
14. Incomplete character sums

Let χ be a Dirichlet character mod q. We call the sum

Sχ(N) =
M+N∑
n=M+1

χ(n)

incomplete if N < q. The “trivial bound” is

|Sχ(N)| ≤
M+N∑
n=M+1

1 = N.

Using Gauss sums we can show that Sχ(N) = o(N) provided that χ 6= χ0 and N is not too
small compared to q.

We set S = Sχ(N) for convenience. Suppose first that χ is a primitive character mod q,
with q > 1. Then Corollary 13.5 implies that

S =
1

τ(χ̄)

q∑
a=1

χ̄(a)
M+N∑
n=M+1

e(an/q).

The inner sum is a geometric series:

M+N∑
n=M+1

e(an/q) =
e(a(M +N + 1)/q)− e(a(M + 1)/q)

e(a/q)− 1

= e

(
(2M +N + 1)a

2q

)
sin(πaN/q)

sin(πa/q)
,

on recalling that sin(z) = 1
2i

(eiz − e−iz). The triangle inequality now yields

|S| ≤ 1

|τ(χ̄)|

q∑
a=1

|χ̄(a)|
sin(πa/q)

=
1
√
q

q∑
a=1

(a,q)=1

1

sin(πa/q)

=
2
√
q

∑
1≤a≤q/2
(a,q)=1

1

sin(πa/q)
.

But if q is even then 4 | q since if q ≡ 2 mod 4 there is no primitive character mod q. In this
case we have (q/2, q) > 1 and so

|S| ≤ 2
√
q

∑
1≤a≤(q−1)/2

(a,q)=1

1

sin(πa/q)
.

The function sin(πα) is concave downward in the interval [0, 1
2
] and lies about the chord

joining (0, 0) to (1
2
, 1) (see Figure 1). Hence sin(πα) ≥ 2α for all α ∈ [0, 1

2
]. This therefore

implies that

|S| ≤ √q
∑

1≤a≤(q−1)/2
(a,q)=1

1

a
.
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Figure 1. The function sin(πα)

Now

log
1 + 1

2a

1− 1
2a

= log

(
1 +

1

2a

)
− log

(
1− 1

2a

)
=

∞∑
m=1

(−1)m+1

m

(
1

2a

)m
+
∞∑
n=1

1

n

(
1

2a

)n
≥ 1

a
.

Thus

|S| ≤ √q
∑

1≤a≤(q−1)/2

log
2a+ 1

2a− 1
≤ √q log q,

since ∑
1≤a≤(q−1)/2

log
2a+ 1

2a− 1
=
∑

3≤b≤q
2-b

log b−
∑

1≤c≤q−1
2-c

log c =

{
log q if q odd

log(q − 1) if q even

≤ log q.

Our work so far has shown that

|Sχ(N)| ≤ √q log q,

if χ is a primitive character mod q.
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Suppose now that χ is an imprimitive Dirichlet character mod q, induced by a primitive
character χ∗ mod d. Let

r =
∏
p|q
p-d

p.

Then

Sχ(N) =
M+N∑
n=M+1

χ(n) =
M+N∑
n=M+1
(n,r)=1

χ∗(n).

Recalling from Lemma 9.4 that µ ∗ 1 = I, we may write

Sχ(N) =
M+N∑
n=M+1

χ∗(n)
∑
k|(n,r)

µ(k)

=
∑
k|r

µ(k)
M+N∑
n=M+1
k|n

χ∗(n)

=
∑
k|r

µ(k)χ∗(k)
∑

M/k<m≤(M+N)/k

χ∗(m).

It now follows from combining the triangle inequality with our earlier estimate for primitive
characters that

|Sχ(N)| ≤
∑
k|r

|µ(k)|
√
d log d ≤ 2ω(r)

√
d log d.

But 2ω(r) ≤ d(r)�
√
r ≤

√
q/d, by Lemma 9.13. This completes the proof of the following

result:

Theorem 14.1 (Pólya–Vinogradov inequality). Let χ be a non-trivial Dirichlet character
mod q. Then for any integers M,N with N > 0, we have

M+N∑
n=M+1

χ(n)� √q log q.

Note that this result is trivial if N � √q. The true bound is expected to be

(14.1) Sχ(N)� N1/2qε,

for any ε > 0. This is non-trivial for N > q3ε. However, we are a long way from being able
to prove it!

The following result is one of the classical applications of the Pólya–Vinogradov inequality.

Corollary 14.2. Let χ be a non-trivial character mod p and let nχ be the least n ∈ N such

that χ(n) 6= 1. Then nχ �ε p
1

2
√
e

+ε
for any ε > 0.

61



Proof. Recall that a number n is said to be y-smooth if it is composed entirely of primes
q ≤ y. Suppose χ(n) = 1 for n ≤ y. Then χ(n) = 1 whenever n is y-smooth. Let Ψ(x, y)
denote the number of y-smooth numbers up to x. Then for x ∈ [y, y2] we have∑

n≤x

χ(n) = Ψ(x, y) +
∑
q prime
y<q≤x

χ(q)[x/q],

since n/q is y-smooth for any q ∈ (y, x] and n ≤ x. We note that

Ψ(x, y) ≥ [x]−
∑
q prime
y<q≤x

[x/q].

Hence ∣∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣∣ ≥ Ψ(x, y)−
∑
q prime
y<q≤x

[x/q]

≥ [x]− 2
∑
q prime
y<q≤x

[x/q]

≥ x

(
1− 2 log

(
log x

log y

)
+O

(
1

log x

))
,

(14.2)

using the prime number theorem, together with the estimates [t] = t+O(1) and∑
p≤t

1

p
= log log t+ c1 +O

(
1

log t

)
,

for some constant c1. If x =
√
p(log p)2 then the left hand side of (14.2) is at most

√
p log p =

o(x) by Pólya–Vinogradov. While if y > x
1√
e

+ε
, then

1− 2 log

(
log x

log y

)
> 1 + 2 log

(
ε+

1√
e

)
= 2 log(1 + ε

√
e) > ε.

Hence the right hand side of (14.2) is � εx. Thus it follows that

nχ ≤ x
1√
e

+ε
= p

1
2
√
e

+ ε
2 (log p)

2√
e

+2ε �ε p
1

2
√
e

+ε
,

as required. �

In a series of papers, Burgess established a series of bounds for relatively short character
sums. The most famous is the following, which should be compared with the expectation
(14.1).

Theorem 14.3 (The Burgess bound). Let χ be a non-trivial primitive Dirichlet character
modulo a prime p. Then we have

Sχ(N)� N1/2p3/16(log p)1/2.

The rest of this section is devoted to a proof of this result. The proof is fairly intricate
and relies on powerful bounds for complete exponential sums over finite fields — a result
that we shall use as a “black box”.
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We argue by induction on N , proving that

|Sχ(N)| ≤ cN1/2p3/16(log p)1/2,

for an absolute constant c. We first note that Theorem 14.3 is either trivial or it follows
from the Pólya–Vinogradov inequality, unless

(14.3) c2p3/8 log p ≤ N ≤ p5/8 log p,

a condition that we now assume. Applying a shift n 7→ n + h with 1 ≤ h ≤ H < N , we
obtain

(14.4) Sχ(N) =
∑

M<n≤M+N

χ(n+ h) + 2θE(H),

where |θ| ≤ 1 and

E(H) = cH1/2p3/16(log p)1/2.

Here we have applied the induction hypothesis to the two character sums of length h which
do not overlap with the original segment. Let H = AB, for A,B ∈ N. We use shifts of the
type

h = ab, with 1 ≤ a ≤ A and 1 ≤ b ≤ B.

Averaging (14.4) over a, b we deduce that

Sχ(N) =
1

H

∑
1≤a≤A
1≤b≤B

∑
M<n≤M+N

χ(n+ ab) + 2θE(H),

where |θ| ≤ 1. Now χ(n + ab) = χ(a)χ(ān + b), where ā is the multiplicative inverse of a
modulo p. (Note that max{A,B} < p by (14.3), so that a, b are coprime to p.) Hence

|Sχ(N)| ≤ V

H
+ 2E(H),

where

V =
∑

x mod p

ν(x)

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣
and ν(x) is the number of representations of x as ān mod p with 1 ≤ a ≤ A and M < n ≤
M + N . We shall estimate V without using the induction hypothesis, so that the implied
constant will be independent of c.

The next step is to ease the dependence on ν(x) in V by an application of Hölder’s

inequality. This gives V ≤ V
1
2

1 V
1
4

2 W
1
4 , where

V1 =
∑

x mod p

ν(x)

V2 =
∑

x mod p

ν2(x)

W =
∑

x mod p

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣
4

.
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Since ν(x) is often expected to be zero, the extension to a complete set of residues modulo p
is quite wasteful in W . However it seems hard to take advantage of a condition like ν(x) 6= 0
in the sum over x.

Lemma 14.4. We have V1 ≤ AN and V2 � AN(AN/p+ logA).

Proof. It is obvious that V1 ≤ AN . Next, V2 is the number of quadruples (a1, a2, n1, n2) with
1 ≤ a1, a2 ≤ A and M < n1, n2 ≤ M + N such that a1n2 ≡ a2n1 mod p. Fix a1, a2 and put
a1n2 − a2n1 = kp. We have∣∣∣∣k − (a1 − a2)

M

p

∣∣∣∣ =

∣∣∣∣a1(n2 −M)− a2(n1 −M)

p

∣∣∣∣ ≤ 2AN

p

and (a1, a2) | k. Given a1, a2, k as above we find that the number of pairs (n1, n2) satisfying
the equation a1n2 − a2n1 = kp is bounded above by 2N(a1, a2)/max{a1, a2}. Hence

V2 ≤ 2N
∑

1≤a1,a2≤A

(a1, a2)

max{a1, a2}

(
1 +

4AN

(a1, a2)p

)
≤ 2N

∑
1≤a1,a2≤A

(a1, a2)

max{a1, a2}
+ 2N

∑
1≤a1,a2≤A

4AN

pmax{a1, a2}
.

Now ∑
1≤a1,a2≤A

1

max{a1, a2}
≤ 2A

and ∑
1≤a1,a2≤A

(a1, a2)

max{a1, a2}
≤
∑
d≤A

d
∑

1≤a1,a2≤A
d|a1, d|a2

1

max{a1, a2}
≤ 2

∑
d≤A

1

d
� logA.

The statement of the lemma is now obvious. �

Lemma 14.5. We have W ≤ 2B2p+ 3B4p1/2.

The estimate of W lies at the heart of the proof of Burgess’ bound. Lets see how it
suffices to complete the proof of Theorem 14.3. We choose A = [Np−

1
4/2] and B = [p

1
4 ],

giving W ≤ 5p
3
2 . Recall from (14.3) that c2p3/8 log p ≤ N ≤ p5/8 log p. Thus it follows that

A ≥ 1 and

AN ≤ N2

2p
1
4

≤ p(log p)2.

Hence Lemma 14.4 gives V1 ≤ AN and V2 � AN(log p)2. Thus

V ≤ V
1
2

1 V
1
4

2 W
1
4 � (AN)

3
4p

3
8 (log p)

1
2 � N

3
2p

3
16 (log p)

1
2 .

Since N � AB = H ≤ N the statement of Theorem 14.3 now follows from the inequality

|Sχ(N)| ≤ V

H
+ 2cH1/2p3/16(log p)1/2,

that we established previously.
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Proof of Lemma 14.5. We may assume that B < p. Opening up the absolute value and
interchanging the order of summation we find that

W =
∑

x mod p

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣
4

=
∑

1≤b1,b2,b3,b4≤B

∑
x mod p

χ(x+ b1)χ(x+ b2)χ̄(x+ b3)χ̄(x+ b4)

=
∑

1≤b1,b2,b3,b4≤B

∑
x mod p

χ(f(x)),

where f(x) = (x + b1)(x + b2)(x + b3)p−2(x + b4)p−2 is a polynomial defined over the finite
field Z/pZ. If {b1, b2} = {b3, b4} then f(x) = 1 and the inner sum over x is equal to p. There
are at most 2B2 ways in which this can happen and so the overall contribution from this
case is 2B2p. For the remaining values of b1, . . . , b4, for which {b1, b2} 6= {b3, b4}, we appeal
to Weil’s Riemann hypothesis for curves over finite fields as a black box result:

Theorem 14.6 (Riemann hypothesis for curves over finite fields). Let Fq be a finite field
with q elements and let χ : F∗q → C be a non-trivial multiplicative character of order d > 1.
Suppose that f ∈ Fq[x] has m distinct roots and is not equal to a dth power. Then∣∣∣∣∣∣

∑
x∈Fq

χ (f(x))

∣∣∣∣∣∣ ≤ (m− 1)q1/2.

We apply this to f(x) = (x + b1)(x + b2)(x + b3)p−2(x + b4)p−2. For the b1, . . . , b4 under
consideration one of the bi is a root of f of order either 1 or p− 2, which is coprime with the
order of d | (p− 1) of χ. Thus Theorem 14.6 applies with m ≤ 4 and it follows that∣∣∣∣∣ ∑

x mod p

χ(f(x))

∣∣∣∣∣ ≤ 3
√
p

in our expression for W. Since there are at most B4 values of b1, . . . , b4 that contribute to
this case, the statement of the lemma follows. �

Exercise. By choosing different Hölder exponents show that the proof of Theorem 14.3 can
be generalised to give

Sχ(N)�ε N
1− 1

r p
r+1

4r2
+ε,

for any ε > 0 and any r ≥ 1.
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