14. INCOMPLETE CHARACTER SUMS

Let x be a Dirichlet character mod gq. We call the sum

M+N
SNy =Y x(n)
n=M+1
incomplete if N < q. The “trivial bound” is
M+N
N|< ) 1=N.
n=M+1

Using Gauss sums we can show that S, (N) = o(/N) provided that x # xo and N is not too
small compared to q.

We set S = S, (V) for convenience. Suppose first that y is a primitive character mod g,
with ¢ > 1. Then Corollary 13.5 implies that

M+N

Zx > elan/q).

n=M+1

The inner sum is a geometric series:

Mifv e(an/q) = LA+ N +1)/g) = ela(M + 1)/q)

v e(a/q) —1
(2M + N + 1)a\ sin(raN/q)
=e
2q sin(ra/q) ’
on recalling that sin(z) = %(eiz — e7%). The triangle inequality now yields
S < = —
151 X)| “— Z sin 7m/q z_; sin ﬂa/q
(a q)=

2 1
VA 1<az<:q p sin(ma/q)
(a,9)=1

But if ¢ is even then 4 | ¢ since if ¢ = 2 mod 4 there is no primitive character mod ¢. In this
case we have (¢/2,q) > 1 and so

2 1
5] < > el
\/_1<a<(q b2 sin(ra/q)
(a,q)=1
The function sin(ra) is concave downward in the interval [0, %] and lies about the chord
joining (0,0) to (3,1) (see Figure 1). Hence sin(ra) > 2a for all a € [0, 3]. This therefore

implies that

SI<va )
1<a<(g—1)/2
(a,q9)=1
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FIGURE 1. The function sin(ra)
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o (a)

2a+ 1
S| < 1 < /gl
Sl<va ), logs— <alogg,

2a —i— 1 log q
logb — 1 =
94— Z o8 Z o8e {log(q —1)

3<b<q 1<c<g—1
2tb 2tc

< logg.

Our work so far has shown that

1S (N)] < V/qlogg,

if x is a primitive character mod q.
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Suppose now that y is an imprimitive Dirichlet character mod ¢, induced by a primitive
character x* mod d. Let
r=T1I»

plg
pld
Then
M+N M+N
SNy =Y xtn)= > x'(n).
n=M+1 n=M+1

(n,r)=1

Recalling from Lemma 9.4 that p* 1 = I, we may write

M+N
SeN)y= D" x(n) Y p(k)
n=M+1 k|(n,r)
=> k) Y x'(n)
k| rb:kJ\l{1 +1
= ulkxk) > X (m).
k| M/k<m<(M+N)/k

It now follows from combining the triangle inequality with our earlier estimate for primitive
characters that

Sy (V)] < [p(k)[Vdlogd < 2V dlog d.

k|r

But 2¥" < d(r) < /7 < \/q/d, by Lemma 9.13. This completes the proof of the following
result:

Theorem 14.1 (Pdélya—Vinogradov inequality). Let x be a non-trivial Dirichlet character
mod q. Then for any integers M, N with N > 0, we have

M+N

> x(n) < /qlogg.

n=M+1

Note that this result is trivial if N < ,/q. The true bound is expected to be
(14.1) S (N) < NY2¢,

for any € > 0. This is non-trivial for N > ¢3. However, we are a long way from being able
to prove it!
The following result is one of the classical applications of the Pélya—Vinogradov inequality.

Corollary 14.2. Let x be a non-trivial character mod p and let n, be the least n € N such



Proof. Recall that a number n is said to be y-smooth if it is composed entirely of primes
q < y. Suppose x(n) =1 for n < y. Then x(n) = 1 whenever n is y-smooth. Let ¥(x,y)
denote the number of y-smooth numbers up to x. Then for z € [y, y*] we have

> x(n) =¥(z,y)+ Y x(@)=/d),

n<lx q prime
y<g<z

since n/q is y-smooth for any ¢ € (y,z] and n < x. We note that

U(r,y) =[] = ) [x/q):

q prime
y<q<w
Hence
Y x| = T(xy)— > [x/dq]
n<z q prime
y<q<w
(14.2) > [2] -2 ) [w/q]
q prime
y<qg<z

1 1
Zm(l—Qlog(ng)—l-O( ))7
log y log x

using the prime number theorem, together with the estimates [t] = ¢ 4+ O(1) and
1 1

Z— = loglogt+c; + O oat )’
o<s D ogt
for some constant ¢,. If z = \/p(log p)? then the left hand side of (14.2) is at most /plogp =
o(x) by Pélya—Vinogradov. While if y > xﬁ%, then

1 1

1—2log (ﬂ) > 1+ 2log (€+ —) =2log(1 +&v/e) > e.

log y Ve

Hence the right hand side of (14.2) is > ez. Thus it follows that
ny < xﬁﬁ _ p%\/ﬁ%(logp)%ws <. pr\l/g—i-s’

as required. O

In a series of papers, Burgess established a series of bounds for relatively short character
sums. The most famous is the following, which should be compared with the expectation

(14.1).

Theorem 14.3 (The Burgess bound). Let x be a non-trivial primitive Dirichlet character
modulo a prime p. Then we have

SX(N) < Nl/ng/lﬁ(logp)l/z.

The rest of this section is devoted to a proof of this result. The proof is fairly intricate
and relies on powerful bounds for complete exponential sums over finite fields — a result

that we shall use as a “black box”.
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We argue by induction on N, proving that
S\ (N)] < eNV2p* 10 log p) /2,

for an absolute constant ¢. We first note that Theorem 14.3 is either trivial or it follows
from the Pdlya—Vinogradov inequality, unless

(14.3) Ap*flogp < N < p*/Blogp,

a condition that we now assume. Applying a shift n — n+ h with 1 < h < H < N, we
obtain

(14.4) SeNy= > x(n+h)+20E(H),
M<n<M+N
where |0 <1 and
E(H) = cHY?p*1%(log p)'/2.

Here we have applied the induction hypothesis to the two character sums of length h which
do not overlap with the original segment. Let H = AB, for A, B € N. We use shifts of the

type
h=ab, withl<a<Aandl1l<b<B.

Averaging (14.4) over a,b we deduce that
1
Sy(N) =+ > ) x(n+ab)+20E(H),

1<a<A M<n<M+N

1<b<B
where |0] < 1. Now x(n + ab) = x(a)x(an + b), where a is the multiplicative inverse of a
modulo p. (Note that max{A, B} < p by (14.3), so that a,b are coprime to p.) Hence

V
[S\(N)| < ¥+ 28(H),

where

V= Z v(x)

z mod p

Z X(x +b)

1<b<B

and v(x) is the number of representations of x as an mod p with 1 <a < Aand M <n <
M + N. We shall estimate V' without using the induction hypothesis, so that the implied
constant will be independent of c.

The next step is to ease the dependence on v(z) in V by an application of Holder’s

11
inequality. This gives V' < V}? V;Wi, where

Vi= Y v()

z mod p
he Y
z mod p
4
W = Z x(x +b)
z mod p [1<b<B
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Since v(x) is often expected to be zero, the extension to a complete set of residues modulo p
is quite wasteful in W. However it seems hard to take advantage of a condition like v(z) # 0
in the sum over .

Lemma 14.4. We have Vi < AN and Vo < AN(AN/p+1log A).

Proof. 1t is obvious that V; < AN. Next, V5 is the number of quadruples (a, as, n1, ng) with
1<ai,a0 < Aand M < ny,ny < M + N such that a;ny = asni mod p. Fix a1, as and put
aing — asng = kp. We have

Al

?"LQ M)—a2<n1—M)‘<2AN
p P

and (a1,as) | k. Given ay,aq, k as above we find that the number of pairs (n;, ns) satisfying
the equation ajny — asny = kp is bounded above by 2N (a1, as)/ max{a;,as}. Hence

B 3 o ()

‘k:—(al — a9

1<a1,a2<A ai, az)p
ai, a
SIS CLLORBNE VS o G L -
e A max{al,cm} e a2<Apmax{a1,a2}
Now
1
Y <24
I <o < a MAX101, G2}
and
ala a2 1
> <> d > —<22d<<10gA
1<ay,as<A max{al,a2} d<A 1<aias<A max{ay, az} d<A
dla1, dl|a2
The statement of the lemma is now obvious. O

Lemma 14.5. We have W < 2B%p + 3B*p'/2.

The estimate of W lies at the heart of the proof of Burgess’ bound. Lets see how it
suffices to complete the proof of Theorem 14.3. We choose A = [N pi/2] and B = [pi],
giving W < 5p2. Recall from (14.3) that ¢2p¥8logp < N < p*/®logp. Thus it follows that

A>1and
2

N
AN < — < p(logp)®.
2ps
Hence Lemma 14.4 gives V; < AN and V5, < AN (logp)?. Thus

1 1 1 1 1
V < VPV W < (AN)ips (logp)? < N2pis(logp)?.
Since N < AB = H < N the statement of Theorem 14.3 now follows from the inequality
v "
S\N)| < 1+ 2eH (o5 ) 7

that we established previously.
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Proof of Lemma 14.5. We may assume that B < p. Opening up the absolute value and
interchanging the order of summation we find that

W = Z Z x(z +b)

x mod p |1<b<B

= ) > x(@+b)x(@ + b2)X( + bs)X(x + ba)

1<b1,b2,b3,04<B = mod p

= ) > x(f(@),

1<b1,b2,b3,b4<B x mod p

where f(z) = (z 4 b1)(z + by)(z + b3)P2(x + by)P~? is a polynomial defined over the finite
field Z/pZ. 1f {by, by} = {bs, by} then f(x) = 1 and the inner sum over x is equal to p. There
are at most 2B% ways in which this can happen and so the overall contribution from this
case is 2B?p. For the remaining values of by, ..., by, for which {by, by} # {b3, b4}, we appeal
to Weil’s Riemann hypothesis for curves over finite fields as a black box result:

Theorem 14.6 (Riemann hypothesis for curves over finite fields). Let F, be a finite field
with q elements and let x : F; — C be a non-trivial multiplicative character of order d > 1.
Suppose that f € F,[x] has m distinct roots and is not equal to a dth power. Then

D x(f(@)] < (m—1)g"/.

z€lFy

We apply this to f(z) = (z + b1)(x + ba)(x + b3)P~?(x + bg)P~2. For the by,...,bs under
consideration one of the b; is a root of f of order either 1 or p — 2, which is coprime with the
order of d | (p — 1) of x. Thus Theorem 14.6 applies with m < 4 and it follows that

Y X(f(2)] <3vp

x mod p
in our expression for W. Since there are at most B* values of by,...,bs that contribute to
this case, the statement of the lemma follows. O

Ezercise. By choosing different Holder exponents show that the proof of Theorem 14.3 can
be generalised to give

Sy(N) <. N'=rpie te,
for any € > 0 and any r > 1.
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