11. DIRICHLET CHARACTERS

Our next goal is Dirichlet’s theorem on primes in arithmetic progression, for which we
need some algebra.

Definition 11.1. Let G be a group. A character of G is a group homomorphism y : G — C*,
where C* is the multiplicative group of non-zero complex numbers. The set of characters of
G is written G.

By homomorphy we have x(ab) = x(a)x(b) for all a,b € G and x(eg) = 1, where e is the

A

identity element of G. We denote by xo € G the trivial character
Xo(a) =1, foralla € G.

(This is sometimes called the principal character.) We henceforth assume that G is finite.

Lemma 11.2. If G is finite then G is also a finite group.

Proof. Let g € GG, which by assumption has finite order; i.e. ¢" = es for some n € N. Then
1= x(eq) = x(¢g") = x(g9)™. Hence |x(g)| = 1 and x(g) is an nth root of unity. Moreover,
n =ord(g) | #G.

For x1,X2 € G define y1x2 by x1x2(a) = x1(a)xa(a) for all @ € G. Clearly x1x2 € G.
Moreover, if xy € G then also y € G (where y(a) := x(a)) and xx(a) = x(a)x(a) = |x(a)|* =
1, for all @ € G. Hence yX = o, where xo is the identity of G. Closure and associativity
are obvious and so it follows that G is a group. Finally, it is a finite group since since y(a)
is a (#G)th root of unity for all x € G and for all a € G. O

A useful property of characters is encoded in the following definition.

Definition 11.3. Let G be a finite group. We say that G' has orthogonality of characters if

S (o) - {#G if X = Xo,

pre. 0 if X # xo,

and
ZX@):{#G if g = eq,
’ 0 if g # e,

This property is enjoyed by all finite cyclic groups, as the following result shows.

Theorem 11.4. Assume that G is a finite cyclic group of order n, generated by a. Then:

(1) G has exactly n elements

where e(x) = exp(2miz).
(2) G has orthogonality of characters.
(3) G is a cyclic group and it is generated by x1 (so G = G).
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Proof. Let x € G. Then y(a) = e(k/n) for some k € {1,...,n}. Hence
km
) =t = (M),

n
proving part (1), since all n characters are distinct.

By (1) G is cyclic and generated by yi, so G = G, as required for part (3).
To prove (2) we need to check the identities in Definition 11.3. We show that

> xlg) = {fG R

poere if X # Xo-
This is trivial for y = xo, so suppose that 1 <k <n — 1. Then
n—1 n—1
km 1 —e(kn/n)
= my — —_— = — 0

as required. Finally the remaining identity follows from this one by by duality. 0

Lemma 11.5. Let G, G be finite cyclic groups and let G = G1 X Gy. Let x; € G, fori=1,2
and define x : G — C* via x(g1, 92) = x1(91)x2(92). This is a character. Conversely, if x €
G then there exists a unique choice of x1 € Gy and x2 € Gy such that x(g) = x1(g1)x2(g2)-
Furthermore, G has orthogonality of characters and G~ Gy x Gy

Proof. Recall from Theorem 11.4 that G; and G5 both have orthogonality of characters. We
confirm the claims:

e It is clear that x is a character. )

e To check the converse, let x € G and define y; € G; by x1(¢1) = x(g1,€q,) and
x2(92) = x(eq,, g2). Then clearly x = x1x2 and x € G. Moreover, the y; are unique:
if g = (g1, eq,) then

X(9) = x(91, €c;) = x1(g1)x2(ec,) = x1(g1).
Similarly for x2(g2).

G1#Gy  if 1 = d ys =
S = u) Y XQ(QQ):{Z)# 1#G2 if X1 = xo and x2 = Xo,

otherwise.
geG g1€G1 g2€Go

_ o #Gl#GQ lf g = (eGla eGQ) = €q,
ZX(9> B Z xilg1) Z xa(92) = {0 otherwise.
xX€G x1€G1 x2€G2

e It is clear that G = Gl X C?Q.
O

Corollary 11.6. Let G be a finite abelian group. Then G = G and G has orthogonality of
characters.

Proof. The fundamental theorem of abelian groups implies that G =2 'y x - - - X C,. for suitable

cyclic groups C1,...,C,. Now apply Lemma 11.5 repeatedly. O
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We now come to the particular characters that will occupy our attention for some time to
come.

Definition 11.7. (1) Let ¢ € N. A Dirichlet character mod q is a character of the
multiplicative group (Z/qZ)*.
(2) If x is a Dirichlet character mod ¢, we extend x to an arithmetic function x : Z — C
via

_ Jx(mnmodgq) if (n,q) =1,
x(n) = {O if (n,q) > 1.

Hence a Dirichlet character mod ¢ is a completely multiplicative arithmetic function y :
7Z — C of period ¢ such that x(n) = 0 if (n,q) > 1. Conversely, any such function is a
Dirichlet character mod ¢. Corollary 11.6 implies that the number of Dirichlet characters
mod ¢ is ¢(q). The trivial Dirichlet character is given by

)1 if(n,q) =1,
Xo(n) = {O if (n,q) > 1.

Further examples:
(1) ¢ = 4. Then there are ¢(q) = ¢(4) = 2 Dirichlet characters mod 4. These are xo and

X1, where
+1 if n =1 mod 4,
xi(n) =4¢ -1 if n =3 mod 4,
0 if 2 | n.

n

(2) ¢ =p > 2 aprime. Then x(n) = (%) is a Dirichlet character mod p.

The following result is a direct consequence of Corollary 11.6:
Corollary 11.8 (Orthogonality of Dirichlet characters). Let ¢ € N. Then

- el ifx=xo
ZX(”)‘{O if X # Xo.

and

0 otherwise,

Z X(n>:{gp(q) if n =1 mod g,

x mod ¢

where the latter sum is over all Dirichlet characters mod q.

The following result is very useful for detecting congruence conditions in counting prob-
lems.

Corollary 11.9. Let g € N and let a € Z such that (a,q) = 1. Then for any n € Z we have

l Z X(G)X(n):{l if n = a mod q,

0 otherwise.



We now distinguish between “primitive” and “imprimitive” Dirichlet characters mod gq.
Suppose d | ¢ and let x* be a character mod d. Put

y(n) = {x*(n) if (n,q) =1,

0 otherwise.
Then y is a Dirichlet character mod ¢. In this situation we say that y* induces x.

Remark. If there is a prime p | ¢ such that p 1 d then y does not have period d. If ¢ and d
share the same primes factors then y(n) = x*(n) for all n.

Definition 11.10. Let y be a character mod q. We say d is a quasiperiod of x if x(m) = x(n)
whenever m = n mod d and (mn,q) = 1. The least quasiperiod of x is called the conductor

of x.
Lemma 11.11. Let x be a Dirichlet character mod q. The conductor of x is a divisor of q.

Proof. Let d be a quasiperiod of x and put g = (d, q). We show that ¢ is also a quasiperiod
of x. Suppose m = nmod g and (mn,q) = 1. Euclid’s algorithm implies that there exist
x,y € Z such that m —n = dx + qy. Thus

x(m) = x(m — qy) = x(dx +n) = x(n).
Thus g is a quasiperiod of Y. 0

Definition 11.12. A Dirichlet character x mod ¢ is said to be primitive when it has con-
ductor gq.

By convention the trivial character y, mod ¢ is imprimitive.

Theorem 11.13. Let x be a Dirichlet character mod q with conductor d. Then there exists
a unique primitive character x* mod d that induces x.

Proof. Lemma 11.11 implies that d | . Let

Now let n € Z. If (n,q) = 1 then we define x*(n) = x(n). If (n,q) > 1 but (n,d) = 1 we
choose any k € Z such that (n + kd,q) = 1 and define

X" (n) = x(n + kd).
Note that such an integer exists, for it suffices to have (n + kd,r) = 1. (To see this we
choose a € (Z/rZ)* and then choose k such that n + kd = a mod r.) Moreover, we note
that although there are many possible choices of k, there is only value of y(n + kd) when

(n+ kd,q) = 1. We extend this definition of x* by setting x*(n) = 0 when (n,d) > 1. Then
x* is a Dirichlet character mod d. If x is the principle character mod ¢ then

x(n) = x*(n)xo(n)

and so x* induces y. It is clear that x* has no quasiperiod less than d, since otherwise so

would y, which contradicts minimality.
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It remains to establish uniqueness. Suppose that y; is another character mod d that
induces x. Then, on choosing k as above, for all n with (n,d) = 1 we have

X' (n) = x*(n+ kd) = x(n + kd) = xa(n + kd) = xa(n),
as required. O
The following result gives a useful criterion for primitivity of a Dirichlet character.

Lemma 11.14. Let x be a Dirichlet character mod q. The following are equivalent:
(1) x is primitive;
(2) if d | q, with d < q, then there exists an integer ¢ = 1 mod d which is coprime to q
such that x(c) # 1;
(3) if d | q, with d < q, then for any a € Z we have

q

Z x(n) = 0.

n=1
n=a mod d

Proof. (1) = (2): Suppose d | ¢ with d < g. Since Y is primitive there exist m,n € Z such
that m = n mod d, with x(m) # x(n) and x(mn) # 0. Choose ¢ coprime to ¢ such that
cm = n mod q.

(2) = (3): Let ¢be asin (2). As k runs over residues modulo ¢/d, the numbers n = ac+ked
run through all residues modulo ¢ for which n = @ mod d. Thus the sum is

q q/d
S = Z x(n) = Zx(ac + ked) = x(c)S.
n=1 k=1

n=a mod d

Hence S = 0 since x(c) # 0.

(3) = (1): Suppose d | ¢ with d < gq. Take a = 1 in (3). Then x(1) = 1 is one term
in the sum. But the sum is zero and so there exists another term x(n) such that x(n) # 1
and x(n) # 0. But n = 1 mod d and so d is not a quasiperiod of x. This implies that y is
primitive. U

Lemma 11.15. Suppose that (q1,q2) = 1 and let x; be a Dirichlet character mod ¢; for
1=1,2. Then x = x1x2 s primitive mod q,q- if and only if x1 and xo are both primitive.

Proof. Let ¢ = q1¢o.

“=" Let d; be the conductor of y;. If (mn,q) = 1 and m = n mod d;ds then x;(m) = x;(n)
and hence d;d> is a quasiperiod of . Thus d;ds = ¢ since Yy is primitive. Thus d; = ¢;
and dy = @9 since d; | ¢; for i =1, 2.

“<” Let d be the conductor of y and put d; = (d, q;). We show that d; is a quasiperiod
of x1. Suppose (mn,q;) =1 and m = n mod d;. Choose m/,n’ € Z such that

m' =mmodq, m =1modg, n' =nmodqg, n =1modg.
Thus m’ = n’ mod d and (m/n’,q) = 1. It follows that x(m') = x(n’). But x(m') =
x1(m) and x(n') = x1(n), whence x1(m) = x1(n) and so d; is a quasiperiod of y;.
Since 7 is primitive this implies that d; = ¢;. Similarly, dy = ¢, whence d = gq.

U
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If one wants to classify primitive Dirichlet characters the latter result implies that it suffices
to determine the primitive characters mod p®. Let x be a character mod p®.

Suppose first that p > 2 and let g be a primitive root of p® (i.e. a generator for the cyclic
group (Z/p°Z)*). Then according to Theorem 11.4 we have

kind

x(n)=e (m—g(n)> ,  for some k € Z,
»(p*)

where indg(n) is the indez of n, defined vian = g

value of a:

indg(n)  We now argue according to the

a = 1: x is primitive if and only if x # xo. (This is if and only if (p — 1) 1 k.)
a > 1: x is primitive if and only if p{ k. (The only proper divisor of p® is p® for 0 < b < a,
and e(kind,(n)/¢(p®)) = e(k'ind,(n)/p(p®)) if and only if p | k.)
Next we suppose that p = 2.

a = 1: We have only the trivial character xq, which is imprimitive.

a = 2: We have already seen that there are two characters yo (imprimitive) and x; (primi-
tive).

a > 2: The analysis of this case is a bit more complicated since there is no primitive root of 2¢
when a > 3. However, for any n € (Z/2°Z)* there exists u € Z/27 and v € Z/2°7*Z
such that n = (—1)#5” mod 2%. Dirichlet characters mod 2 take the form

N I
x e (%4 5%,
for j € Z/27 and k € Z/2°*Z. (Note that the number of Dirichlet characters mod
2% is p(2%) = 2°71) One finds that x is primitive if and only if & is odd.

Exercise. What are the real primitive characters mod p*?

We know that there are ¢(q) Dirichlet characters mod q. We can now calculate the number
w(q) of primitive Dirichlet characters mod q.

_ 2 1)2
Lemma 11.16. w(q) = ¢ ][, ,(1 = 2) [ L2, (1 — )%

Proof. By Lemma 11.15 we have @(q) = [] ., @(p"). The argument is now a case by case
analysis. For example, when p > 2 and @ = 1, we saw that the number of primitive characters
mod p is equal to the number of k € Z/pZ such that (p — 1) 1 k, whichisp—1—-1=p—2.
The remaining details are an exercise. 0
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