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History

Sieve of Eratostenes

Enumerate and Count

o for(i=2;i<x;i++) prime[i]=true;

@ for(i=2;i<sqrt(x);i++) if(primeli]) for(j=i*i;j<x;j+=i)
primel[il=false;

@ O(xlog(x)log(log(x))) in time

@ O(x) in space
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History

Other Sieves?

@ “Better” sieves are known
e BUT
@ By the Prime Number Theorem....

@ All sieves must be at least O (W) in time

D.J. Platt m(X)



History

Combinatoric Methods

o (x)=x—-1+m(vVX)...
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Combinatoric Methods

@ m(x) =x—1+4+7n(vX)

°o —[5]...

o —[3]+13..

o — 5] + %) + %) - L4

D.J. Platt m(X)



History

Combinatoric/Sieve Methods
Meissel/Lehmer/Lagarias/Miller/Odlyzko/Deléglise/Rivat

@ Use various sieve “tricks” to reduce search tree
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Combinatoric/Sieve Methods
Meissel/Lehmer/Lagarias/Miller/Odlyzko/Deléglise/Rivat

@ Use various sieve “tricks” to reduce search tree
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@ Is about O< XS > in time
log=(x)
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Combinatoric/Sieve Methods
Meissel/Lehmer/Lagarias/Miller/Odlyzko/Deléglise/Rivat

@ Use various sieve “tricks” to reduce search tree
2
@ Is about O< X3 > in time

log?(x)
@ Has been used to compute 7 (10%3)
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History

Combinatoric/Sieve Methods
Meissel/Lehmer/Lagarias/Miller/Odlyzko/Deléglise/Rivat

@ Use various sieve “tricks” to reduce search tree
2
@ Is about O< X3 > in time

log?(x)
@ Has been used to compute 7 (10%3)
@ BUT...
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The End Of The Road?

@ Parallelised version of M/L/L/M/O/D/R method by Gourdon
ran for 360 days
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History

The End Of The Road?

@ Parallelised version of M/L/L/M/O/D/R method by Gourdon
ran for 360 days

@ Was +1 out in global checks
@ Project was abandoned

@ 6 years later in 2007 Oliveira e Silva recomputed it
correctly.

@ Have such methods reached their limit?
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Riemann and (x)

OW*(X)Z:;[Z I+ :,]

pr<x = pr<x
@ 7(x) is cheap to recover from 7*(x) (M8bius inversion)
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Riemann and (x)

OW*(X)Z:;[Z I+ :,]

pr<x pr<x
@ 7(x) is cheap to recover from 7*(x) (Moblus inversion)

@ Riemann showed given Rs > 1, 19 ( ) — of T (x) xS
o+ico
@ By Mellin inversion 7*(x) = 5 [ log{(s)x°% (o > 1)
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Riemann and (x)

@ 7(x) is cheap to recover from 7*(x) (M8bius inversion)

@ Riemann showed given s > 1, % = Ofw*(x)x*dex
o+ioco

@ By Mellin inversion 7*(x) = 5 [ log{(s)x°% (o > 1)
o—ioo

o (after some analysis) = Li(x) — > Li(x*) —log2 + O (x ')
p
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e L.-O. suggested introducing a suitable Mellin transform pair
¢(t) and ¢(s) so that
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Lagarias, Odlyzko and Galway

Forcing Convergence

e L.-O. suggested introducing a suitable Mellin transform pair
¢(t) and ¢(s) so that

o+ioco

o m(x) =5 | &(s)log((s)ds+ ; m D (PT) = ¢ (p™)]

o—loco

1 t<x
@ where xx(t):=< 1/2 t=x
0 t>x
e This algorithm is potentially O (x%) in time.

o Note ¢(s) = X gives ¢(t) = xx(t) and we are back to
Riemann.
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Lagarias, Odlyzko and Galway

J. Buethe, J. Franke, A. Jost, T. Kleinjung

@ They have developed a version of this algorithm, but based
on Weil’s explict formula.
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Lagarias, Odlyzko and Galway

J. Buethe, J. Franke, A. Jost, T. Kleinjung

@ They have developed a version of this algorithm, but based
on Weil’s explict formula.

@ ltis contingent on R.H. (and no | don’t know why).
@ They have computed a value for 7 (10%4).

D.J. Platt m(X)



Lagarias, Odlyzko and Galway

@ G. suggested ¢(s) = exp (%2) X, o(t) = gerfe (f}g)i)
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Lagarias, Odlyzko and Galway

A 252\ s log( £
@ G. suggested ¢(s) = exp (ATS) Soo(t) = %erfc (ﬁ(z)D
@ Self-duality of Gaussian implies these are “optimal”
@ Now everything converges absolutely so just compute
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Lagarias, Odlyzko and Galway

A 252\ s log( £
@ G. suggested ¢(s) = exp (ATS) Soo(t) = %erfc (ﬁ(z)D
@ Self-duality of Gaussian implies these are “optimal”
@ Now everything converges absolutely so just compute

o+ico

© 1 (x) = o5 | &(s)log((s)ds + gn; Do (P™) — ¢ (p™)]

o—ioco
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Our Approach

Computing The Sum

@ The sum is a prime sieve, centred on x.
@ At (e.g.) x = 10?* it needs to be 10'® or so wide.
@ This is (just) achievable.
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Our Approach

Computing The Integral

@ Numerical integration is problematic.
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Our Approach

Computing The Integral

@ Numerical integration is problematic.
@ So let G(s) be a primitive of ¢ such that
G(2 + ic0) = —G(2 — io0)
@ Then the integral becomes
G(1) = > G(p) — log2 + O (x~1)
P

@ (Note similarity to Riemann’s explicit formula.)
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Our Approach

Computing G

@ Start with

S . e ( =77
?(So + ih) = ¢(So) exp(ih(sgA~ 4 log(x)))
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Our Approach

Computing G

@ Start with
A A exp( =22
o(S0 + ih) = ¢(sp) exp(ih(seA? + |09(X)))U

@ Write everything as a Taylor series
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Our Approach

Computing G

@ Start with
A A exp( =22
o(S0 + ih) = ¢(sp) exp(ih(seA? + |09(X)))U

@ Write everything as a Taylor series
@ Integrate term by term
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We Need...

@ A way of computing approximations to real numbers
rigorously.
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So What Do We Need?

We Need...

@ A way of computing approximations to real numbers
rigorously.

@ An efficient prime sieve
@ Accurate and precise zeros of ¢ (maybe 10" of them)
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So What Do We Need?

Rigorous Computations

@ Computers are finite, the real number system isn’t.
@ Rounding and truncation must be managed.

@ We use multiple precision interval arithmetic (MPFI by
Revol and Rouillier)

@ This is one or two orders of magnitude slower than
hardware.
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So What Do We Need?

An Efficient Prime Sieve

@ Our sieve contains too many primes to compute ¢(p)
rigorously each time, so

@ We compute a quadratic approximation to ¢ around some
.

@ 1, tand t? form a basis for this 3 term approximation

@ We sieve intervals | about 232 wide centred on t; and
compute the integers

o > 1

pel

° >.(p—1)

pel

° >(p—t)?

pel
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So What Do We Need?

Zeros of ¢

@ We have developed a rigorous, FFT based algorithm for
computing ¢ on the J line.

@ It computes many evenly spaced values of { in average
time O (t°).

@ We can interpolate using these values to locate the zeros
of ¢.

@ We use Turing’s method to confirm that no zeros have
been missed.
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So What Do We Need?

Results

@ We have tested the basic algorithm using Odlyzko’s first
100, 000 zeros to compute 7 (10'1).

D.J. Platt m(X)



So What Do We Need?

Results

@ We have tested the basic algorithm using Odlyzko’s first
100, 000 zeros to compute 7 (10'1).

@ Using UoB’s Bluecrystal cluster, we are computing enough
zeros to reach = (1022).
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Summary

@ We have a working version of the Lagarias and Odlyzko
analytic =(x) algorithm.
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Summary

Summary

@ We have a working version of the Lagarias and Odlyzko
analytic =(x) algorithm.
e It might be able to reach m (1024).

@ As a spin off, we will have lots of accurate and precise
zeros of ¢ to give away.

D.J. Platt 7 (X)
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