

14. INCOMPLETE CHARACTER SUMS

Let χ be a Dirichlet character mod q . We call the sum

$$S_\chi(N) = \sum_{n=M+1}^{M+N} \chi(n)$$

incomplete if $N < q$. The “trivial bound” is

$$|S_\chi(N)| \leq \sum_{n=M+1}^{M+N} 1 = N.$$

Using Gauss sums we can show that $S_\chi(N) = o(N)$ provided that $\chi \neq \chi_0$ and N is not too small compared to q .

We set $S = S_\chi(N)$ for convenience. Suppose first that χ is a primitive character mod q , with $q > 1$. Then Corollary 13.5 implies that

$$S = \frac{1}{\tau(\bar{\chi})} \sum_{a=1}^q \bar{\chi}(a) \sum_{n=M+1}^{M+N} e(an/q).$$

The inner sum is a geometric series:

$$\begin{aligned} \sum_{n=M+1}^{M+N} e(an/q) &= \frac{e(a(M+N+1)/q) - e(a(M+1)/q)}{e(a/q) - 1} \\ &= e\left(\frac{(2M+N+1)a}{2q}\right) \frac{\sin(\pi aN/q)}{\sin(\pi a/q)}, \end{aligned}$$

on recalling that $\sin(z) = \frac{1}{2i}(e^{iz} - e^{-iz})$. The triangle inequality now yields

$$\begin{aligned} |S| &\leq \frac{1}{|\tau(\bar{\chi})|} \sum_{a=1}^q \frac{|\bar{\chi}(a)|}{\sin(\pi a/q)} = \frac{1}{\sqrt{q}} \sum_{\substack{a=1 \\ (a,q)=1}}^q \frac{1}{\sin(\pi a/q)} \\ &= \frac{2}{\sqrt{q}} \sum_{\substack{1 \leq a \leq q/2 \\ (a,q)=1}} \frac{1}{\sin(\pi a/q)}. \end{aligned}$$

But if q is even then $4 \mid q$ since if $q \equiv 2 \pmod{4}$ there is no primitive character mod q . In this case we have $(q/2, q) > 1$ and so

$$|S| \leq \frac{2}{\sqrt{q}} \sum_{\substack{1 \leq a \leq (q-1)/2 \\ (a,q)=1}} \frac{1}{\sin(\pi a/q)}.$$

The function $\sin(\pi\alpha)$ is concave downward in the interval $[0, \frac{1}{2}]$ and lies above the chord joining $(0, 0)$ to $(\frac{1}{2}, 1)$ (see Figure 1). Hence $\sin(\pi\alpha) \geq 2\alpha$ for all $\alpha \in [0, \frac{1}{2}]$. This therefore implies that

$$|S| \leq \sqrt{q} \sum_{\substack{1 \leq a \leq (q-1)/2 \\ (a,q)=1}} \frac{1}{a}.$$

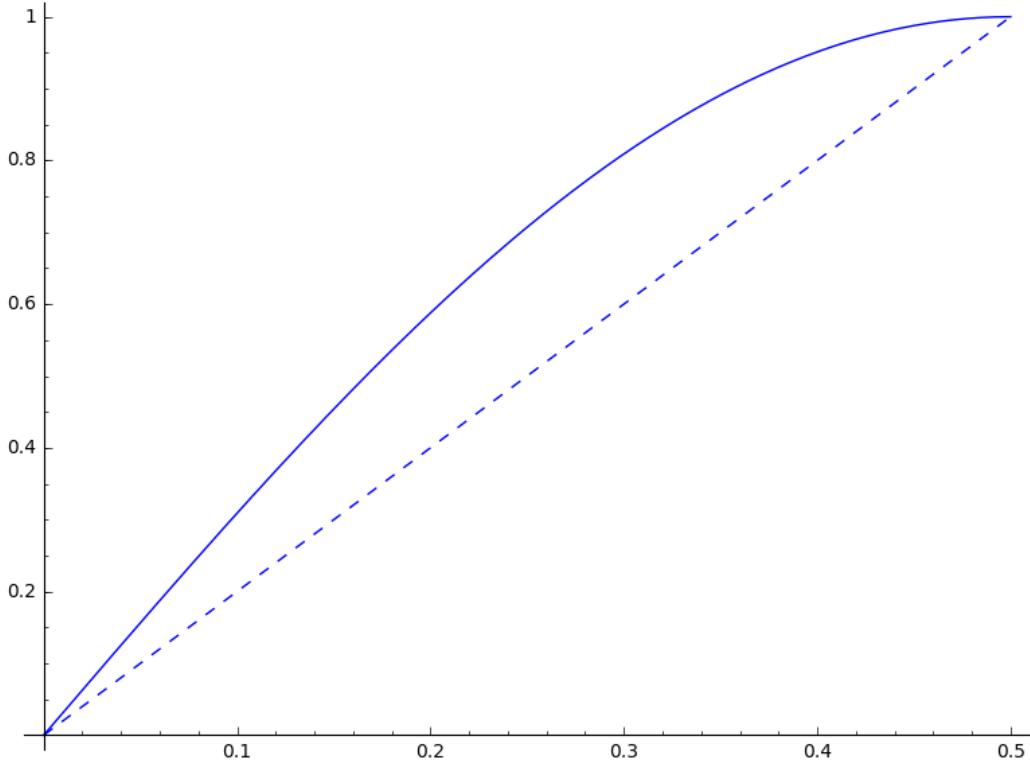


FIGURE 1. The function $\sin(\pi\alpha)$

Now

$$\begin{aligned}
 \log \frac{1 + \frac{1}{2a}}{1 - \frac{1}{2a}} &= \log \left(1 + \frac{1}{2a}\right) - \log \left(1 - \frac{1}{2a}\right) \\
 &= \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \left(\frac{1}{2a}\right)^m + \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{1}{2a}\right)^n \\
 &\geq \frac{1}{a}.
 \end{aligned}$$

Thus

$$|S| \leq \sqrt{q} \sum_{1 \leq a \leq (q-1)/2} \log \frac{2a+1}{2a-1} \leq \sqrt{q} \log q,$$

since

$$\begin{aligned}
 \sum_{1 \leq a \leq (q-1)/2} \log \frac{2a+1}{2a-1} &= \sum_{\substack{3 \leq b \leq q \\ 2 \nmid b}} \log b - \sum_{\substack{1 \leq c \leq q-1 \\ 2 \nmid c}} \log c = \begin{cases} \log q & \text{if } q \text{ odd} \\ \log(q-1) & \text{if } q \text{ even} \end{cases} \\
 &\leq \log q.
 \end{aligned}$$

Our work so far has shown that

$$|S_\chi(N)| \leq \sqrt{q} \log q,$$

if χ is a primitive character mod q .

Suppose now that χ is an imprimitive Dirichlet character mod q , induced by a primitive character χ^* mod d . Let

$$r = \prod_{\substack{p|q \\ p|d}} p.$$

Then

$$S_\chi(N) = \sum_{n=M+1}^{M+N} \chi(n) = \sum_{\substack{n=M+1 \\ (n,r)=1}}^{M+N} \chi^*(n).$$

Recalling from Lemma 9.4 that $\mu * 1 = I$, we may write

$$\begin{aligned} S_\chi(N) &= \sum_{n=M+1}^{M+N} \chi^*(n) \sum_{k|(n,r)} \mu(k) \\ &= \sum_{k|r} \mu(k) \sum_{\substack{n=M+1 \\ k|n}}^{M+N} \chi^*(n) \\ &= \sum_{k|r} \mu(k) \chi^*(k) \sum_{M/k < m \leq (M+N)/k} \chi^*(m). \end{aligned}$$

It now follows from combining the triangle inequality with our earlier estimate for primitive characters that

$$|S_\chi(N)| \leq \sum_{k|r} |\mu(k)| \sqrt{d} \log d \leq 2^{\omega(r)} \sqrt{d} \log d.$$

But $2^{\omega(r)} \leq d(r) \ll \sqrt{r} \leq \sqrt{q/d}$, by Lemma 9.13. This completes the proof of the following result:

Theorem 14.1 (Pólya–Vinogradov inequality). *Let χ be a non-trivial Dirichlet character mod q . Then for any integers M, N with $N > 0$, we have*

$$\sum_{n=M+1}^{M+N} \chi(n) \ll \sqrt{q} \log q.$$

Note that this result is trivial if $N \ll \sqrt{q}$. The true bound is expected to be

$$(14.1) \quad S_\chi(N) \ll N^{1/2} q^\varepsilon,$$

for any $\varepsilon > 0$. This is non-trivial for $N > q^{3\varepsilon}$. However, we are a long way from being able to prove it!

The following result is one of the classical applications of the Pólya–Vinogradov inequality.

Corollary 14.2. *Let χ be a non-trivial character mod p and let n_χ be the least $n \in \mathbb{N}$ such that $\chi(n) \neq 1$. Then $n_\chi \ll_\varepsilon p^{\frac{1}{2\sqrt{e}} + \varepsilon}$ for any $\varepsilon > 0$.*

Proof. Recall that a number n is said to be y -smooth if it is composed entirely of primes $q \leq y$. Suppose $\chi(n) = 1$ for $n \leq y$. Then $\chi(n) = 1$ whenever n is y -smooth. Let $\Psi(x, y)$ denote the number of y -smooth numbers up to x . Then for $x \in [y, y^2]$ we have

$$\sum_{n \leq x} \chi(n) = \Psi(x, y) + \sum_{\substack{q \text{ prime} \\ y < q \leq x}} \chi(q) \lfloor x/q \rfloor,$$

since n/q is y -smooth for any $q \in (y, x]$ and $n \leq x$. We note that

$$\Psi(x, y) \geq \lfloor x \rfloor - \sum_{\substack{q \text{ prime} \\ y < q \leq x}} \lfloor x/q \rfloor.$$

Hence

$$\begin{aligned} (14.2) \quad \left| \sum_{n \leq x} \chi(n) \right| &\geq \Psi(x, y) - \sum_{\substack{q \text{ prime} \\ y < q \leq x}} \lfloor x/q \rfloor \\ &\geq \lfloor x \rfloor - 2 \sum_{\substack{q \text{ prime} \\ y < q \leq x}} \lfloor x/q \rfloor \\ &\geq x \left(1 - 2 \log \left(\frac{\log x}{\log y} \right) + O \left(\frac{1}{\log x} \right) \right), \end{aligned}$$

using the prime number theorem, together with the estimates $[t] = t + O(1)$ and

$$\sum_{p \leq t} \frac{1}{p} = \log \log t + c_1 + O \left(\frac{1}{\log t} \right),$$

for some constant c_1 . If $x = \sqrt{p}(\log p)^2$ then the left hand side of (14.2) is at most $\sqrt{p} \log p = o(x)$ by Pólya–Vinogradov. While if $y > x^{\frac{1}{\sqrt{e}} + \varepsilon}$, then

$$1 - 2 \log \left(\frac{\log x}{\log y} \right) > 1 + 2 \log \left(\varepsilon + \frac{1}{\sqrt{e}} \right) = 2 \log(1 + \varepsilon \sqrt{e}) > \varepsilon.$$

Hence the right hand side of (14.2) is $\gg \varepsilon x$. Thus it follows that

$$n_\chi \leq x^{\frac{1}{\sqrt{e}} + \varepsilon} = p^{\frac{1}{2\sqrt{e}} + \frac{\varepsilon}{2}} (\log p)^{\frac{2}{\sqrt{e}} + 2\varepsilon} \ll_\varepsilon p^{\frac{1}{2\sqrt{e}} + \varepsilon},$$

as required. \square

In a series of papers, Burgess established a series of bounds for relatively short character sums. The most famous is the following, which should be compared with the expectation (14.1).

Theorem 14.3 (The Burgess bound). *Let χ be a non-trivial primitive Dirichlet character modulo a prime p . Then we have*

$$S_\chi(N) \ll N^{1/2} p^{3/16} (\log p)^{1/2}.$$

The rest of this section is devoted to a proof of this result. The proof is fairly intricate and relies on powerful bounds for complete exponential sums over finite fields — a result that we shall use as a “black box”.

We argue by induction on N , proving that

$$|S_\chi(N)| \leq cN^{1/2}p^{3/16}(\log p)^{1/2},$$

for an absolute constant c . We first note that Theorem 14.3 is either trivial or it follows from the Pólya–Vinogradov inequality, unless

$$(14.3) \quad c^2 p^{3/8} \log p \leq N \leq p^{5/8} \log p,$$

a condition that we now assume. Applying a shift $n \mapsto n + h$ with $1 \leq h \leq H < N$, we obtain

$$(14.4) \quad S_\chi(N) = \sum_{M < n \leq M+N} \chi(n + h) + 2\theta E(H),$$

where $|\theta| \leq 1$ and

$$E(H) = cH^{1/2}p^{3/16}(\log p)^{1/2}.$$

Here we have applied the induction hypothesis to the two character sums of length h which do not overlap with the original segment. Let $H = AB$, for $A, B \in \mathbb{N}$. We use shifts of the type

$$h = ab, \quad \text{with } 1 \leq a \leq A \text{ and } 1 \leq b \leq B.$$

Averaging (14.4) over a, b we deduce that

$$S_\chi(N) = \frac{1}{H} \sum_{\substack{1 \leq a \leq A \\ 1 \leq b \leq B}} \sum_{M < n \leq M+N} \chi(n + ab) + 2\theta E(H),$$

where $|\theta| \leq 1$. Now $\chi(n + ab) = \chi(a)\chi(\bar{a}n + b)$, where \bar{a} is the multiplicative inverse of a modulo p . (Note that $\max\{A, B\} < p$ by (14.3), so that a, b are coprime to p .) Hence

$$|S_\chi(N)| \leq \frac{V}{H} + 2E(H),$$

where

$$V = \sum_{x \pmod{p}} \nu(x) \left| \sum_{1 \leq b \leq B} \chi(x + b) \right|$$

and $\nu(x)$ is the number of representations of x as $\bar{a}n \pmod{p}$ with $1 \leq a \leq A$ and $M < n \leq M + N$. We shall estimate V without using the induction hypothesis, so that the implied constant will be independent of c .

The next step is to ease the dependence on $\nu(x)$ in V by an application of Hölder's inequality. This gives $V \leq V_1^{\frac{1}{2}}V_2^{\frac{1}{4}}W^{\frac{1}{4}}$, where

$$\begin{aligned} V_1 &= \sum_{x \pmod{p}} \nu(x) \\ V_2 &= \sum_{x \pmod{p}} \nu^2(x) \\ W &= \sum_{x \pmod{p}} \left| \sum_{1 \leq b \leq B} \chi(x + b) \right|^4. \end{aligned}$$

Since $\nu(x)$ is often expected to be zero, the extension to a complete set of residues modulo p is quite wasteful in W . However it seems hard to take advantage of a condition like $\nu(x) \neq 0$ in the sum over x .

Lemma 14.4. *We have $V_1 \leq AN$ and $V_2 \ll AN(AN/p + \log A)$.*

Proof. It is obvious that $V_1 \leq AN$. Next, V_2 is the number of quadruples (a_1, a_2, n_1, n_2) with $1 \leq a_1, a_2 \leq A$ and $M < n_1, n_2 \leq M + N$ such that $a_1 n_2 \equiv a_2 n_1 \pmod{p}$. Fix a_1, a_2 and put $a_1 n_2 - a_2 n_1 = kp$. We have

$$\left| k - (a_1 - a_2) \frac{M}{p} \right| = \left| \frac{a_1(n_2 - M) - a_2(n_1 - M)}{p} \right| \leq \frac{2AN}{p}$$

and $(a_1, a_2) \mid k$. Given a_1, a_2, k as above we find that the number of pairs (n_1, n_2) satisfying the equation $a_1 n_2 - a_2 n_1 = kp$ is bounded above by $2N(a_1, a_2) / \max\{a_1, a_2\}$. Hence

$$\begin{aligned} V_2 &\leq 2N \sum_{1 \leq a_1, a_2 \leq A} \frac{(a_1, a_2)}{\max\{a_1, a_2\}} \left(1 + \frac{4AN}{(a_1, a_2)p} \right) \\ &\leq 2N \sum_{1 \leq a_1, a_2 \leq A} \frac{(a_1, a_2)}{\max\{a_1, a_2\}} + 2N \sum_{1 \leq a_1, a_2 \leq A} \frac{4AN}{p \max\{a_1, a_2\}}. \end{aligned}$$

Now

$$\sum_{1 \leq a_1, a_2 \leq A} \frac{1}{\max\{a_1, a_2\}} \leq 2A$$

and

$$\sum_{1 \leq a_1, a_2 \leq A} \frac{(a_1, a_2)}{\max\{a_1, a_2\}} \leq \sum_{d \leq A} d \sum_{\substack{1 \leq a_1, a_2 \leq A \\ d \mid a_1, d \mid a_2}} \frac{1}{\max\{a_1, a_2\}} \leq 2 \sum_{d \leq A} \frac{1}{d} \ll \log A.$$

The statement of the lemma is now obvious. \square

Lemma 14.5. *We have $W \leq 2B^2p + 3B^4p^{1/2}$.*

The estimate of W lies at the heart of the proof of Burgess' bound. Lets see how it suffices to complete the proof of Theorem 14.3. We choose $A = [Np^{-\frac{1}{4}}/2]$ and $B = [p^{\frac{1}{4}}]$, giving $W \leq 5p^{\frac{3}{2}}$. Recall from (14.3) that $c^2 p^{3/8} \log p \leq N \leq p^{5/8} \log p$. Thus it follows that $A \geq 1$ and

$$AN \leq \frac{N^2}{2p^{\frac{1}{4}}} \leq p(\log p)^2.$$

Hence Lemma 14.4 gives $V_1 \leq AN$ and $V_2 \ll AN(\log p)^2$. Thus

$$V \leq V_1^{\frac{1}{2}} V_2^{\frac{1}{4}} W^{\frac{1}{4}} \ll (AN)^{\frac{3}{4}} p^{\frac{3}{8}} (\log p)^{\frac{1}{2}} \ll N^{\frac{3}{2}} p^{\frac{3}{16}} (\log p)^{\frac{1}{2}}.$$

Since $N \ll AB = H \leq N$ the statement of Theorem 14.3 now follows from the inequality

$$|S_\chi(N)| \leq \frac{V}{H} + 2cH^{1/2}p^{3/16}(\log p)^{1/2},$$

that we established previously.

Proof of Lemma 14.5. We may assume that $B < p$. Opening up the absolute value and interchanging the order of summation we find that

$$\begin{aligned} W &= \sum_{x \bmod p} \left| \sum_{1 \leq b \leq B} \chi(x + b) \right|^4 \\ &= \sum_{1 \leq b_1, b_2, b_3, b_4 \leq B} \sum_{x \bmod p} \chi(x + b_1) \chi(x + b_2) \bar{\chi}(x + b_3) \bar{\chi}(x + b_4) \\ &= \sum_{1 \leq b_1, b_2, b_3, b_4 \leq B} \sum_{x \bmod p} \chi(f(x)), \end{aligned}$$

where $f(x) = (x + b_1)(x + b_2)(x + b_3)^{p-2}(x + b_4)^{p-2}$ is a polynomial defined over the finite field $\mathbb{Z}/p\mathbb{Z}$. If $\{b_1, b_2\} = \{b_3, b_4\}$ then $f(x) = 1$ and the inner sum over x is equal to p . There are at most $2B^2$ ways in which this can happen and so the overall contribution from this case is $2B^2p$. For the remaining values of b_1, \dots, b_4 , for which $\{b_1, b_2\} \neq \{b_3, b_4\}$, we appeal to Weil's *Riemann hypothesis for curves over finite fields* as a black box result:

Theorem 14.6 (Riemann hypothesis for curves over finite fields). *Let \mathbb{F}_q be a finite field with q elements and let $\chi : \mathbb{F}_q^* \rightarrow \mathbb{C}$ be a non-trivial multiplicative character of order $d > 1$. Suppose that $f \in \mathbb{F}_q[x]$ has m distinct roots and is not equal to a d th power. Then*

$$\left| \sum_{x \in \mathbb{F}_q} \chi(f(x)) \right| \leq (m-1)q^{1/2}.$$

We apply this to $f(x) = (x + b_1)(x + b_2)(x + b_3)^{p-2}(x + b_4)^{p-2}$. For the b_1, \dots, b_4 under consideration one of the b_i is a root of f of order either 1 or $p-2$, which is coprime with the order of $d \mid (p-1)$ of χ . Thus Theorem 14.6 applies with $m \leq 4$ and it follows that

$$\left| \sum_{x \bmod p} \chi(f(x)) \right| \leq 3\sqrt{p}$$

in our expression for W . Since there are at most B^4 values of b_1, \dots, b_4 that contribute to this case, the statement of the lemma follows. \square

Exercise. By choosing different Hölder exponents show that the proof of Theorem 14.3 can be generalised to give

$$S_\chi(N) \ll_\varepsilon N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2} + \varepsilon},$$

for any $\varepsilon > 0$ and any $r \geq 1$.