
12. Dirichlet L-functions

Recall the Riemman zeta function ζ(s) =
∑∞

n=1 n
−s defined for <(s) > 1. We saw in

Theorem 6.1 that it has a meromorphic continuation to C with a simple pole at s = 1.

Definition 12.1. Let q ∈ N and let χ be a Dirichlet character mod q. Then the Dirichlet
L-function associated to χ is defined to be

L(s, χ) =
∞∑
n=1

χ(n)

ns
,

for <(s) > 1.

It is clear that L(s, χ) is absolutely convergent for <(s) > 1. Since χ is completely
multiplicative, moreover, we have

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

,

for <(s) > 1. If χ = χ0 then

L(s, χ0) =
∏
p-q

(
1− p−s

)−1
=
∏
p

(
1− p−s

)−1
∏
p|q

(
1− p−s

)
= ζ(s)

∏
p|q

(
1− p−s

)
.

Hence L(s, χ0) behaves like ζ(s).
For χ 6= χ0, L(s, χ) behaves very differently.

Theorem 12.2. Let q ∈ N and let χ be a Dirichlet character mod q such that χ 6= χ0. Then
L(s, χ) converges for <(s) > 0.

Corollary 12.3. L(s, χ) is holomorphic for <(s) > 0 if χ 6= χ0.

Proof of Theorem 12.2. Since χ 6= χ0 we have
q∑

n=1

χ(n) =

q∑
n=1

(n,q)=1

χ(n) = 0,

by Corollary 11.8. Hence ∣∣∣∣∣
N∑

n=M

χ(n)

∣∣∣∣∣ = Oq(1),

where the implied constant depends only on q (and not on M,N). An application of partial
summation therefore yields∑

M≤n≤N

χ(n)n−s = N−s
∑
n≤N

χ(n)−M−s
∑
n≤M

χ(n) + s

∫ N

M

x−s−1

( ∑
M≤n≤x

χ(n)

)
dx

= Oq(M
−<(s)) +O

(
|s|
|<(s)|

(
M−<(s) +N−<(s)

))
.

This tends to 0 as M,N →∞ for <(s) > 0. Hence
∑

M≤n≤N χ(n)n−s is a Cauchy sequence.

Thus, since the partial sums of
∑∞

n=1 χ(n)n−s form a Cauchy sequence for <(s) > 0, it follows
from the Cauchy convergence criterion that

∑∞
n=1 χ(n)n−s converges for <(s) > 0. �
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Remark. Although L(s, χ) converges for <(s) > 0, the Euler product is only valid for <(s) >
1 (since we need absolute convergence). In particular we can’t use the Euler product to say
anything about L(1, χ) for χ 6= χ0.

Theorem 12.4. Let q ∈ N and let χ be a Dirichlet character mod q. Then L(1, χ) 6= 0 if
χ 6= χ0.

Proof of Theorem 12.4. We first claim that

(*)
∏

χ mod q

L(s, χ) ≥ 1,

for any real number s > 1. We begin by taking logs to get

log
∏

χ mod q

L(s, χ) = log
∏

χ mod q

∏
p

(1− χ(p)p−s)−1 = −
∑

χ mod q

∑
p

log(1− χ(p)p−s),

where each factor (1−χ(p)p−s) is non-zero since s > 1. We now invoke the well-known series
expansion

log(1 + x) =
∞∑
k=1

(−1)k+1x
k

k

for |x| < 1. (This remains true for x ∈ C by taking the standard branch of the logarithm.)
Hence it follows that

log
∏

χ mod q

L(s, χ) =
∑

χ mod q

∑
p

∞∑
k=1

χ(p)k
p−ks

k

=
∑
p

∞∑
k=1

p−ks

k

∑
χ mod q

χ(pk).

An application of Corollary 11.8 shows that the inner sum is ϕ(q) if pk ≡ 1 mod q and 0
otherwise. Hence

log
∏

χ mod q

L(s, χ) = ϕ(q)
∑
p

∞∑
k=1

pk≡1 mod q

p−ks

k
≥ 0,

as claimed in (*).
Now suppose that there exist Dirichlet characters χ1 6= χ2 mod q such that L(1, χ1) =

L(1, χ2) = 0. Recall that

L(s, χ0) = ζ(s)
∏
p|q

(
1− 1

ps

)
has a pole of order 1 at s = 1. On the other hand, L(s, χ1)L(s, χ2) has a zero of multiplicity
2 at s = 1. Hence

∏
χ L(s, χ) has a zero at s = 1, which contradicts (*).

If χ is not a real character then χ̄ 6= χ. Hence if L(1, χ) = 0 then

L(1, χ̄) =
∞∑
n=1

χ̄(n)n−1 =
∞∑
n=1

χ(n)n−1 = L(1, χ) = 0.

Thus we have distinct characters χ, χ̄ such that L(1, χ) = L(1, χ̄) = 0, which we’ve already
seen is impossible.
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Hence there is at most 1 character χ mod q such that L(1, χ) = 0 and it must be real. In
this case L(s, χ)L(s, χ0) is holomorphic in <(s) > 0. Hence

ψ(s) =
L(s, χ)L(s, χ0)

L(2s, χ0)

is holomorphic for <(s) > 1
2
. Clearly ψ(s)→ 0 as s→ 1

2
+, since

L(2s, χ0) = ζ(2s)
∏
p|q

(
1− 1

p2s

)
→∞

as s→ 1
2
+. The Euler expansion for ψ(s) gives

ψ(s) =
∏
p

(1− χ(p)p−s)−1(1− χ0(p)p−s)−1

(1− χ0(p)p−2s)−1

=
∏
p|q

1
∏
p-q

χ(p)=1

(1− p−s)−2

(1− p−2s)−1

∏
p-q

χ(p)=−1

(1 + p−s)−1(1− p−s)−1

(1− p−2s)−1

=
∏
p

χ(p)=1

1 + p−s

1− p−s
,

for <(s) > 1. Note that the product is non-empty, since otherwise ψ(s) = 1 for <(s) > 1,
hence for <(s) > 1

2
by analytic continuation, which contradicts ψ(s)→ 0 as s→ 1

2
+.

By expanding (1− p−s)−1 into a geometric series, we obtain

ψ(s) =
∞∑
n=1

ann
−s,

for <(s) > 1, where all an ≥ 0 and a1 = 1. Since ψ(s) is holomorphic for <(s) > 1
2
, Taylor

expansion at 2 yields

ψ(s) =
∞∑
m=0

1

m!
ψ(m)(2)(s− 2)m.

Comparing these two formulae, and noting that n−s = e−s logn, we get

ψ(m)(2) = (−1)m
∞∑
n=1

an(log n)mn−2 = (−1)mbm,

say, where bm ≥ 0 since an ≥ 0. Hence

ψ(s) =
∞∑
m=0

1

m!
bm(2− s)m

for |2− s| < 3
2
. So for 1

2
< s < 2 we obtain

ψ(s) ≥ ψ(2) ≥ a1 = 1,

since bm ≥ 0. This contradicts the fact that ψ(s) → 0 as s → 1
2
+. Hence there is no real

character χ such that L(1, χ) = 0. �
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One of the most important consequences of using Dirichlet L-functions is to say something
about primes in a fixed congruence class.

Exercise. Adapt Euclid’s proof to show that there are infinitely many primes p ≡ −1 mod 4.
(Hint: consider 4p1 . . . pr − 1.)

Theorem 12.5 (Dirichlet). Let q ∈ N and let a ∈ Z such that (a, q) = 1. Then∑
p≡a mod q

1

p

is divergent. In particular, there are infinitely many primes p ≡ a mod q.

Note that the condition (a, q) = 1 is clearly necessary in the statement of the theorem. The
conclusion can be rephrased as saying that the linear polynomial a+ qX is prime infinitely
often. No analogue is known for any f ∈ Z[X] of degree > 1. (The case f(X) = X2 + 1 is a
famous conjecture.)

Proof of Theorem 12.5. The proof of Theorem 12.4 shows that

logL(s, χ) =
∑
p

∞∑
k=1

χ(pk)
p−ks

k
,

for <(s) > 1. Hence Corollary 11.9 implies that

1

ϕ(q)

∑
χ mod q

χ̄(a) logL(s, χ) =
1

ϕ(q)

∑
p

∞∑
k=1

p−ks

k

∑
χ mod q

χ̄(a)χ(pk)

=
∑
p

∞∑
k=1

pk≡a mod q

p−ks

k

=
∑

p≡a mod q

1

ps
+O(1),

as s→ 1. The left hand side is

1

ϕ(q)

(
χ̄0(a) logL(s, χ0) +

∑
χ 6=χ0

χ̄(a) logL(s, χ)

)
The second term is bounded as s→ 1 by Theorem 12.4, while the first term tends to infinity

as s→ 1, since logL(s, χ0) = log
(
ζ(s)

∏
p|q(1− p−s)

)
This shows that∑

p≡a mod q

1

ps
→∞

as s→ 1, as required. �

Although it is beyond the scope of this course, it is also possible to establish a version of
the prime number theorem for primes in arithmetic progression. For (a, q) = 1, let

ψ(s; q, a) =
∑
n≤x

n≡a mod q

Λ(n) =
1

ϕ(q)

∑
χ mod q

χ̄(a)
∑
n≤x

χ(n)Λ(n).
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The contribution of the trivial character χ0 gives the main term. Dealing with the non-trivial
characters ultimately leads to the following important result.

Theorem 12.6 (Siegel–Walfiscz). Let (a, q) = 1 such that q ≤ (log x)1−δ for some fixed
δ > 0. Then there exists c > 0 such that

ψ(x; q, a) =
x

ϕ(q)
+O

(
x exp(−c

√
log x)

)
,

where all the constants are computable and don’t depend on q.
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