12. DIRICHLET L-FUNCTIONS

Recall the Riemman zeta function ((s) = >~ n~° defined for R(s) > 1. We saw in
Theorem 6.1 that it has a meromorphic continuation to C with a simple pole at s = 1.

Definition 12.1. Let ¢ € N and let x be a Dirichlet character mod ¢q. Then the Dirichlet
L-function associated to x is defined to be

L<37X) = Z X<n)7

nS

n=1

for R(s) > 1.

It is clear that L(s,x) is absolutely convergent for $(s) > 1. Since y is completely
multiplicative, moreover, we have

L(s,x) = (1 — X]gf))_l,

p

for R(s) > 1. If x = xo then

Lisxo) =[[(=p) =T[=p) " TITO-p) =< [0 -p).
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Hence L(s, xo) behaves like ((s).
For x # xo, L(s, x) behaves very differently.

Theorem 12.2. Let ¢ € N and let x be a Dirichlet character mod q such that x # xo.- Then
L(s,x) converges for R(s) > 0.

Corollary 12.3. L(s,x) is holomorphic for R(s) > 0 if x # Xo-

Proof of Theorem 12.2. Since x # xo we have
q

S = 3 x(n) =0,

n=1

(n,q)=1
by Corollary 11.8. Hence
N
n=M

where the implied constant depends only on ¢ (and not on M, N). An application of partial
summation therefore yields
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This tends to 0 as M, N — oo for %(s) > 0. Hence ) ),y x(n)n™* is a Cauchy sequence.
Thus, since the partial sums of Y~ >° | x(n)n~* form a Cauchy sequence for R(s) > 0, it follows
from the Cauchy convergence criterion that Y, x(n)n~* converges for R(s) > 0. O
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Remark. Although L(s, x) converges for R(s) > 0, the Euler product is only valid for R(s) >
1 (since we need absolute convergence). In particular we can’t use the Euler product to say
anything about L(1,x) for x # xo.
Theorem 12.4. Let ¢ € N and let x be a Dirichlet character mod q. Then L(1,x) # 0 if
X 7 Xo-
Proof of Theorem 12./. We first claim that
(*) II Lsn=>1,
x mod ¢
for any real number s > 1. We begin by taking logs to get
log T Lis,x)=log [] TIO—xpp)" == > > log(1 —x(p)p™),
x mod ¢ x modq p xmodgq p

where each factor (1 —x(p)p~—*) is non-zero since s > 1. We now invoke the well-known series

expansion
o

k
log(1+z) = Z(—l)kﬂ%
k=1
for |z| < 1. (This remains true for x € C by taking the standard branch of the logarithm.)

Hence it follows that
oo —ks
g [T Zs= D D> x'

x mod ¢ xmodgqg p k=1

D) L SR}

p k=1 x mod ¢

An application of Corollary 11.8 shows that the inner sum is ¢(q) if p* = 1 mod ¢ and 0
otherwise. Hence
—ks

og [[ Lsx)=e@>, >, pk, >0,

x mod g

p*=1 mod ¢

as claimed in (*).
Now suppose that there exist Dirichlet characters x; # x2 mod ¢ such that L(1,x;) =

L(1,x2) = 0. Recall that
L) =<)L (1- )

pS
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has a pole of order 1 at s = 1. On the other hand, L(s, x1)L(s, x2) has a zero of multiplicity
2 at s = 1. Hence [[ L(s,x) has a zero at s = 1, which contradicts (*).
If x is not a real character then y # x. Hence if L(1, x) = 0 then

L0 = Y xmn = 3 x(mnt = I(L,x) = 0.

Thus we have distinct characters y, Y such that L(1,x) = L(1,x) = 0, which we’ve already

seen is impossible.
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Hence there is at most 1 character x mod ¢ such that L(1,x) = 0 and it must be real. In
this case L(s, x)L(s, xo0) is holomorphic in #(s) > 0. Hence

L(s, x)L(s, xo0)
L(2s, x0)

is holomorphic for R(s) > 1. Clearly 1(s) — 0 as s — 3+, since

L(2s,v0) = ¢(25) [ (1 - %) S o0

plg

¥(s) =

as s — 3. The Euler expansion for ¢(s) gives

-1

vs) = H (L= X)) (L= xo)p™)

(1 — Xo(p)p~2)~1

B p°)? (I+p) ' -p)"!
_Hl H ——25)1 H (1—p2)-1
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x(p)=1 x(p)=-1
H 1 + p_s
1—ps’
x(p)=1

for $(s) > 1. Note that the product is non-empty, since otherwise ¢(s) = 1 for R(s) > 1,
hence for R(s) > 1 by analytic continuation, which contradicts 1(s) — 0 as s — +.
By expanding (1 —p~*)~! into a geometric series, we obtain

o0
= E a,n”"°,
n=1

for R(s) > 1, where all a,, > 0 and a; = 1. Since 9(s) is holomorphic for R(s) > 3, Taylor

expansion at 2 yields

1 m m
P(s) = Z mw( '(2)(s —2)™.
m=0
Comparing these two formulae, and noting that n=% = e=*1°¢" we get

$(2) = (~1)" 3 anllogn) ™ = (<1)"b,,

say, where b,, > 0 since a,, > 0. Hence
[o¢]
1
E —bp(2—5)"
ml
m=0

for |2 — s| < 2. So for 1 < s < 2 we obtain

U(s) 24(2) 2 =1,

since b, > 0. This contradicts the fact that i(s) — 0 as s — %—i—. Hence there is no real

character x such that L(1,y) = 0. O
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One of the most important consequences of using Dirichlet L-functions is to say something
about primes in a fixed congruence class.

Exercise. Adapt Fuclid’s proof to show that there are infinitely many primes p = —1 mod 4.
(Hint: consider 4p; ...p, — 1.)

Theorem 12.5 (Dirichlet). Let g € N and let a € Z such that (a,q) = 1. Then
>
p=a mod q p
1s divergent. In particular, there are infinitely many primes p = a mod q.
Note that the condition (a, q) = 1 is clearly necessary in the statement of the theorem. The
conclusion can be rephrased as saying that the linear polynomial a + ¢X is prime infinitely

often. No analogue is known for any f € Z[X] of degree > 1. (The case f(X) = X?+1is a
famous conjecture.)

Proof of Theorem 12.5. The proof of Theorem 12.4 shows that

0 L pfks
log L(s,x) = > > X(r)——

p k=1
for R(s) > 1. Hence Corollary 11.9 implies that

1 _ 1 —p* - k
— X(a)log L(s,x) = —— X(a)x(p®)
e(q) szodq v(q) ;; N

> p—ks
p*=a mod ¢
1
pP=a modqp

as s = 1. The left hand side is

! (Xo(a) log L(s, x0) + Z x(a)log L(S,X)>

90<Q) X7X0

The second term is bounded as s — 1 by Theorem 12.4, while the first term tends to infinity
as s — 1, since log L(s, xo) = log <C(s) [, (1 - p‘8)> This shows that

> o

p=a mod q
as s — 1, as required. O

Although it is beyond the scope of this course, it is also possible to establish a version of
the prime number theorem for primes in arithmetic progression. For (a,q) = 1, let

bsga) = Y A(n)-@ 3 1@ Y x(mA®).

n<x
n=a mod ¢

x mod ¢ n<lx
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The contribution of the trivial character y gives the main term. Dealing with the non-trivial
characters ultimately leads to the following important result.

Theorem 12.6 (Siegel-Walfiscz). Let (a,q) = 1 such that ¢ < (logz)'=° for some fized
0 > 0. Then there exists ¢ > 0 such that

(@i q,a) = ﬁ +0 (vexp(~cy/logn))

where all the constants are computable and don’t depend on q.
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