13. GAUSS SUMS
Let x be a Dirichlet character mod gq.
Definition 13.1. The Gauss sum 7(x) of x is defined to be

Zx e(a/q).

The Gauss sum is a special case of the more general sum

Zx e(an/q).

Note that 7(x) = 7(1, x). More generally:

Lemma 13.2. Suppose x is a Dirichlet character mod q and (n,q) = 1. Then T(n,x) =
X(n)7(x).-

Proof. 1f (n,q) = 1 then the map a — an permutes the residues modulo ¢. Hence

x(n)r(n,x) =Y x(an)e(an/q) = (x).

U

Lemma 13.3. Suppose (q1,q2) = 1 and x; is a Dirichlet character mod q; for i = 1,2. Let
X = xixz. Then 7(x) = 7(x1)7(x2)x1(q2) x2(q1)-

Proof. The Chinese remainder theorem implies that each a mod ¢;¢s can be written uniquely
as a1qz + asqy for 1 < a; < g;. Thus the general term in 7(x) is

aq asq a a
x1(a1g2 + a2qr)x2(a1q2 + axqr)e (ﬁ) e (£> = x1(a1g2)x2(azqr)e (—1) e (—2) .

q192 q1G2 q1 q2
[l

For primitive characters the hypothesis (n,q) = 1 can be removed from Lemma 13.2.

Theorem 13.4. Suppose x is a primitive Dirichlet character mod q. Then T(n,x) =
X(n)7(x) for all n € Z. Moreover |T(x)| = \/q.

Proof. Without loss of generality we may assume that (n,q) = h > 1. Let us write n = hn’
and ¢ = hq'. Then

Zx e(an/q) = x(a)e(an'/d) = D ebn'/d) Y xla

b mod ¢’ a mod q
a=b mod ¢’

But then inner sum is 0 by Lemma 11.14 and the fact that x is primitive. On the other
hand y(n)7(x) = 0, which therefore establishes the first part of the theorem.
The second part follows from the first part on observing that
q

> 7(n, Z|X I )I” = ela)lm (0

n=1
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But the left hand side is
q

ZT(H,X)T(H,X):Z > xla)e(an/q) > x(b)e(=bn/q)

n=1 n=1 a mod ¢ b mod ¢
q
= Y x(@) > x(0)) e((a—bn/q).
a mod g b mod ¢ n=1

For any ¢ € Z the function
e(c-/q) :Z/qZ — C*, n s e(en/q),
defines an additive character on the finite abelian group Z/qZ. Hence Corollary 11.6 implies

that
g if c=0mod g,
> elen/q) = .
0 otherwise.
n mod q
Thus
q
T )r(nox) =q > x(@) Y. x(b)
n=1 a mod q b mod ¢
b=a mod ¢
=q Y |x(a)
a mod q
= qp(q).
It finally follows that |7(x)| = /g, as claimed. O

A very useful connection between Dirichlet characters and additive characters is given by
the following result.

Corollary 13.5. Suppose that x is a primitive Dirichlet character mod q. Then for alln € Z
we have

Je(an/q).

Proof. Note that 7(y) # 0 if x is primitive, by Theorem 13.4. O

We know that |7(x)| = /g for a primitive character x mod ¢, but in general it hard to
say anything about the argument of 7(y) — except when Yy is real!

If y is a primitive character modulo ¢ and x = y, then Lemma 13.2 implies that 7(y) =
7(—=1,n) = x(=1)7(x). Hence

(X) = X(—1)7(x) = 7(x) = x(-1) o

=7(x) =% x(—l)q.
Gauss was the first to work out the correct sign. We will give a sketch of the proof for a real

primitive character.
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Theorem 13.6 (Gauss). Let p > 2 be a prime and let x(n) = (2). Then

p
if p =1 mod 4,
T(x) = VP .fp_
iy/pP if p=3mod 4.

Proof. Let us put

Since #{z mod p : z = n mod p} = 1 + (), we find that

»
u n an P an " /n an
son=2(+(5)) () -2 (5)-2 () (5)
The first term is 0 if p { a, as we now assume, by orthogonality of additive characters. Hence
for p 1 a we have
G(a,p) = 7(a,x) = x(a)7(x),
by Lemma 13.2 and the fact that y = x. In particular, it follows that
p 332
=G =Y (2] =c
=1

say.
We will study G using Poisson summation. We will apply Theorem 6.8 with

f(x) = {e(ﬂ/p) if x € (%m_i_ %)7

0 otherwise.

. pH1/2 [ 2
f(n) = / e (— - m:> dx.
1/2 p

Complete the square by writing

x? 1< np>2 n’p
——nr=—-\|r——| ——.
p D 2 4

Making the change of variables u = (z — np/2)/p, we therefore obtain

f(”) = pe <_nT2p) /szr12 e (qu) du.

n

2p 2

Note that

Now integration by parts yields

v A
/ e(cu®)du = / ~ Amicue(cu®)du

U " dric Jy w
_ i { [e(ch)] v N /V e(cuz)du}
47i v |y Juo P
< 1
7
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Hence 1
n) << .
) 1+ |n|

We conclude from Theorem 6.8 that
G=) f)=) f(n)
nez nez
Sorting according to the parity of n, we obtain
(M—e)/2

S im=Y Y @kt

e€{0,1} k=—(M—¢)/2

£2p (M—¢)/2 LH1—k+5 )
=p Z e (_T) Z /1 e(pu®)du.
k

c€{0,1} = (M—e)/2” 257k +5

The integrals may be combined to form one integral, which as M — oo tends to

/_Ze( \/_/ 1p 1;’

since (see §3.322 of Gradshteyn—Ryzhik)

R 1 A 14 1
omix? _ wi/4 _
e dr = ——e = = —.
/0 2v/2 4 2(1 — 1)

Hence
VP e’p
G= ——
= 2 el
e€{0,1}
2 (e ()
= 1 _£
- U ey
14477
1= VP
since e(3) = 4. One easily checks that

14477 1 if p=1mod4,
1—1 i if p=3 mod 4,

which thereby completes the proof of the theorem.
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