
13. Gauss sums

Let χ be a Dirichlet character mod q.

Definition 13.1. The Gauss sum τ(χ) of χ is defined to be

τ(χ) =

q∑
a=1

χ(a)e(a/q).

The Gauss sum is a special case of the more general sum

τ(n, χ) =

q∑
a=1

χ(a)e(an/q).

Note that τ(χ) = τ(1, χ). More generally:

Lemma 13.2. Suppose χ is a Dirichlet character mod q and (n, q) = 1. Then τ(n, χ) =
χ̄(n)τ(χ).

Proof. If (n, q) = 1 then the map a 7→ an permutes the residues modulo q. Hence

χ(n)τ(n, χ) =

q∑
a=1

χ(an)e(an/q) = τ(χ).

�

Lemma 13.3. Suppose (q1, q2) = 1 and χi is a Dirichlet character mod qi for i = 1, 2. Let
χ = χ1χ2. Then τ(χ) = τ(χ1)τ(χ2)χ1(q2)χ2(q1).

Proof. The Chinese remainder theorem implies that each a mod q1q2 can be written uniquely
as a1q2 + a2q1 for 1 ≤ ai ≤ qi. Thus the general term in τ(χ) is

χ1(a1q2 + a2q1)χ2(a1q2 + a2q1)e

(
a1q2

q1q2

)
e

(
a2q1

q1q2

)
= χ1(a1q2)χ2(a2q1)e

(
a1

q1

)
e

(
a2

q2

)
.

�

For primitive characters the hypothesis (n, q) = 1 can be removed from Lemma 13.2.

Theorem 13.4. Suppose χ is a primitive Dirichlet character mod q. Then τ(n, χ) =
χ̄(n)τ(χ) for all n ∈ Z. Moreover |τ(χ)| = √q.

Proof. Without loss of generality we may assume that (n, q) = h > 1. Let us write n = hn′

and q = hq′. Then

τ(n, χ) =

q∑
a=1

χ(a)e(an/q) =

q∑
a=1

χ(a)e(an′/q′) =
∑

b mod q′

e(bn′/q′)
∑

a mod q
a≡b mod q′

χ(a).

But then inner sum is 0 by Lemma 11.14 and the fact that χ is primitive. On the other
hand χ̄(n)τ(χ) = 0, which therefore establishes the first part of the theorem.

The second part follows from the first part on observing that
q∑

n=1

τ(n, χ)τ(n, χ) =

q∑
n=1

|χ(n)|2|τ(χ)|2 = ϕ(q)|τ(χ)|2.
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But the left hand side is
q∑

n=1

τ(n, χ)τ(n, χ) =

q∑
n=1

∑
a mod q

χ(a)e(an/q)
∑

b mod q

χ̄(b)e(−bn/q)

=
∑

a mod q

χ(a)
∑

b mod q

χ̄(b)

q∑
n=1

e((a− b)n/q).

For any c ∈ Z the function

e(c · /q) : Z/qZ→ C∗, n 7→ e(cn/q),

defines an additive character on the finite abelian group Z/qZ. Hence Corollary 11.6 implies
that ∑

n mod q

e(cn/q) =

{
q if c ≡ 0 mod q,

0 otherwise.

Thus
q∑

n=1

τ(n, χ)τ(n, χ) = q
∑

a mod q

χ(a)
∑

b mod q
b≡a mod q

χ̄(b)

= q
∑

a mod q

|χ(a)|

= qϕ(q).

It finally follows that |τ(χ)| = √q, as claimed. �

A very useful connection between Dirichlet characters and additive characters is given by
the following result.

Corollary 13.5. Suppose that χ is a primitive Dirichlet character mod q. Then for all n ∈ Z
we have

χ(n) =
1

τ(χ̄)

q∑
a=1

χ̄(a)e(an/q).

Proof. Note that τ(χ̄) 6= 0 if χ is primitive, by Theorem 13.4. �

We know that |τ(χ)| =
√
q for a primitive character χ mod q, but in general it hard to

say anything about the argument of τ(χ) — except when χ is real!

If χ is a primitive character modulo q and χ = χ̄, then Lemma 13.2 implies that τ(χ̄) =
τ(−1, n) = χ̄(−1)τ(χ). Hence

τ(χ) = χ̄(−1)τ(χ)⇒ τ(χ) = χ(−1)τ(χ)

⇒ τ(χ)2 = χ(−1)τ(χ)τ(χ)

⇒ q = |τ(χ)|2 = χ̄(−1)τ(χ)2

⇒ τ(χ) = ±
√
χ(−1)q.

Gauss was the first to work out the correct sign. We will give a sketch of the proof for a real
primitive character.
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Theorem 13.6 (Gauss). Let p > 2 be a prime and let χ(n) = (n
p
). Then

τ(χ) =

{√
p if p ≡ 1 mod 4,

i
√
p if p ≡ 3 mod 4.

Proof. Let us put

G(a, p) =

p∑
x=1

e

(
ax2

p

)
.

Since #{x mod p : x2 ≡ n mod p} = 1 + (n
p
), we find that

G(a, p) =

p∑
n=1

(
1 +

(
n

p

))
e

(
an

p

)
=

p∑
n=1

e

(
an

p

)
+

p∑
n=1

(
n

p

)
e

(
an

p

)
.

The first term is 0 if p - a, as we now assume, by orthogonality of additive characters. Hence
for p - a we have

G(a, p) = τ(a, χ) = χ(a)τ(χ),

by Lemma 13.2 and the fact that χ̄ = χ. In particular, it follows that

τ(χ) = G(1, p) =

p∑
x=1

e

(
x2

p

)
= G,

say.
We will study G using Poisson summation. We will apply Theorem 6.8 with

f(x) =

{
e(x2/p) if x ∈ (1

2
, p+ 1

2
),

0 otherwise.

Note that

f̂(n) =

∫ p+1/2

1/2

e

(
x2

p
− nx

)
dx.

Complete the square by writing

x2

p
− nx =

1

p

(
x− np

2

)2

− n2p

4
.

Making the change of variables u = (x− np/2)/p, we therefore obtain

f̂(n) = pe

(
−n

2p

4

)∫ 1
2p

+1−n
2

1
2p
−n

2

e
(
pu2
)
du.

Now integration by parts yields∫ V

U

e(cu2)du =
1

4πic

∫ V

U

1

u
· 4πicue(cu2)du

=
1

4πi

{[
e(cu2)

u

]V
U

+

∫ V

U

e(cu2)

u2
du

}
� 1

U
.
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Hence

f̂(n)� 1

1 + |n|
.

We conclude from Theorem 6.8 that

G =
∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Sorting according to the parity of n, we obtain

M∑
n=−M

f̂(n) =
∑

ε∈{0,1}

(M−ε)/2∑
k=−(M−ε)/2

f̂(2k + ε)

= p
∑

ε∈{0,1}

e

(
−ε

2p

4

) (M−ε)/2∑
k=−(M−ε)/2

∫ 1
2p

+1−k+ ε
2

1
2p
−k+ ε

2

e(pu2)du.

The integrals may be combined to form one integral, which as M →∞ tends to∫ ∞
−∞

e(pu2)du =
1
√
p

∫ ∞
−∞

e(u2)du =
1
√
p
· 1

1− i
,

since (see §3.322 of Gradshteyn–Ryzhik)∫ ∞
0

e2πix2dx =
1

2
√

2
eπi/4 =

1 + i

4
=

1

2(1− i)
.

Hence

G =

√
p

1− i
∑

ε∈{0,1}

e

(
−ε

2p

4

)

=

√
p

1− i

(
1 + e

(
−p

4

))
=

1 + i−p

1− i
√
p,

since e(1
4
) = i. One easily checks that

1 + i−p

1− i
=

{
1 if p ≡ 1 mod 4,

i if p ≡ 3 mod 4,

which thereby completes the proof of the theorem. �
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