µ5ν mod 2a. Dirichlet characters mod 2a take the form

χ(n) = e

(
jµ

2
+

kν

2a−2

)
,

for j ∈ Z/2Z and k ∈ Z/2a−2Z. (Note that the number of Dirichlet characters mod
2a is ϕ(2a) = 2a−1.) One finds that χ is primitive if and only if k is odd.

Exercise. What are the real primitive characters mod pa?

We know that there are ϕ(q) Dirichlet characters mod q. We can now calculate the number
$(q) of primitive Dirichlet characters mod q.

Lemma 11.16. $(q) = q
∏

p‖q(1−
2
p
)
∏

p2|q(1−
1
p
)2.

Proof. By Lemma 11.15 we have $(q) =
∏

pa‖q$(pa). The argument is now a case by case
analysis. For example, when p > 2 and a = 1, we saw that the number of primitive characters
mod p is equal to the number of k ∈ Z/pZ such that (p− 1) - k, which is p− 1− 1 = p− 2.
The remaining details are an exercise. �
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