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Sieve of Eratostenes
Enumerate and Count

for(i=2;i<x;i++) prime[i]=true;

for(i=2;i<sqrt(x);i++) if(prime[i]) for(j=i*i;j<x;j+=i)
prime[i]=false;
O(x log(x) log(log(x))) in time
O(x) in space
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Other Sieves?

“Better” sieves are known

BUT
By the Prime Number Theorem....

All sieves must be at least O
(

x
log(x)

)
in time
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Combinatoric Methods

π(x) = x − 1 + π(
√

x) . . .

−
⌊ x
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⌋
. . .
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⌋
. . .
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Combinatoric/Sieve Methods
Meissel/Lehmer/Lagarias/Miller/Odlyzko/Deléglise/Rivat

Use various sieve “tricks” to reduce search tree

Is about O
(

x
2
3

log2(x)

)
in time

Has been used to compute π
(
1023)

BUT...
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The End Of The Road?

Parallelised version of M/L/L/M/O/D/R method by Gourdon
ran for 360 days

Was ±1 out in global checks
Project was abandoned
6 years later in 2007 Oliveira e Silva recomputed it
correctly.
Have such methods reached their limit?
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π∗(x)

π∗(x) := 1
2

[ ∑
pn<x

1
n +

∑
pn≤x

1
n

]

π(x) is cheap to recover from π∗(x) (Möbius inversion)

Riemann showed given <s > 1, log ζ(s)
s =

∞∫
0
π∗(x)x−s dx

x

By Mellin inversion π∗(x) = 1
2πi

σ+i∞∫
σ−i∞

log ζ(s)xs ds
s (σ > 1)

(after some analysis) = Li(x)−
∑
ρ

Li (xρ)− log 2 + O
(
x−1)

D.J. Platt π(x)
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Forcing Convergence

L.-O. suggested introducing a suitable Mellin transform pair
φ(t) and φ̂(s) so that

π∗(x) = 1
2πi

σ+i∞∫
σ−i∞

φ̂(s) log ζ(s)ds +
∑
pm

1
m [χx (pm)− φ (pm)]

where χx(t) :=


1 t < x
1/2 t = x
0 t > x

This algorithm is potentially O
(

x
1
2

)
in time.

Note φ̂(s) = xs

s gives φ(t) = χx(t) and we are back to
Riemann.

D.J. Platt π(x)
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J. Buethe, J. Franke, A. Jost, T. Kleinjung

They have developed a version of this algorithm, but based
on Weil’s explict formula.

It is contingent on R.H. (and no I don’t know why).
They have computed a value for π

(
1024).

D.J. Platt π(x)
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Galway

G. suggested φ̂(s) = exp
(
λ2s2

2

)
xs

s , φ(t) = 1
2erfc

(
log( t

x )√
(2)λ

)

Self-duality of Gaussian implies these are “optimal”
Now everything converges absolutely so just compute

π∗(x) = 1
2πi

σ+i∞∫
σ−i∞

φ̂(s) log ζ(s)ds +
∑
pm

1
m [χx (pm)− φ (pm)]
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Computing The Sum

The sum is a prime sieve, centred on x .

At (e.g.) x = 1024 it needs to be 1016 or so wide.
This is (just) achievable.
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Summary

Computing The Integral

Numerical integration is problematic.

So let G(s) be a primitive of φ̂ such that
G(2 + i∞) = −G(2− i∞)

Then the integral becomes
G(1)−

∑
ρ

G(ρ)− log2 + O
(
x−1)

(Note similarity to Riemann’s explicit formula.)
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Computing G

Start with

φ̂(s0 + ih) = φ̂(s0)exp(ih(s0λ
2 + log(x)))

exp
(

−λ2h2
2

)
1+ ih

s0

Write everything as a Taylor series
Integrate term by term

D.J. Platt π(x)



History
Riemann and π(x)

Lagarias, Odlyzko and Galway
Our Approach

So What Do We Need?
Summary

Computing G

Start with

φ̂(s0 + ih) = φ̂(s0)exp(ih(s0λ
2 + log(x)))

exp
(

−λ2h2
2

)
1+ ih

s0

Write everything as a Taylor series

Integrate term by term

D.J. Platt π(x)



History
Riemann and π(x)

Lagarias, Odlyzko and Galway
Our Approach

So What Do We Need?
Summary

Computing G

Start with

φ̂(s0 + ih) = φ̂(s0)exp(ih(s0λ
2 + log(x)))

exp
(

−λ2h2
2

)
1+ ih

s0

Write everything as a Taylor series
Integrate term by term

D.J. Platt π(x)



History
Riemann and π(x)

Lagarias, Odlyzko and Galway
Our Approach

So What Do We Need?
Summary

We Need...

A way of computing approximations to real numbers
rigorously.
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Computers are finite, the real number system isn’t.

Rounding and truncation must be managed.
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An Efficient Prime Sieve

Our sieve contains too many primes to compute φ(p)
rigorously each time, so

We compute a quadratic approximation to φ around some
t0.
1, t and t2 form a basis for this 3 term approximation
We sieve intervals I about 232 wide centred on t0 and
compute the integers

∑
p∈I

1∑
p∈I

(p − t0)∑
p∈I

(p − t0)2
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Zeros of ζ

We have developed a rigorous, FFT based algorithm for
computing ζ on the 1

2 line.

It computes many evenly spaced values of ζ in average
time O (tε).
We can interpolate using these values to locate the zeros
of ζ.
We use Turing’s method to confirm that no zeros have
been missed.
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Results

We have tested the basic algorithm using Odlyzko’s first
100,000 zeros to compute π

(
1011).

Using UoB’s Bluecrystal cluster, we are computing enough
zeros to reach π

(
1022).
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Summary

We have a working version of the Lagarias and Odlyzko
analytic π(x) algorithm.

It might be able to reach π
(
1024).

As a spin off, we will have lots of accurate and precise
zeros of ζ to give away.
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