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Abstract

We describe a new, rigorous algorithm for efficiently and simultaneously com-

puting many values of the Riemann zeta function on the critical line by ex-

ploiting the fast Fourier transform (FFT). We apply this to locating non-trivial

zeros of zeta to high precision which are in turn used as input to our own imple-

mentation of the Lagarias and Odlyzko analytic algorithm to compute π(x),

the prime counting function. We confirm the value of π(x) for x = 1023,

matching the largest unconditional result to date.

We then turn to Dirichlet L-functions and detail a version of Booker’s

rigorous algorithm for generic L-functions, tailored to this application. We

employ this for computations with characters of relatively small modulus. For

larger modulus, we describe a new algorithm and its implementation. Both

again rely on the FFT to compute many values simultaneously and hence

achieve efficiency. We use a combination of these two algorithms to extend

the work of Rumely and verify the generalised Riemann hypothesis (the GRH)

for all characters modulus q ≤ 100 000 to height T such that qT is at least

100 000 000. We then confirm rigorously the non-vanishing of Lχ(1/2) for all

characters of modulus q ≤ 2 000 000 before finishing with some comparisons

of computed data to predictions from random matrix theory.
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Chapter 1

Introduction

1.1 Motivation

number theory Noun

The study of integers, their properties and the relationship between integers -

Collins English Dictionary

Number theory has been part of the mathematical landscape since at least

the time of Euclid circa 300 years B.C. (see Books VII and IX of “Elements”).

Somewhat later, in 1837, Dirichlet [29] kick started analytic number theory

when he used the properties of the L-functions Lχ(s) that now bear his name

to show that there are infinitely many primes in arithmetic progressions a+bn

with (a, b) = 1. In 1859, Riemann published his paper [70] establishing a link

between the (Riemann) zeta function, ζ(s), and the primes via his explicit

formula.

Since then, the ability to compute values of these functions, particularly

on the critical line <s = 1/2, has been of practical importance to number

theorists, as well as being of genuine academic interest in its own right. In

particular, Riemann’s guess that all the non-trivial zeros of ζ have real part 1/2,

the Riemann Hypothesis (RH), and its big brother the Generalised Riemann

Hypothesis (GRH) which says the same thing for Lχ, have been taxing us for

1



Chapter 1. Introduction

over 150 years. Riemann himself was the first to try and compute values of ζ

on the 1/2 line to test his hypothesis and it is not surprising that Alan Turing

used his access to the Manchester Mark I, one of the earliest stored program

computers, to do the same.

We will describe new, rigorous and efficient algorithms for both ζ and Lχ

and, by way of example, show some applications in which these new algorithms

are useful.

1.2 Philosophy

We will be at great pains to convince the reader that the computations we

describe are rigorous and we will (presumptively) refer to the results of those

computations as theorems. Rigorous computation requires a great deal of ef-

fort. We must produce explicit bounds for every approximation, replacing “big

oh” with a number in every case. We must also manage the errors introduced

by having to represent real numbers by machine floating point approximations

and the rounding errors that occur when operations are performed on these

floats.

Many researchers do not feel the need to go to these lengths. Some ar-

gue that since hardware, operating systems and compilers are all man made,

rigorous computation is an oxymoron. Others rely on the random walk can-

cellation of rounding errors, arguing that statistically the doomsday scenario

of catastrophic accumulation is so unlikely it can be ignored. We beg to differ

on the following grounds:

• It is hard to make the necessary bounds explicit, but it is possible. Us-

ing, for example, interval arithmetic to manage the problems inherent

in floating point does cost CPU cycles, but that simply means rigorous

computations need to be a bit less ambitious.

• Arguing that someone else (hardware designer, compiler writer etc.) may

2



1.3. Structure of this Document

have made a mistake seems a very poor justification for not even trying

to get our bit right.

• Hardware and software bugs are not as insidious as some might have us

believe. Those that are known are no threat, we simply tiptoe round

them. The last major hardware bug (Intel’s Pentium fdiv debacle) did

not stay hidden for long before Nicely uncovered it computing Brun’s

sum [22]. (As an aside, Intel were actually already aware of it!) Thorough

testing, porting code to different platforms and using different compilers

and operating systems all drastically reduce exposure to this threat and

constitute good practice.

• Rigorous computation is an academic challenge in its own right. We pure

mathematicians should be very careful before we label anything a waste

of time and effort, lest we all get tarred with the same brush.

1.3 Structure of this Document

Immediately after this introduction, we will dispense with some mathematical

and computational background that will be needed later. In particular, we

will define ζ and Lχ and point out some of their properties that we will later

exploit. On the computational side, we will discuss how to implement inter-

val arithmetic and also describe the Discrete Fourier Transform, the efficient

implementation of which is at the core of the algorithms we have developed.

We then survey existing methods for computing ζ and Lχ, before moving

on to the first new algorithm, that for computing ζ on the half line. The next

section describes the application of this algorithm to an analytic version of the

prime counting function.

Moving on to Lχ, we describe two algorithms, one a specialisation of an

existing method due to Booker for generic L-functions and the other a new

algorithm of our design. This time we describe three applications of these

3



Chapter 1. Introduction

algorithms, one investigating the Generalised Riemann Hypothesis (GRH), one

examining the non-vanishing of Lχ(1/2) and the third comparing statistics for

Lχ(1/2) for χ of large modulus with predictions from Random Matrix Theory

(RMT).

We then finish with a brief discussion of areas for further research based

on the ideas explored herein.

1.4 Notation

Although we believe most of our notation to be standard, we list below the

conventions adopted herein.

Z, Q, R, C the resp. integers, rationals, reals, complex plane
btc, {t} the resp. integer part, fractional part of t, t ∈ R≥0

ζ(s, α) the Hurwitz Zeta Function (see section 2.2)
ζ(s) the Riemann Zeta Function (see section 2.3)
Bn(t) the n’th Bernoulli polynomial in t

Bn := Bn(0) the n’th Bernoulli number
<s, =s, s the resp, real part, imaginary part, complex conjugate of s

Γ(s) the gamma function
e(x) := exp(2πix) the complex exponential

F (x) :=
∞∫

−∞
f(t) e(−tx) dt the Fourier transform of f

f(t) :=
∞∫

−∞
F (x) e(tx) dx the inverse Fourier transform of F

Ei(x) the exponential integral, defined for x > 0 by
∞∫
x

exp(−t)
t

dt

and analytically continued to C \ R≤0

ϕ(n) Euler’s totient function

In addition, given complex valued functions f and g, we write f(z) =

O(g(z)) (or equivalently f(z) ¿ g(z) or g(z) À f(z)), to mean that there is a

constant C > 0 such that |f(z)| < C |g(z)| over some domain that should be

clear from the context.

4



Chapter 2

Mathematical Prerequisites

2.1 L-Functions and the Selberg Class

In [77], Selberg introduced the (now eponymous) class of functions, S, and

made several important conjectures regarding it. A function F defined for

<s > 1 by a Dirichlet series

F (s) =
∞∑

n=1

an

ns

is a member of S if it satisfies the following 4 axioms:

1. Analyticity: there exists an m ∈ Z≥0 such that (s − 1)mF (s) is entire

and of finite order.

2. Ramanujan hypothesis: an ¿ε nε for any fixed ε > 0.

3. Functional equation: there exists a function γF (s) of the form

γF (s) = ωQs

k∏

j=1

Γ(wjs + µj)

with k ∈ Z≥0, |ω| = 1, Q,wj > 0, <µj ≥ 0 and such that, if we define

Φ(s) := γF (s)F (s), then

Φ(s) = Φ(1 − s).

We will refer to ω as the root number.

5



Chapter 2. Mathematical Prerequisites

4. Euler product: a1 = 1 and log F (s) =
∞∑

n=1

bn

ns with bn = 0 unless n is a

prime power and bn ¿ nθ for some θ < 1/2.

We define the degree of F ∈ S to be

dF = 2
k∑

j=1

wj

and write S(d) for the subset of S containing functions with dF = d. We note

that the only function in S(0) is F (s) = 1 and that S(d) is empty for 0 <

d < 1 [25]. The structure of S(1) was settled by Kaczorowski and Perelli [42]

who showed that it contains precisely the Dirichlet L-functions, with arbitrary

imaginary displacement, and Riemann’s zeta function. We will describe these

functions shortly.

2.2 The Hurwitz Zeta Function

(See for example [3])

The Hurwitz Zeta function ζ(s, α) is defined initially for <s > 1 and α ∈
(0, 1] by

ζ(s, α) :=
∞∑

n=0

1

(n + α)s
.

It has analytic continuation to the entire complex plane with the exception of

a simple pole with residue 1 at s = 1 and we have the following identity

ζ

(
s,

1

2

)
= (2s − 1)ζ(s, 1).

2.3 Riemann’s Zeta Function

(See, for example [83])

Riemann’s zeta function is defined initially for <s > 1 by

ζ(s) :=
∞∑

n=1

1

ns
.

6



2.4. Dirichlet L-Functions

It has analytic continuation to the entire complex plane with the exception of

a simple pole at s = 1 with residue 1 and we have the following functional

equation

π− s
2 Γ

(s

2

)
ζ(s) = π− 1−s

2 Γ

(
1 − s

2

)
ζ(1 − s).

Since neither ζ nor Γ have poles to the right of s = 1, the simple poles of

Γ
(

s
2

)
for s ∈ {−2,−4, . . .} must correspond to simple zeros of ζ. In addition

to these “trivial” zeros, ζ has an infinite number of zeros with real part in the

interval (0, 1). The conjecture that all of these non-trivial zeros have real part

exactly 1
2

is the Riemann Hypothesis (RH).

If we define

Λ(t) := π− it
2 Γ

( 1
2

+ it

2

)
exp

(
πt

4

)
ζ

(
1

2
+ it

)
(2.3.1)

then we observe that Λ(t) has the same zeros as ζ
(

1
2

+ it
)

and, by the func-

tional equation, is real valued. The exponential factor is designed to counteract

the decay of the gamma factor as t increases.

The Riemann Zeta function can be written in terms of the Hurwitz Zeta

function simply by

ζ(s) = ζ(s, 1).

We have ζ ∈ S(1) with m = 1, ω = 1, Q = π−1/2, k = 1, w1 = 1/2 and

µ1 = 0.

2.4 Dirichlet L-Functions

2.4.1 Dirichlet Characters

(See, for example [26])

A Dirichlet character χ of modulus q ∈ Z>0 is a q periodic, completely

multiplicative arithmetic function such that χ(1) = 1 and if (n, q) 6= 1 then

χ(n) = 0.

Thus for (n, q) = 1 we have that χ(n) is a root of unity.

7



Chapter 2. Mathematical Prerequisites

When q = 1 we have the trivial character χ(n) = 1.

For a given q there are ϕ(q) distinct characters. The character which takes

the value 1 for all n co-prime to q is known as the principal character χ0

(modulo q).

If we can write χ = χ0χ
′ where χ′ has modulus less than that of χ, then χ

is referred to as an imprimitive character, otherwise it is primitive.

2.4.2 Forming Dirichlet L-Functions

(See, for example [26])

For <s > 1 and χ a Dirichlet character modulus q, we define the Dirichlet

L-function Lχ(s) by

Lχ(s) :=
∞∑

n=1

χ(n)

ns
.

In the case q = 1 we have Lχ(s) = ζ(s).

Dirichlet L-functions have analytic continuation. With principal charac-

ters, there is a simple pole at s = 1 with residue

∏

p prime
p|q

(
1 − 1

p

)
.

For non-principal characters the analytic continuation of Lχ(s) is entire.

Dirichlet L-functions formed from primitive characters satisfy a functional

equation. First, we define aχ, the parity of a Dirichlet character, by

aχ :=
1 − χ(−1)

2

so if χ(−1) = 1 we have aχ = 0 (an even character) and if χ(−1) = −1 we

have aχ = 1 (an odd character).

Now we define the Gaussian sum τ(χ) by

τ(χ) :=

q∑

n=1

χ(n) e

(
n

q

)
,

the root number by

ωχ := iaχ
√

q(τ(χ))−1

8



2.4. Dirichlet L-Functions

and the function ξχ by

ξχ(s) :=

(
π

q

)− s+aχ
2

Γ

(
s + aχ

2

)
Lχ(s).

Then the functional equation can be written

ξχ(1 − s) = ωχ ξχ(s).

Thus, by a similar argument to that applied to ζ, we see for even primitive

characters of modulus > 2, the function Lχ(s) must have trivial zeros at s ∈
{0,−2,−4, . . .} whereas for odd characters these zeros are at s ∈ {−1,−3, . . .}.
Dirichlet L-functions of both even and odd primitive characters have an infinite

number of non-trivial zeros with real part in the interval (0, 1). The Generalised

Riemann Hypothesis (GRH) is the conjecture that all these non-trivial zeros

have real part exactly 1
2
.

For a primitive character χ, we set εχ = ω
1/2
χ such that Arg(εχ) ∈ (−π/2, π/2]

and then define Λχ(t) by

Λχ(t) := εχ

( q

π

) it
2

Γ

( 1
2

+ aχ + it

2

)
exp

(
πt

4

)
Lχ

(
1

2
+ it

)
.

Now Λχ(t) has the same zeros as Lχ

(
1
2

+ it
)

and, by the functional equation,

is real valued. The exponential factor is designed to counteract the decay of

the gamma factor as t increases.

Dirichlet L-functions can be written in terms of the Hurwitz Zeta function,

except at s = 1 using

Lχ(s) = q−s

q∑

n=1

χ(n)ζ

(
s,

n

q

)
. (2.4.1)

For primitive χ we have Lχ ∈ S(1) with m = 0, ωχ = iaχ
√

q(τ(χ))−1,

Q =
√

q
π
, k = 1 and w1 = 1/2. In the case of even χ we have µ1 = 0, for odd

χ we have µ1 = 1/2.

9



Chapter 2. Mathematical Prerequisites

2.5 Turing’s Method

2.5.1 Turing’s Method and ζ

In 1953, a year before his death, the London Mathematical Society published

an account by Alan Turing of his investigations into ζ and the Riemann Hy-

pothesis using the Manchester Mark I computer [85]. In that paper, Turing

described his method for verifying RH for a segment of the critical line. This

boiled down to determining the number of zeros of ζ in a rectangle including

the segment of the critical line under test, and comparing this with the number

of zeros actually found by computing values of Λ and looking for changes in

sign. If the two agree, RH is shown to hold for that piece of the critical line.

Theorem 2.5.1. For t not the ordinate of a zero nor a pole of ζ, define

S(t) :=
1

π
=

1
2∫

∞

ζ ′

ζ
(σ + it) dσ,

and when t is a zero or a pole, define

S(t) := lim
ε→0+

S(t + ε).

Now for t not the ordinate of a zero of ζ, define N(t) to be the number of zeros

of ζ(s) with <s ∈ (0, 1) and =s ∈ [0, t]. Then

N(t) =
1

π

[
= log Γ

( 1
2

+ it

2

)
− t log π

2

]
+ 1 + S(t). (2.5.1)

Proof. See page 128 of Edwards [30].

Theorem 2.5.2. For T > 168π and h > 0 we have
∣∣∣∣∣∣

T+h∫

T

S(t) dt

∣∣∣∣∣∣
≤ 2.3 + 0.128 log(T + h).

Proof. This is the main result of Turing’s 1953 paper.

10



2.5. Turing’s Method

We note that the constants 2.3 and 0.128 were subsequently improved to

1.7 and 0.114 respectively by Lehman [52]. Recently, Trudgian has supplied

the improved constants 2.067 and 0.059, this time optimised for T around

2π × 1012 (Theorem 2.2 of [84]).

Turing’s method now proceeds by taking the integral of Equation 2.5.1

over a small segment of the critical line from T to T + h. If the assumed

number of zeros up to T is incorrect, it will quickly become apparent through

a contradiction of Theorem 2.5.2 (or one of its later improvements). This

process is made absolutely rigorous in [13].

2.5.2 Turing’s Method and Dirichlet L-Functions

Theorem 2.5.3. Given t0, h > 0 such that neither t0 nor t0 + h is the imag-

inary part of a zero of Lχ(s), let Nχ(t0) be the number of zeros, counted with

multiplicity, of Lχ(s) with |=(s)| ≤ t0 and <(s) ∈ (0, 1). Let Ñt0,χ(t) count

the zeros of Lχ(s) with =(s) ∈ [t0, t], starting at 0 at t0 and increasing by 1 at

every zero.

Now for t not the ordinate of a zero of L, define Sχ(t) by

Sχ(t) :=
1

π
=

1
2∫

∞

L
′
χ

Lχ

(σ + it) dσ

and like S(t), take Sχ(t) to be upper semi-continuous. Then we have

Nχ(t0) =
1

hπ


2h +

2ht0 + h2

2
log

( q

π

)
+ 2

t0+h∫

t0

= log Γ

(
1/2 + aχ + it

2

)
dt

−
t0+h∫

t0

Ñt0,χ(t) dt −
t0+h∫

t0

Ñt0,χ(t)dt +

t0+h∫

t0

Sχ(t) dt +

t0+h∫

t0

Sχ(t) dt


 .

Proof. We start with Equation 4-2 of [13] and specialise to Dirichlet L-functions.

We treat conjugate characters in pairs to avoid problems with the arbitrary

choice of the square root of ωχ and to allow for the possibility that Sχ(0) isn’t

small. Finally, we integrate both sides from t0 to t0 + h.

11
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Rumely extended Turing’s method to Dirichlet L-functions.

Theorem 2.5.4. (Rumely). For T > 50 and h > 0

∣∣∣∣∣∣

T+h∫

T

Sχ(t) dt

∣∣∣∣∣∣
≤ 1.8397 + 0.1242 log

(
q(T + h)

2π

)
.

Proof. Theorem 2 of [76].

In a personal communication, Trudgian has provided revised constants op-

timised for qT in the region of 108. These are 2.17618 and 0.0679955 respec-

tively.

Applying Turing’s method to Dirichlet L-functions is now identical to that

for ζ, except for the pairing of conjugates.

2.6 Rigorous Up-sampling

We aim to compute ζ(s) and Lχ(s) on a relatively coarse lattice and to use

these values to interpolate intermediate ones to the necessary precision, for

example to distinguish zeros on the critical line. We start with a result from

signal processing theory.

Theorem 2.6.1. (Whittaker-Shannon Sampling Theorem) Let f(t) be a con-

tinuous, real valued function with Fourier Transform F (x) such that F (x) = 0

for |x| > B > 0 (i.e. f(t) is band-limited with bandwidth B). Also, define

sinc(x) :=
sin(x)

x
.

Then

f(t) =
∑

n∈Z

f
( n

2B

)
sinc

(
2Bπ

( n

2B
− t

))
,

when this sum converges.

Proof. See [86].

To make this process rigorous, we need to examine two sources of error

12



2.6. Rigorous Up-sampling

• the error introduced by truncating the sum

• the error introduced if the function is only approximately band-limited

The former will be dealt with on a case by case basis. The latter, referred

to as aliasing in signal processing circles, is the subject of a theorem due to

Weiss.

Theorem 2.6.2. Let f(t) be a real valued function with Fourier Transform

F (x) such that

1.
∞∫

−∞
|F (x)|dx < ∞

2. F (x) is of bounded variation on R

3. when F has a jump discontinuity at x, then F (x) = lim
ε→0+

F (x−ε)+F (x+ε)
2

.

Then

∣∣∣∣∣f(t) −
∑

n∈Z

f
( n

2B

)
sinc

(
2Bπ

(
t − n

2B

))∣∣∣∣∣ ≤ 4

∞∫

B

|F (x)| dx.

Proof. For a full proof, see for example [16]. Less formally, we consider the

Dirac Delta function δ(t) and define the Dirac Comb function ∆w(t) by

∆w(t) :=
∑

n∈Z

δ(t − wn).

Thus our sampled function is given by

fsam(t) = f(t) × ∆1/(2B)(t)

and its Fourier transform by

Fsam(x) =

∞∫

−∞

f(t) × ∆1/(2B)(t) e(−xt) dt

= F (x) ∗ 2B∆2B(x)

= 2B
∑

n∈Z

F (x + 2nB).

13
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Thus the effect of convolving with a comb is to create multiple copies of the

original function with centres 2B apart.

Our next step is to multiply by a rectangle function of width 2B and

height 1/2B. However, because f(t) is not band limited, the multiple copies

of Fsam(x) “leak” into the frequencies selected by the rectangle function. To

quantify this error, we consider just those copies to the left of the central copy

F (x). The first is 2BF (x+2B) and the total error introduced into [−B,B] by

this copy is ≤
3B∫
B

|F (x)| dx. The next copy is 2BF (x + 4B) and the absolute

value of the error introduced is ≤
5B∫
3B

|F (x)| dx. Continuing, the total error

introduced by all the copies to the left of centre is bounded in absolute value

by

∑

n∈Z>0

(2n+1)B∫

(2n−1)B

|F (x)| dx =

∞∫

B

|F (x)| dx.

Now since W (t) is real valued, the spectrum to the right of the central copy is

simply the complex conjugate of that to the left, so to get the total error from

copies to the left and right, it suffices to double this bound. Finally, we double

again to take account of the spectrum of the central copy beyond [−B,B] that

is cut off by the rectangle filter and we have the factor of 4 in the theorem.

We note that this theorem can obviously be used to up-sample at specific

points of interest. In addition, if we take the DFT of a band limited function,

we can pad the result with zeros (or, to be rigorous, with a small error term)

and take the inverse DFT. Thus if we require n equally spaced, interpolated

values we can achieve this in O(n log n) operations or, on average, O(nε) per

value.

14



Chapter 3

Computational Prerequisites

3.1 Interval Arithmetic

3.1.1 History and Background

“A digital computation is a finite sequence of inexact arithmetic operations”

- R.E. Moore [57]

This rather pessimistic quote by Ramon Moore is the first line of one of

the papers that marked a renewed interest in interval arithmetic spurred by

the advance of the digital computer. Two general problems arise:

• the finite nature of computer memory makes it incapable of exactly rep-

resenting almost all real numbers, and

• our desire to obtain results in finite time requires that infinite sums and

products be truncated.

Many techniques have been developed by numerical analysts to manage

such sources of error. One way to try to circumvent the problems of finite

representation is run a computation several times with different precisions

(i.e. using more or less memory to represent each number). An example quoted

in [58] is of computing

333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b

15
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with a = 77617.0 and b = 33096.0. Computing powers by repeated multiplica-

tion on an IBM 370 (those were the days) using single (about 7 decimal digits),

double (about 16) and extended (about 33) precision gives respectively

1.17260361 . . .

1.17260394005317847 . . .

1.17260394005317863185 . . .

where the underlined digits are those we might be induced to trust. The exact

result is −0.827396 . . .! Moore then goes on to state “However, it is often

prohibitively difficult to tell in advance of a computation how many places

must be carried to guarantee results of required accuracy.”

Interval arithmetic is one method of mechanising this “prohibitively diffi-

cult” task, at the expense of some computational efficiency. Instead of repre-

senting a real number as the nearest representable machine number, we store

two machine numbers representing an interval known to contain the target

real. We then define the basic operations +−×÷ for intervals (languages such

as C++ which allow operator overloading are useful in this respect). These,

together with the functions sin, cos, exp, log and atan, provide a sufficiently

rich basis.

With such an arithmetic to hand, the management of errors caused by the

representational limitations of any chosen precision comes for free. With a little

more work, the programmer can explicitly and rigorously manage errors from

truncating series. If a bound for the error is known a priori, it can simply be

added as an interval [−ε, ε] to the result of the truncated calculation. Indeed,

interval arithmetic is a useful tool in generating such bounds, for example using

the Lagrange form for the remainder of a Taylor series.

Interval arithmetic also provides a useful belt to the numerical analyst’s

braces. Often the rounding errors that build up during a complex calculation

depend on the order in which the sub calculations are performed. Using scalar

arithmetic, there is no warning of a calamitous choice, just complete nonsense
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3.1. Interval Arithmetic

at the end. Even if we are lucky enough to recognise that it is complete

nonsense, the problem of determining where the logic error has occurred is

not trivial. Using interval arithmetic, however, provides a smoking gun. At

some point in the computation, the intervals will cease abruptly to be nice and

narrow and that is where to start looking.

Of course, all of this extra functionality costs. In terms of memory, inter-

vals take up twice the space of their scalar equivalents. The loss in efficiency

is twofold. First, computing the sum or difference of two intervals is twice as

expensive as the scalar equivalent and multiply can be four times worse. Sec-

ondly, modern CPU’s attempt to exploit pipe-lining of instructions to achieve

improved throughput. Changing rounding mode (to round down when com-

puting the left end point of an interval, then to round up to compute the right

end point) destroys the pipeline with a consequent loss in performance.

Whilst the former efficiency issue is inherent to interval arithmetic, with

clever data structures and algorithms, the switching of rounding modes can be

all but eliminated.

3.1.2 The int double Class

Following the work of Lambov [51], we have written a C++ class int double

to implement double precision interval arithmetic. It stores intervals as two

64 bit IEEE 754 [39] double precision floating points in contiguous memory

aligned to a 16 byte boundary representing the left and right endpoints of a

real interval. The operators +,−,∗ and / are overloaded to take int double

arguments and integers and doubles are coerced to int doubles as required.

A function sqr is provided to compute the square of an interval. Doing

this the naive way by multiplication, e.g. [−1, 2]2 = [−1, 2] ∗ [−1, 2] = [−2, 4]

is clearly suboptimal as the correct answer is [0, 4]. This is an example of a

general phenomenon first identified by Moore [58], in that operations where

the two or more operands are effectively the same interval are problematic.

17
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Other simple cases include x − x and x ÷ x.

This functionality is realised using in-line assembler making use of the 128

bit XMM registers and SSE instructions available on most modern Intel pro-

cessors [40]. By storing the right hand endpoint in negated form and setting

the default rounding mode of SSE instructions to round towards −∞, we

can achieve + by simply adding left to left and right to right (a single SSE

instruction), unary − by swapping the left and right endpoints (one SSE in-

struction), binary − by swapping followed by addition (two SSE instructions).

Multiplication takes 21 instructions to form the 4 possible multiplications cor-

rectly rounded and select the lowest and highest results. Division requires 15

instructions.

In addition to setting the rounding mode for SSE instructions, we also clear

the Flush to Zero and Denormals are Zero flags, neither of which are IEEE

754 compliant.

The square root of an interval is calculated using the floating point unit

(whose rounding mode is round to nearest). IEEE compliance guarantees that

the result of a square root is within one unit of last place (ulp) of the correct

result so we expand the resulting interval by one ulp in each direction.

Unfortunately, the same technique cannot be used for exp, log, sin, cos and

atan as these lie outwith IEEE 754 and there are no guarantees of accuracy.

Even over reduced ranges of arguments, the Table Maker’s Dilemma (first

coined by Kahan [43]) makes accurate computation of transcendental functions

problematic. This dilemma refers to the problem that to round correctly to

fixed precision (whether rounding to nearest, or to ±∞) we may need to know

the result to a much higher precision. For example (in binary), say our fixed

precision is 2 places after the decimal point then and we want the nearest 2 bit

representable number to the true result. Computing f(x) to 2 places might

give us a result of 0.10 which means f(x) ∈ [0.01, 0.11]. If we compute with an

extra bit, say we get 0.100. This means f(x) ∈ [0.011, 0.101] so we still don’t

know what the first two bits should be. In pathological cases we might need
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many more bits before we can resolve to our target precision.

We use Muller and de Dinechin’s “Correctly Rounded Mathematical Li-

brary” [59] to compute these elementary transcendental functions in software.

These library routines are based on a rigorous determination of how many

extra bits of precision are required to eliminate the Table Maker’s Dilemma in

double precision (more than 100 in some cases).

3.1.3 The int complex Class

Extending real interval arithmetic to handle complex intervals is a non-trivial

problem. Many approaches have been proposed and tried, including using

intervals represented by rectangles, circles and sectors to name but three [34]

[47] [54] [65] [72].

All these representations suffer from not being closed under the basic op-

erations addition, subtraction, multiplication and inversion. For example, a

rectangle multiplied by a rectangle results in a region that is not in general

rectangular. Rather it will be the convex hull of the (up to) 16 points formed by

point-wise multiplication of the corners of the multiplicands. In summary [47]

Representation Closed Under

Z1 ± Z2 Z1 × Z2 Z−1

Circle Yes No Yes

Rectangle Yes No No

Sector No Yes Yes

The second issue is when an operation fails to be closed for a given represen-

tation, how easy is it to obtain the smallest possible rectangle, circle or sector

respectively that just includes the necessary subset of the complex plane.

In the case of rectangles and multiplication, the obvious method produces

such a minimal result. However with inversion, computing Z
ZZ

produces too

large a result. Rokne and Lancaster describe a variant of inversion that does
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Figure 3.1: The Degradation of Rectangular Complex Interval Accuracy

produce a minimal rectangle [72] but it requires significantly more computa-

tion.

Circular representations fail to be closed only under multiplication [34] but

a reasonable approximation to the minimal circle formed from Z1 × Z2 with

Z1, Z2 circular with centres c1, c2 and radii r1, r2 respectively can be obtained

by the circle centred at c1 × c2 with radius |Z1|r2 + |Z2|r1 + r1r2. Again, this

is quite computationally involved and complicated by the fact that in general

c1×c2 etc. will result in a complex interval, the radius of which must be added

to the final result.

Representations based on sectors fail to be closed under addition and sub-

traction. Klatte and Ullrich [47] investigated various solutions, the best of

which was to enclose the target sectors in circles, add them and then revert to

sectors. This is again computationally intensive.

In practical terms, starting with the minimum positive width double pre-

cision interval (accurate to 14 or 15 decimal places) repeated multiplication

by a similar width interval behaves as expected, in that it takes, for example,
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1 000 000 multiplies to lose 6 decimal places of relative accuracy (assuming we

avoid over/underflow). Figure 3.1 shows how much worse the situation is with

double precision complex intervals implemented as rectangles. We started with

the exact point 1+0i and repeatedly multiplied or divided by a rectangle that

straddled the unit circle with a width of 1 ulp in both the real and imaginary

component. As expected, division is worse than multiplication, but both are

much worse than the real interval case.

Despite these reservations, we decided to adopt rectangular intervals based

on the obvious algorithms for reasons of computational efficiency. The needless

loss of precision due to the non closed nature of multiplication and inversion,

and due to the suboptimal implementation of inversion can be managed in

multiple precision architectures by simply starting with more bits to compen-

sate and the loss of efficiency implied by this extra precision might still be less

than that gained by the simplicity of the implementation. Time constraints

prevented us from investigating other options further.

We wrote a C++ class using two real intervals to represent the real and

imaginary parts, and overloaded the four basic operators using in-line assem-

bler. As an aside, we used the high school 4 multiplication method for complex

multiplication in favour of the 3 multiplication alternative as the latter pro-

duced wider intervals.

The functions for conjugation, norm, modulus, exponentiation, square root,

argument and logarithm where implemented using the obvious algorithms in

in-line assembler or C++ as appropriate. Where it made sense, these functions

were overloaded to take real interval and scalar arguments.

3.1.4 Multiple Precision Interval Arithmetic

For applications that require more precision than the 53 bits (about 14 −
15 decimal digits) of IEEE-754 doubles, we use Revol and Rouillier’s MPFI

package [68] [69]. This is written in C and we have extended it in the obvious
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way to implement complex arithmetic using rectangular intervals.

3.1.5 The exp(it) Problem

One of the recurring problems in maintaining precision performing rigorous

computations with complex numbers is that of computing exp(it) for t real and

|t| large. The periodicity of the exponential function means that we effectively

reduce t modulo 2π and thus lose precision in the argument (and hence the

result) at the same time. For example, if t is in the region of 6 000 000

this argument reduction will throw away about 6 decimal places. This is

particularly an issue if working in double precision intervals as simply throwing

more bits at the problem is not an option.

This problem arises in the current context when computing π−it and qit for

q ∈ Z>1. Fortunately, because our algorithms are discrete in t, it is possible to

pre-compute a database of values in high precision (using MPFI). Specifically,

if we wish to compute qit for q ∈ [2, . . . , Q] and t = δT for some step size δ > 0

and T ∈ [0, . . . , 2m−1] we need compute and store the m(Q−1) values of qiδ2k

for k ∈ [0, . . . ,m − 1]. Reconstructing qiδT now reduces to taking the binary

expansion of T and taking the product of the relevant precomputed values.

The πit case can be achieved with a further m pre-computations.

3.2 The Discrete Fourier Transform

3.2.1 Definition

Given N ∈ Z>0 complex values denoted X0 through XN−1, the forward Dis-

crete Fourier Transform (DFT) results in N new values Y0 through YN−1 where

Ym =
N−1∑

n=0

Xn e

(−nm

N

)
. (3.2.1)

The backward or inverse DFT (iDFT) results from changing the sign in

the complex exponential. Performing a forward then backward DFT (or vice
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3.2. The Discrete Fourier Transform

versa) multiplies each datum by N .

3.2.2 Poisson Summation and the DFT

Theorem 3.2.1. (Poisson Summation Formula) Let f be a function in the

Schwartz space with Fourier transform F . Then for T > 0

∑

n∈Z

f (t + nT ) =
1

T

∑

n∈Z

F
(n

T

)
e

(
nt

T

)
.

Furthermore both sides converge uniformly and absolutely to the same limit.

Proof. See, for example [48].

Theorem 3.2.2. Let f be a function in the Schwartz space with Fourier trans-

form F . Let N = AB with A,B > 0 and define f̃(n) :=
∑
l∈Z

f
(

n
A

+ lB
)

and

F̃ (m) :=
∑
l∈Z

F
(

m
B

+ lA
)
. Then, up to a constant factor, f̃ and F̃ form a DFT

pair of length N .

Proof. By Poisson summation we have

∑

l∈Z

f(t + lB) =
1

B

∑

l∈Z

F

(
l

B

)
e

(
lt

B

)

f̃(n) =
1

B

∑

l∈Z

F

(
l

B

)
e

(
ln

N

)
.

We now write l = l
′
N + m to get

f̃(n) =
1

B

N−1∑

m=0

∑

l
′∈Z

F

(
l
′
N + m

B

)
e

(
(l

′
N + m)n

N

)

=
1

B

N−1∑

m=0

e
(mn

N

)
F̃ (m).

This is by definition an iDFT.

The utility of this theorem will be apparent when f and F both decay

quickly enough to allow f̃(n) and F̃ (m) to be approximated by f
(

n
A

)
and

F
(

m
B

)
respectively.
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3.2.3 Fast Fourier Transform Algorithms

If we were to rely on the obvious algorithm requiring O(N2) operations to

compute a length N DFT then we suspect they would have little practical

application. It is the existence of fast O(N log N) algorithms that makes their

use so ubiquitous. Many such Fast Fourier Transform (FFT) algorithms have

been developed but here we describe one for lengths which are a power of 2

and later we will discuss Bluestein’s algorithm applied to arbitrary lengths.

Both are described in more detail in, for example, [15].

3.2.3.1 The Decimation in Time FFT

If we start with a vector X of even length N , we can decompose its DFT as

follows:

Theorem 3.2.3. Let X be a complex valued vector of even length N , let V be

the length N/2 DFT of its even numbered elements and let W be the DFT of

its odds. Then Y , the DFT of X is given by

Ym = Vm mod N/2 + e
(
−m

N

)
Wm mod N/2.

Proof. We start with the definition of the DFT and split it into its even and

odd components to get

Ym =
N−1∑

n=0

Xn e
(
−nm

N

)

=

N/2−1∑

n=0

X2n e

(
−2nm

N

)
+

N/2−1∑

n=0

X2n+1 e

(
−(2n + 1)m

N

)
.

We now bring the factor e
(
−m

N

)
out of the right hand sum to get

=

N/2−1∑

n=0

X2n e

(
−2nm

N

)
+ e

(
−m

N

) N/2−1∑

n=0

X2n+1 e

(
−2nm

N

)
.

Now each of these sums is a length N/2 DFT, first on the even numbered

elements of X, then on the odds. In the case of the odds, there is also a

multiplication by a primitive root of unity.

24



3.2. The Discrete Fourier Transform

Theorem 3.2.4. If N is a power of 2, then we can compute the DFT of a

length N vector of complex values with O(N log N) operations and O(N) space.

Proof. Write C(n) for the cost of a length n DFT in terms of multiplications

and additions. Then by Theorem 3.2.3 we have for even N

C(N) = 2C(N/2) + N.

Now if N is a power of two, we can continue to split the DFTs until we

reach length 2. We have C(2) = O(1) and so C(N) = O(N log2 N). The space

required is O(N) for the vectors X and Y .

Practical implementations usually replace the recursion with iteration and

perform the transform in place, overwriting the input vector with the result,

but this does not effect the overall complexity.

3.2.4 Discrete (Circular) Convolution

The discrete convolution of two length N vectors X and Y is the length N

vector Z = X ∗ Y such that for m ∈ [0, N − 1] we have

Zm =
N−1∑

n=0

XnY(m−n) mod N

We note that padding X and Y with zeros to length ≥ 2N − 1 will eliminate

any overlap and thus compute a linear convolution.

Also, by the discrete version of the Convolution Theorem [15], to compute

X ∗ Y , we compute the DFTs of X and Y , multiply them term-wise and

perform an iDFT on the result. Thus convolution of sequences of length N a

power of 2 can be performed in O(N log N) time and O(N) space.

3.2.5 Bluestein’s Algorithm

So far, the FFTs described have been limited to vectors of length a power of

2. It is relatively simple to extend these algorithms to handle powers of other
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small primes but we will require a FFT algorithm for arbitrary (even large

prime) lengths.

One such algorithm was described by Rader [67] but we employ that of

Bluestein [9]. Again, we start with X, a length N vector of complex values

and aim to compute Y , its DFT via Equation 3.2.1. Now replacing nm with

− (m−n)2

2
+ n2

2
+ m2

2
we get

Ym = e

(
−m2

2N

) N−1∑

n=0

Xn e

(
− n2

2N

)
e

(
(m − n)2

2N

)
,

which is the convolution of Xn e
(
− n2

2N

)
with e

(
n2

2N

)
, followed by multiplica-

tion by e
(
−m2

2N

)
. We pad both sequences with zeros to the next power of 2

greater than 2N − 1 and by the Discrete Convolution Theorem we have the

required FFT algorithm for arbitrary N . We note that for a given N , we can

pre-compute the DFT of e
(

n2

2N

)
, so each convolution requires only two DFTs

(one forward and one backward).

3.2.6 Multi-Dimensional DFTs

It is a trivial matter to extend the single dimension DFT described above to any

finite number of dimensions. Given a d dimensional array of complex values,

Xn1,n2...,nd
, where each ni runs from 0 . . . Ni − 1, the result of a d dimensional

DFT is Ym1,m2...,md
where each mi also runs from 0 . . . Ni − 1, such that

Ym1,m2...,md
=

N1−1∑

n1=0

(
e

(−m1n1

N1

) N2−1∑

n2=0

(
e

(−m2n2

N2

)
. . .

))
.

If we set N =
d∏

i=1

Ni then this is achieved through N
N1

length N1 DFTs,

N
N2

length N2 DFTs and so on, with a total complexity equivalent to a single

length N DFT.

The main issue from an implementation point of view is that all but one of

the dimensions will non-contiguous in memory which makes the DFT unlikely

to be cache friendly. There is potentially something to be gained, therefore,
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from ensuring the contiguous dimension is the largest, but we did not go to

these lengths.

3.2.7 Real DFTs

When the input X to a DFT is real valued, the output Y exhibits Hermitian

symmetry in that Y0 and YN/2 are real and for n ∈ [1, N/2 − 1] we have

Yn = YN−n. This can be exploited to yield roughly a 2 fold improvement in

time and space.

Theorem 3.2.5. Starting with two real valued vectors V and W both of length

N , form the complex valued length N vector X such that <Xn = Vn and

=Xn = Wn for n ∈ [0, N − 1]. Performing a length N DFT on X results in

the vector Y from which we recover the n’th element of the DFT of V by

1

2

[
Yn + YN−n

]

and the n’th element of the DFT of W by

−i

2

[
Yn − YN−n

]

where n ∈ [0, N/2] in both cases and YN is taken to be Y0. The remaining

elements are obtained by conjugation.

Proof. See [80].

If our starting point is a single length 2N real valued vector, then we split

it into odds and evens, apply Theorem 3.2.5 and then Theorem 3.2.3.

This can easily be inverted to yield an algorithm for the iDFT of a vector

with Hermitian symmetry with the same (roughly) factor of 2 saving over the

naive method.

3.2.8 Computing Large DFTs

The computational efficiency of the FFT algorithms make it possible to con-

sider very large data-sets. However, this eventually starts to cause problems
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with the O(N) space demands of the algorithms. Some respite, at the cost of

efficiency, can be obtained by performing the top few levels of the decimation

in time algorithm on disk. Specifically, if we wish to compute a length N DFT

with N even, we compute in memory the length N/2 DFTs of the odd and

even elements of the input and store both results to disk. We then combine

the results into a single output using Theorem 3.2.3. The combination itself

is O(N) in time (albeit the implied constant is large because of the relative

speed of disk versus memory) but O(1) in space. This method trivially scales

to N divisible by larger powers of 2.

3.2.9 Dirichlet Characters and the DFT

Theorem 3.2.6. For q ∈ Z ≥ 3 and given ϕ(q) complex values a(n) for

n ∈ [1, q − 1] and (n, q) 6= 0, we can compute

q−1∑

n=1

a(n)χm,q(n)

for the ϕ(q) characters χm,q in O(ϕ(q) log(q)) time and O(ϕ(q)) space.

Proof. Let U(R) be the group of units of the ring R. For q ∈ Z>0 with the

prime decomposition q = 2α
m∏

i=1

pαi
i we consider four cases.

1. α = 0 (q is odd) then by the Chinese Remainder Theorem (CRT) we

have the constructive, canonical group isomorphism

U(Z/qZ) ∼=
m∏

i=1

U(Z/pαi
i Z).

Each of these groups is cyclic so given a primitive root for each pαi
i we

have our construction. Thus this case reduces to performing ϕ(q)/ϕ(pαi
i )

length ϕ(pαi
i ) DFTs for i = 1 . . . m.

2. α = 1 then by the CRT we have the constructive group isomorphism

U(Z/qZ) ∼= U(Z/2pα1
1 Z)

m∏

i=2

U(Z/pαi
i Z).
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Each of these groups is cyclic so given a primitive root for 2pα1
1 and

each pαi
i (i > 1) we have our construction. Thus this case reduces to

performing ϕ(q)/ϕ(2pα1
1 ) length ϕ(2pα1

1 ) DFTs followed by ϕ(q)/ϕ(pαi
i )

length ϕ(pαi
i ) DFTs for i = 2 . . . m.

3. α = 2 then by the CRT we have the constructive, canonical group iso-

morphism

U(Z/qZ) ∼= U(Z/4Z)
m∏

i=1

U(Z/pαi
i Z).

Each of these groups is cyclic so given a primitive root for each pαi
i

(i > 1) we have our construction. Thus this case reduces to performing

ϕ(q)/2 length 2 DFTs followed by ϕ(q)/ϕ(pαi
i ) length ϕ(pαi

i ) DFTs for

i = 1 . . . m.

4. α > 2 then by the CRT we have the constructive, canonical group iso-

morphism

U(Z/qZ) ∼= U(Z/2αZ)
m∏

i=1

U(Z/pαi
i Z).

Now U(Z/2αZ) is the product of a cyclic group of order 2 and a cyclic

group of order 2α−2 with pseudo primitive roots −1 and 5 respectively.

The remaining groups (if there are any) are cyclic so given a primitive

root for each pαi
i (i > 1) we have our construction. Thus this case re-

duces to performing ϕ(q)/2 length 2 DFTs, ϕ(q)/2α−2 length 2α−2 DFTs

followed by ϕ(q)/ϕ(pαi
i ) length ϕ(pαi

i ) DFTs for i = 1 . . . m.

In each case, given the ability to perform a length n DFT in time O(n log n),

we have the claimed overall complexity.

3.2.10 Factorisation and Finding Primitive Roots

To be able to apply Theorem 3.2.6 for characters of a given modulus q, we

require the following.

• The prime factorisation of q.
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• If α = 1 we need primitive roots for (say) 2pα1
1 and each pαi

i for α > 1.

• If α 6= 1 we need primitive roots each pαi
i for i ≥ 1.

The existence of such roots is guaranteed.

We use the following algorithm to factorise all q ≤ Q.

• For each q ∈ [2, Q] set factor(q) ← 0

• Perform a sieve of Eratosthenes (see section 6.4.1.2), but instead of cross-

ing out multiples of the sieving prime p, test to see if factor(np) = 0, and

if so set it to p. At completion, factor(q) = 0 iff q is prime, otherwise it

is the smallest prime divisor of q.

• For q ∈ [2, Q], if factor(q) = 0, then q is prime and we have its factori-

sation. Otherwise, the factorisation of q is factor(q) multiplied by the

factorisation of q/factor(q).

To find a primitive root for a prime p > 4 we use the following algorithm.

• Factorise p − 1. Call its prime factors pi.

• For a ∈ [2, p− 1], when (a, p− 1) = 1 compute a
p−1
pi modulo p. If for any

pi this is 1, then a is not a primitive root.

Now to compute the primitive roots (See, for example, [56] ¶ 1.5 ).

• For each q ∈ [5, Q] set pr(q) ← 0.

• Set pr(2) ← 1, pr(3) ← 2 and pr(4) ← 3.

• For q ∈ [5, Q], if q is composite, skip it. If not

– Find a primitive root g for q using the algorithm above and set

pr(q) ← g.

– If g is odd, set pr(2qn) ← g for all n ≥ 1 and 2qn ≤ Q, otherwise

set pr(2qn) ← g + pn.
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3.2. The Discrete Fourier Transform

– If gq−1 ≡ 1 modulo q2, set g ← g + q.

– Set pr(qn) ← g for all n > 1 such that qn ≤ Q.
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Existing Methods

There now follows a brief summary of methods to compute values of Riemann’s

Zeta function and Dirichlet L-functions. We start by recalling the standard

technique of Euler-Maclaurin summation and applying it to ζ and Lχ.

4.1 Euler-Maclaurin Summation

Theorem 4.1.1. (Euler-Maclaurin Summation) Let g be a continuous func-

tion on [a, b] and 2K+1 times differentiable there. Let Bn be the n’th Bernoulli

number and Bn(t) be the n’th Bernoulli polynomial. Then

∑

a<n≤b

g(n) =

b∫

a

g(t) dt +
(g(b) − g(a))

2

+
K∑

k=1

B2k

(2k)!

(
g(2k−1)(b) − g(2k−1)(a)

)

− 1

(2K)!

b∫

a

B2K ({t}) g(2K)(t) dt.

Proof. See, for example, section 2.2.2 of [75].
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4.1. Euler-Maclaurin Summation

Lemma 4.1.2. For <s > 1 − 2K

ζ(s, α) =
N∑

n=0

1

(n + α)s
+

(N + α)1−s

s − 1
− (N + α)−s

2

+
K∑

k=1

B2ks(s + 1) . . . (s + 2k − 2)

(2k)!(N + α)s+2k−1

+ RN,K .

Furthermore, RN,K is less in absolute terms than the absolute size of the k =

K’th term of the sum multiplied by

|s + 2K − 1|
<s + 2K − 1

.

Proof. We start with the series definition for ζ(s, α) and with <s > 1. Splitting

off the first N +1 terms of the sum, we get Equation 4.1.1. However, since the

integral remainder converges now for <s > 1 − 2K, this gives us the analytic

continuation of ζ(s, α) to that enlarged half plane. Further, since for x ∈ [0, 1]

and k ∈ Z>0 we have B2k(x) ≤ B2k (see 23.1.13 of [1]) we can bound the

absolute size of the remainder as shown.

Lemma 4.1.3. For <s > 1 − 2K

ζ(s) =
N∑

n=1

n−s +
N1−s

s − 1
− N−s

2

+
K∑

k=1

B2ks(s + 1) . . . (s + 2k − 2)N−s−2k+1

(2k)!

+ RN,K .

Furthermore, RN,K is less in absolute terms than the absolute size of the k =

K’th term of the sum times

|s + 2K − 1|
<s + 2K − 1

.

Proof. Identical to Lemma 4.1.2.

Lemma 4.1.3 gives us the Euler-Maclaurin summation formula applied to

ζ. We note that for a given s, we need to take about |s| terms in the initial
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sum to obtain any sensible level of precision. Thus, for a single evaluation of

ζ
(

1
2

+ it
)
, this algorithm has time complexity O(t) and needs space O(1). It

is easy to implement this algorithm rigorously and it is the tool of choice for

single evaluations of ζ for |s| not too large.

Lemma 4.1.2 and Equation 2.4.1 together give us a simple method for

computing Dirichlet L-functions. To compute a single value for a character

of modulus q will require O(q|s|) operations but by using Theorem 3.2.6 we

can compute all the ϕ(q) values of Lχ(s) using an average of O(|s| log(q))

operations each. In the former case, the space required is O(1) and in the

latter the improved time complexity comes at the cost of a space requirement

that is O(ϕ(q)).

4.2 The Riemann-Siegel Formula for ζ

Theorem 4.2.1. The Riemann-Siegel formula. Define θ(t) by

θ(t) :=
1

2

(
=

(
log Γ

(
1

4
+

it

4

)
− log Γ

(
1

4
− it

4

))
− t log π

)

so that

Z(t) := exp(iθ(t))ζ

(
1

2
+ it

)

is real. Then for t > 2π, a =
(

t
2π

)1/2
, N = bac and ρ = {a} we have

Z(t) = 2
N∑

n=1

n−1/2 cos(t log n − θ(t)) + R(t)

where

R(t) :=
(−1)N+1

a1/2

m∑

r=0

Cr(ρ)

ar
+ Rm(t).

The Cr are in turn given by

C0(ρ) = φ(ρ) =
cos

(
2π

(
ρ2 − ρ − 1

16

))

cos(2πρ)

C1(ρ) =
−φ(3)(ρ)

96π2

. . .
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and Rm = O
(
t−

2m+3
4

)
.

Proof. See, for example [30].

Thus computing ζ on the 1/2 line using Rieman-Siegel involves O(t1/2)

terms of the main sum followed by correction terms. Gabcke [32] worked out

explicit bounds for Rm for m ≤ 10 making it suitable for rigorous computa-

tions. Recently, de Reyna [27] has extended this to general s. Computationally,

Riemann-Siegel is a significant advance over Euler-Maclaurin, being O(t1/2) in

time whilst remaining O(1) in space. It was used by Wedeniwski distributed

across many machines to verify RH to the 900 000 000 000’th zero [88].

4.3 The Riemann-Siegel Formula for Lχ

An equivalent Riemann-Siegel formula for Dirichlet L-functions was described

in [78]. Its main sum has approximately q
√

t/2πq terms so its time complexity

is O((qt)1/2). We do not believe that anyone has developed explicit bounds for

the remainder terms, which would be essential for rigorous computation.

4.4 The Approximate Functional Equation

The approximate functional equation, and its smoothed version which aims

to overcome the catastrophic cancellation caused by the decay of the gamma

function away from the real line, is a more general purpose tool applicable to

any L-function whose functional equation and Dirichlet coefficients are known

(see for example [75]). It requires the computation of a sum involving O(t1/2)

terms and O(1) space. Rubinstein’s “lcalc” [74] provides a non-rigorous im-

plementation of this algorithm using IEEE double precision floating point. We

note that producing a rigorous implementation, for ζ and Dirichlet L-functions

at least, would hinge on being able to compute explicit error bounds for com-

putations involving the incomplete gamma function for complex argument, a
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topic which Molin addresses in [55].

4.5 Other Single Value Algorithms for ζ

Another algorithm, with superficial similarities to Rieman-Siegel was described

by Berry and Keating [8]. However, a number of algorithms for computing

single values of ζ have been developed with better asymptotic time complexity

than O(t1/2).

In particular, Hiary in [38] cites a method due to Heath-Brown where

the exponent is 1/3 and then goes on to describe three other algorithms with

exponents 2/5, 1/3 and 4/13. The last of these relies on a fast way of computing

cubic exponential sums using the FFT.

4.6 Other Single Value Algorithms for Lχ

In addition to computing Dirichlet L-functions as outlined above, various tech-

niques have been devised to compute single values. Rumely [76] used a method

based on Euler-Maclaurin but employing polynomial approximations to the

Taylor expansions

Lχ(s) =
∞∑

n=0

an(s0, χ)(s − s0)
n

with s0 on the critical line.

Coffey [23] describes an efficient algorithm for Hurwitz Zeta which is “par-

ticularly useful if the domain of interest does not lie far from the real axis”

which makes it of little interest for our purposes. Similarly, techniques de-

scribed by Slezeviien [79] (complexity somewhere between Euler-Maclaurin

and Riemann-Siegel) have no particular advantages for our application.
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4.7 The Odlyzko-Schönhage Algorithm

This algorithm [62] is designed to be efficient when computing many values of ζ

simultaneously. This efficiency is achieved by sharing parts of the computation

across many s which is sometimes referred to as “recycling” [14]. This is

achieved by expressing the Riemann-Siegel formula for many equally spaced

points on the critical line as a DFT and then exploiting the efficiency of the

FFT algorithm. It has time complexity of O(tε) on average per value and

requires O(t1/2) space when working at height t. This algorithm has been used

for the large scale computations of ζ by Odlyzko [61] and Gourdon. [36].

4.8 Booker’s Algorithm

In [13] section 5, Booker describes a rigorous DFT based algorithm for com-

puting L-functions at many equally spaced points on the critical line simulta-

neously. Starting with the Fourier transform of the L-function, Booker shifts

the line of integration right (collecting residues at any poles on the way) until

the L-function can be expressed in terms of its defining series. Computing an

approximation to this sum, and to its inverse Fourier transform to recover the

L-function, are both achieved efficiently by recourse to the FFT.

The overall time complexity is on average O(tε) (the same as Odlyzko-

Schönhage) and it requires space of O(t) (rather than O(t1/2)). It has been

used to compute values of Artin L-functions (by Booker) and of Dirichlet L-

functions (see section 7.1).
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5.1 Overview

We now describe a new algorithm for calculating Riemann’s zeta function on

the critical line. It matches the asymptotic time complexity of those due to

Odlyzko-Schönhage (see section 4.7) and Booker (see section 4.8) while simul-

taneously overcoming the difficulties of producing a rigorous implementation

of the former without incurring the larger space demands of the latter. This

is achieved essentially by windowing ζ with a Gaussian centred high up the

critical line and then applying the ideas behind Booker’s algorithm.

We aim to compute

f(t) := π− i(t+t0)
2 Γ

( 1
2

+ i(t + t0)

2

)
exp

(
π(t + t0)

4
− t2

2h2

)
ζ

(
1

2
+ i(t + t0)

)

(5.1.1)

with t ∈ R and t0, h > 0.

We proceed as follows:

1. Select t0, h > 0, K ∈ Z≥0 and A,B > 0 such that N = AB ∈ 2Z>0. For

n = −N
2

. . . N
2
− 1 and k = 0, 1, . . . , K compute g

(
n
A
; k

)
where g(t; k) is

defined by

g(t; k) := Γ

( 1
2

+ i(t + t0)

2

)
exp

(
π(t + t0)

4
− t2

2h2

)
(−2πit)k.
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5.2. Computing g
(

n
A
; k

)

2. By adding an appropriate error term, approximate

g̃(n; k) :=
∑

l∈Z

g
( n

A
+ lB; k

)
.

3. Use discrete Fourier transforms to compute

G̃(k)(m) :=
∑

l∈Z

G(k)
(m

B
+ lA

)
,

where

G(u) :=

∞∫

−∞

g(t; 0) e(−tu) dt.

4. Add an appropriate error term to recover G(k)
(

m
B

)
from G̃(k)(m).

5. Use a series of convolutions to sum terms involving G
(

m
B

)
and its deriva-

tives yielding an approximation to F
(

m
B

)
, where

F (x) :=

∞∫

−∞

f(t) e(−tx) dt.

6. By adding an appropriate error term, approximate

F̃ (m) :=
∑

l∈Z

F
(m

B
+ lA

)
.

7. Now use another discrete Fourier transform to compute

f̃(n) :=
∑

l∈Z

f
( n

A
+ lB

)
.

8. Finally, add another error term to recover f
(

n
A

)
from f̃(n).

5.2 Computing g
(

n
A; k

)

The only intricacy in computing g is that of computing Γ
(

1
4

+ ix
)

for real x.

We use the following lemma.
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Lemma 5.2.1. For N ∈ Z>0 and x ∈ R, write z = 1
4

+ ix. Then we have

log Γ(z) =

(
z − 1

2

)
log z − z +

1

2
log(2π) +

N∑

n=1

B2n

2n(2n − 1)z2n−1
+ RN .

Furthermore, the absolute value of RN is less than the absolute value of the

n = N ’th term of the sum, multiplied by 2N .

Proof. We use Olver’s bound (Equation 4.1 of [37]) for the error in truncating

Stirling’s approximation to log Γ.

5.3 Approximating g̃ with g

We compute values of g
(

n
A
; k

)
for a given k which we intend to use as approx-

imations to g̃ (n; k). The following lemmas bound the error introduced.

Lemma 5.3.1. Define the incomplete Gamma function for <s > 0 by [1]

Γ(s, x) :=

∞∫

x

ts−1 e−t dt.

Then, given κ > −1 and x, h > 0, we have

∞∫

x

wκ exp

(−w2

2h2

)
dw = 2

κ−1
2 hκ+1Γ

(
κ + 1

2
,

x2

2h2

)
.

Proof. Substitute t = w2

2h2 .

Lemma 5.3.2. For k ∈ Z≥0, t ∈ R and t0, h > 0, recall that we define g by

g(t; k) := Γ

( 1
2

+ i(t + t0)

2

)
exp

(
π(t + t0)

4
− t2

2h2

)
(−2πit)k.

Then

|g(t; k)| ≤ 4|2πt|k exp

(−t2

2h2

)
.

Proof. We use the trivial bound
∣∣∣Γ

(
1
2
+ix

2

)
e

πx
4

∣∣∣ < 4.
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Lemma 5.3.3. Let n ∈
[
−N

2
, N

2
− 1

]
and B > h

√
k. Then

∣∣∣∣∣∣

∑

l∈Z6=0

g
( n

A
+ lB; k

)
∣∣∣∣∣∣
≤

8(πB)k

[
exp

(−B2

8h2

)
+ 2

3k−1
2

(
h

B

)k+1

Γ

(
k + 1

2
,

B2

8h2

)]
.

Proof. We consider the right tail from n = −N
2
. The first term missing is

g
(

B
2
; k

)
and B

2
is sufficiently large that our bound for g(t; k) (Lemma 5.3.2) is

decreasing. Thus we can split off the first term and majorise the balance with

an integral. This process results in

2




∣∣∣∣g
(

B

2
; k

)∣∣∣∣ +

∞∫

1

4(πB(2w − 1))k exp

(−(2w − 1)2B2

8h2

)
dw


 .

We now apply Lemma 5.3.1 to the integral and the result follows.

Thus, appealing to Lemma 5.3.3 and chosing the parameters B and h, we

can control the error introduced by using g
(

n
A
; k

)
in place of g̃ (n; k).

5.4 Computing G̃ from g̃

We now wish to compute values of G̃(k)(m) from g̃(n; k). The following lemma

provides an efficient mechanism to achieve this.

Lemma 5.4.1. Up to a constant factor, the functions g̃(n; k) and G̃(k)(m)

form a discrete Fourier transform pair of length N .

Proof. It is a standard result that given f with Fourier transform F , the Fourier

transform of xkf(x) is
(

i
2π

)k dkF (u)
duk . Thus G(k)(u) is the Fourier transform of

g(t; k) and the result follows from Theorem 3.2.2.

5.5 Approximating G(k) with G̃(k)

The result of the DFT above is N values of G̃(k)(m). The following lemmas

bound the error in using these values in place of G
(

m
B

)
.
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Lemma 5.5.1. For σ ∈ 2Z>0 + 1 define

C(σ, t0, h, k) :=

(2π)k

∞∫

−∞

∣∣∣∣∣Γ
(

σ + i(t + t0)

2

)
exp

(
π(t + t0)

4
− t2

2h2

)(
1

2
+ σ − it

)k
∣∣∣∣∣ dt.

Then for t0 > σ + 1
2

writing

X := hm+12
σ−3−4k

4 (2σ + 1)k

(
Γ

(
σ + 1

4

)
− Γ

(
σ + 1

4
,
(2σ + 1)2

8h2

))

and

Y := h
σ+1+2k

2 2
σ−3+2k

4 Γ

(
σ + 1 + 2k

4
,
(2σ + 1)2

8h2

)

we have

C(σ, t0, h, k) ≤ 2
6k+7−σ

4 π
2k+1

2 e
1
2σ

σ−1
2∑

l=0

(
σ−1

2

l

)
t

σ−2l−1
2

0 [X + Y ] .

Proof.

(2π)k

∞∫

−∞

∣∣∣∣∣Γ
(

σ + i(t + t0)

2

)
exp

(
π(t + t0)

4
− t2

2h2

)(
1

2
+ σ − it

)k
∣∣∣∣∣ dt

≤ 2k+1πk

∞∫

0

∣∣∣∣∣Γ
(

σ + i(t + t0)

2

)
exp

(
π(t + t0)

4
− t2

2h2

)(
1

2
+ σ − it

)k
∣∣∣∣∣ dt

We now split the integral so that the upper bound becomes

2
6k+7−σ

4 π
2k+1

2 e
1
2σ




σ+ 1
2∫

0

(t + t0)
σ−1

2 (σ + 1/2)k exp

(−t2

2h2

)
dt

+

∞∫

σ+ 1
2

(t + t0)
σ−1

2 tk exp

(−t2

2h2

)
dt


 .

Now the first integral evaluates to

σ−1
2∑

l=0

(
σ−1

2

l

)
t

σ−2l−1
2

0 hl+12
l−1
2 (σ + 1/2)k

(
Γ

(
l + 1

2

)
− Γ

(
l + 1

2
,
(2σ + 1)2

8h2

))
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and the second to
σ−1

2∑

l=0

(
σ−1

2

l

)
t

σ−2l−1
2

0 hl+k+12
l+k−1

2 Γ

(
l + k + 1

2
,
(2σ + 1)2

8h2

)
.

Lemma 5.5.2. Let σ ∈ 2Z>0 + 1. Then G(k)(u) is bounded in absolute terms

by

C(σ, t0, h, k) exp

(
(2σ + 1)2

8h2
− (2σ − 1)π|u|

)
+

2k+2πk+1 exp

(−t20
2h2

) σ−1
2∑

l=0

((2l + 1/2)2 + t20)
k
2

l!
exp

(
(4l + 1)2

8h2
− (4l + 1)π|u|

)
.

Proof. First we consider u ≥ 0. We write

∣∣G(k)(u)
∣∣ =

∣∣∣∣∣∣

∞∫

−∞

Γ

( 1
2

+ i(t + t0)

2

)
exp

(
π(t + t0)

4
− t2

2h2

)
(−2πit)k e(−tu) dt

∣∣∣∣∣∣
.

Substituting s = 1
2

+ i(t + t0), we now move the line of integration right to

<(s) = σ giving

∣∣G(k)(u)
∣∣ ≤

exp

(
(2σ − 1)2

8h2
− πu(2σ − 1)

)
×

(2π)k

∞∫

−∞

∣∣∣∣∣Γ
(

σ + i(t + t0)

2

)
exp

(
π(t + t0)

4

)
exp

(−t2

2h2

)(
1

2
− σ − it

)k
∣∣∣∣∣ dt.

(5.5.1)

For u < 0, we move the line of integration left to <(s) = −σ, picking up the

poles of Γ
(

s
2

)
at s = 0,−2, . . . , 1 − σ. These give a contribution bounded by

2k+2πk+1 exp

(−t20
2h2

) σ−1
2∑

l=0

((2l + 1/2)2 + t20)
k
2

l!
exp

(
(4l + 1)2

8h2
+ (4l + 1)πu

)
.

The integral which remains is now

(2π)k exp

(
(2σ + 1)2

8h2
+ (2σ + 1)πu

)
×

∞∫

−∞

∣∣∣∣Γ
(−σ + i(t + t0)

2

)
exp

(
π(t + t0)

4
− t2

2h2

)
(σ +

1

2
− it)k

∣∣∣∣ dt.
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Finally, for our range of σ and for t ∈ R, we have |Γ(−σ/2+it)| < |Γ(σ/2+it)|
and the result follows.

We are free to chose a value of σ that minimises this bound for a particular

choice of u. We note that for t0 large compared to h, C(σ, t0, h, k) is of order

t
σ−1+2k

2
0 .

Lemma 5.5.3. For m ∈ [0, N/2] and σ ∈ 2Z>0 + 1

∣∣∣∣∣
∑

l∈Z6=0

G(k)
(m

B
+ lA

) ∣∣∣∣∣ ≤ 2k+3πk+1 exp

(−t20
2h2

)
S+

2

(
1 +

1

Aπ(2σ − 1)

)
C(σ, t0, h, k) exp

(
(2σ + 1)2

8h2
− Aπ(2σ − 1)

2

)

where S is the sum

σ−1
2∑

l=0

(
1 +

1

Aπ(4l + 1)

)
((2l + 1/2)2 + t20)

k
2

l!
exp

(
(4l + 1)2

8h2
− Aπ(4l + 1)

2

)
.

Proof. The left tail from m = N
2

majorises every case. The first term missing

is G(k)
(−A

2

)
and the remainder of the left tail is less in absolute terms than

∞∫

1

[
C(σ, t0, h, k) exp

(
(2σ + 1)2

8h2
− Aπ(2n − 1)(2σ − 1)

2

)
+

2k+2πk+1 exp

(−t20
2h2

)
×

σ−1
2∑

l=0

((2l + 1/2)2 + t20)
k
2

l!
exp

(
(4l + 1)2

8h2
− Aπ(2n − 1)(4l + 1)

2

) ]
dn.

5.6 Computing F from G(k)

Now armed with values of G(k)
(

m
B

)
for several k, we wish to compute F

(
m
B

)
.

We use the following result.
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Lemma 5.6.1. Let F be the Fourier transform of f (Equation 5.1.1). Then
∣∣∣∣∣F (x) −

∞∑

j=1

1√
j

(
j
√

π
)−it0 G

(
x +

log (j
√

π)

2π

) ∣∣∣∣∣

= 2π
5
4 exp

(
1

8h2
− t20

2h2
− πx

)
.

Proof. We start with F (x) =
∞∫

−∞
f(t) e(−tx) dt and substitute s = 1

2
+ i(t+t0).

We then shift the line of integration right to <(s) = σ > 1 picking up the

simple pole of ζ(s) with residue 1 at s = 1. Now write ζ(s) as a sum (over

j), interchange the sum and integral and move the line of integration back to

1
2
.

The following lemma allows us to truncate the sum over j at J .

Lemma 5.6.2. Let x ≥ 0. Then
∣∣∣∣∣
∑

j>J

1√
j

(
j
√

π
)−it0 G

(
x +

log (j
√

π)

2π

) ∣∣∣∣∣

≤ C(σ, t0, h, 0) exp

(
(2σ − 1)2

8h2

)
π

1−2σ
4

J1−σ

σ − 1
.

Proof. Take x = 0 and apply Equation 5.5.1 of Lemma 5.5.2.

This suggests that J will need to be in the region of (t0)
1
2 .

We need to calculate F (x) on a lattice of points um each 1
B

apart. Using

Taylor’s Theorem with K terms (see Lemma 5.6.3 below for the truncation

error) we can write

F (x) ≈
K−1∑

k=0

∑

m

G(k)(x + um)

k!
S(k)

m (5.6.1)

where we set ξ = 1
2B

and then

S(k)
m :=

∑

log(j
√

π)
2π

∈[um−ξ,um+ξ)

1√
j

(
j
√

π
)−it0

(
log (j

√
π)

2π
− um

)k

.

Now for each k, Equation 5.6.1 is a discrete convolution so computing our

approximation to F
(

m
B

)
is achieved by summing the output of K such convo-

lutions. The following lemma provides the bound on the error from truncating

the Taylor series to K terms.
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Lemma 5.6.3. Let w ∈ [−ξ, ξ]. Then we have
∣∣∣∣∣

∞∑

k=K

G(k)(u)wk

k!

∣∣∣∣∣ ≤
2

K+5
2 πK+ 1

2 hK+1ξK

Γ
(

K+2
2

) .

Proof.
∣∣∣∣∣

∞∑

k=K

G(k)(u)wk

k!

∣∣∣∣∣ ≤ sup
u′∈(u−ξ,u+ξ]

∣∣∣∣
G(K)(u′)ξK

K!

∣∣∣∣

≤ sup
u′∈(u−ξ,u+ξ]

∣∣∣∣∣∣

∞∫

−∞

g(t; k)ξK e(−u′t)

K!
dt

∣∣∣∣∣∣

≤ 8

∞∫

0

(2πtξ)K

K!
exp

(−t2

2h2

)
dt

=
2

3K+5
2 πKξKhK+1Γ

(
K+1

2

)

Γ(K + 1)

and the result follows from the duplication formula for Γ.

Since this error term occurs J times in Equation 5.6.1, weighted by 1√
j

each

time, we multiply it by 2
√

J − 1.

5.7 Approximating F̃ with F

Lemma 5.7.1. Let σ ∈ 2Z + 1 and 1 < σ < t0. Then we have

|F (x)| ≤ζ(σ)π
1−2σ

4 C(σ, t0, h, 0) exp

(
(2σ − 1)2

8h2
− π|x|(2σ − 1)

)

+ 2π
5
4 exp

(
1

8h2
− π|x| − t20

2h2

)
.

Proof. Since f(t) is real, its Fourier Transform F (x) has the property F (−x) =

F (x) so we need only consider x ≥ 0. We write s = 1
2

+ i(t + t0) and shift the

line of integration right to <(s) = σ encountering the pole of ζ(s) at s = 1.

This yields a residue smaller in absolute terms than

2π
5
4 exp

(
1

8h2
− πx − t20

2h2

)
.

The remaining integral is then bounded in exactly the same fashion as in

Lemma 5.5.2 using |ζ(σ + it)| ≤ |ζ(σ)| for σ > 1 and t ∈ R.
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Lemma 5.7.2. For n ∈ [0, N
2
] we have

∣∣∣∣∣∣

∑

l∈Z6=0

F
( n

B
+ lA

)
∣∣∣∣∣∣
≤

2ζ(σ)π
1−2σ

4 C(σ, t0, h, 0) exp

(
(2σ − 1)2

8h2
− Aπ(2σ − 1)

2

)(
1 +

1

Aπ(2σ − 1)

)

+ 4π
5
4 exp

(
1 − 4t20

8h2
− πA

2

)(
1 +

1

Aπ

)
.

Proof. The left tail from n = N/2 majorises all other cases. The first term

missing is F
(−A

2

)
and the remaining terms are bounded by

∞∫

1

[
ζ(σ)π

1−2σ
4 C(σ, t0, h, 0) exp

(−πA(2σ − 1)(2n − 1)

2

)

+2π
5
4 exp

(
1 − 4t20

8h2
− π(2n − 1)A

2

)]
dn.

5.8 Computing f̃ from F̃

We now need to move from F̃ to f̃ . The following lemma provides the means:

Lemma 5.8.1. Up to a constant factor, the functions f̃ and F̃ form a discrete

Fourier transform pair of length N .

Proof. We defined f and F to be a Fourier transform pair and Theorem 3.2.2

therefore applies.

Hence we can compute N values of f̃(n) from our N approximations to

F̃ (m) efficiently via a single DFT.

5.9 Approximating f with f̃

The final step is to extract approximations to f
(

n
A

)
from our values of f̃(n).

The following two lemmas bound the error introduced if we simply equate

them.
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Lemma 5.9.1. Given t ≥ 0 and t0 > exp( e), set β = 1
6

+ log log t0
log t0

. Then

|f(t)| ≤ 12(t + t0)
β exp

(
− t2

2h2

)
.

Proof. By [19] we have for t + t0 > e
∣∣∣∣ζ

(
1

2
+ i(t + t0)

)∣∣∣∣ ≤ 3(t + t0)
1
6 log(t + t0) (5.9.1)

so with (t + t0) > exp( e) and β defined as above

(t + t0)
1
6 log(t + t0) ≤ (t + t0)

β.

The factor of 4 comes from the trivial bound for the Gamma factor.

Lemma 5.9.2. For t ≥ 0 and t0 > exp( e) set β = 1
6
+ log log t0

log t0
. Then providing

βh2

t0
≤ B

2
≤ t0 and n ∈ [0, N − 1] we have

∣∣∣∣∣∣

∑

l∈Z6=0

f

(
n − N/2

A
+ lB

)∣∣∣∣∣∣
≤ 24(X +

2βh

B
(Y + Z)),

where

X =

(
B

2
+ t0

)β

exp

(
− B2

8h2

)
,

Y = (t0)
β

√
π

2

(
erf

(
t0

h
√

2

)
− erf

(
B

2h
√

2

))

and

Z = 2
β−1

2 hβΓ

(
β + 1

2
,

B2

8h2

)
.

Proof. The lower bound on B ensures that the bound of Lemma 5.9.1 is de-

creasing for t ≥ B
2
. The worst case is when n = 0 and for any n, the right

tail majorises the left. The first missing term to the right is f
(

B
2

)
and the

remaining terms are majorised by
∣∣∣∣∣∣∣
12

∞∫

0

(
(2w + 1)B

2
+ t0

)β

exp


−

(
(2w+1)B

2

)2

2h2


 dw

∣∣∣∣∣∣∣
≤

12

B

∣∣∣∣∣∣∣

t0∫

B
2

(2t0)
β exp

(−t2

2h2

)
dt +

∞∫

t0

(2t)β exp

(−t2

2h2

)
dt

∣∣∣∣∣∣∣
.

The result follows from Lemma 5.3.1.
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5.10 Up-sampling

Having calculated many values of f(t) on a spacing of 1
A
, we compute Λ(t)

(Equation 2.3.1) by removing the Gaussian factor. We then apply the results

of section 2.6 to rigorously up-sample.

We define the function W : R → R

W (t) := Λ(t) exp

(−(t − t0)
2

2H2

)
.

Note that the Gaussian width H > 0 need not be and indeed will not be the

same as the h of Equation 5.1.1.

We aim to estimate W (t0) from our samples using theorems 2.6.1 (Whittaker-

Shannon) and 2.6.2. The following lemmas provide the necessary rigorous

bounds.

Lemma 5.10.1. Define I by

I := 4

∞∫

A
2

∣∣∣∣∣∣

∞∫

−∞

W (t) e(−xt) dt

∣∣∣∣∣∣
dx.

Then we have

I ≤ 4ζ(σ)

2σ − 1
π

−3−2σ
4 C(σ, t0, H, 0) exp

(
(2σ − 1)2

8H2
− πA(2σ − 1)

2

)

+ 8π
1
4 exp

(
1 − 4t20
8H2

− πA

2

)
.

Proof. The inner integral is F (x) with H in place of h.

Lemma 5.10.2. For t ≥ e

|W (t)| ≤ 12t
1
6 log t exp

(−(t − t0)
2

2H2

)
.

Proof. This follows from Equation 5.9.1 of Lemma 5.9.1.

Lemma 5.10.3. For t ≥ 0 and t0 > exp( e), set β = 1
6

+ log log t0
log t0

. Then if

βH2

t0
≤ Ns

A
≤ t0 we have

∣∣∣∣∣∣∣

∑

|n− t0
A |>Ns

W
( n

A

)
sinc

(
Aπ

( n

A
− t0

))
∣∣∣∣∣∣∣
≤ 24

π
(X + 2β−1(Y + Z)),
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where

X =
A

Ns

(
Ns

A
+ t0

)β

exp

(
− N2

s

2A2h2

)
,

Y = (t0)
β

[
Γ

(
0,

N2
s

2A2H2

)
− Γ

(
0,

t20
2H2

)]
,

and

Z = 2
β
2 hβΓ

(
β

2
,

t20
H2

)
.

Proof. The proof follows almost identical lines to that of Lemma 5.9.2

5.11 Choice of Parameters

We implemented this windowed zeta algorithm in the ’C’ programming lan-

guage using the GNU C Compiler (GCC [81]) under Unix. Multiple precision

interval arithmetic was used throughout and we relied on the MPFI pack-

age [68].

For computational reasons, we found it expedient to introduce an extra

up-sampling step by a factor of 32, achieved through padding the F (x) vector

with zeros (actually a very small error estimated using Lemma 5.7.1) before

the final DFT.

The various parameters used were calculated experimentally, based on a

desire to achieve 101 binary digits of absolute accuracy in the location of

the zeros (eventually) to a height of 3 × 1010 up the critical line and with a

sufficiently dense spacing to resolve all the zeros (possibly after further up-

sampling). The value of N was the largest power of 2 that allowed the process

to run in < 1 Gbyte of memory as this allowed us to make best use of the

multi-core CPUs we had available to us.

• PREC = 300 the working precision in bits

• t0 = 3 × 1010 the maximum height up the critical line

• tmin = 5 000 the minimum height up the critical line
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• N1 = 32 768 = 215 the number of data points before up-sampling

• N = 1 048 576 = 220 the number of data points after up-sampling

• B = 5 376 the width of the window

• h = 176 431
2 048

the Gaussian width

• J = 103 000 the number of terms to sum when computing F (x)

• K = 44 the number of differentials of G to use when computing F (x)

We note that the values chosen for N and B imply an output spacing of 21
4 096

which is about 58 times as dense as the anticipated zero spacing. Experience

suggests that with rigorous up-sampling, a density of 5 − 10 times the zero

spacing would suffice but the extra density was achieved effectively for free.

Also, only the central 2 100 of each window of width B = 5 376 is actually

usable due to the decay of the Gaussian outside that.

Using the analysis above, we can now bound the necessary error terms.

• The error approximating g̃ with g (Lemma 5.3.3) is < 3.2 × 10−82.

• The error approximating G̃ with G (Lemma 5.5.3) is < 2.3 × 10−213.

• The error approximating F by the truncated sum (Lemmas 5.6.1 and

5.6.2) total < 1.7 × 10−83.

• The error truncating the Taylor approximation to G to K = 44 terms

(Lemma 5.6.3) is < 1.5−82

• The error approximating F̃ with F (Lemma 5.7.2) is < 10−307 (actually

much smaller but we want to avoid de-normalised floating point num-

bers).

• The error approximating f with f̃ (Lemma 5.9.2) is < 8.1 × 10−211.

• The up-sampling error (Lemmas 5.10.1 and 5.10.3) is < 5.0 × 10−41.
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We note that the relatively large up-sampling error is tolerated for compu-

tational reasons and can be improved easily by taking more terms in the few

exceptional cases.
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Chapter 6

Computing π(x) Analytically

We turn now to an example application that relies on the ability to compute ze-

ros of Riemann’s ζ function efficiently and to high precision, that of computing

the prime counting function, π(x), analytically.

6.1 History and Background

Computing π(x), the number of primes ≤ x, has a long history. The current

(unconditional) world record is π (1023) [63] although a figure for π(1024) con-

ditional on the Riemann hypothesis has recently been announced by Buethe

et al. [18].

The earliest methods involved enumerating the primes less than x and then

counting them. However, by the prime number theorem, the number of primes

≤ x is asymptotic to x
log x

so even the counting stage is not tractable for large

x.

In the 1870’s, a new combinatorial method was described by Meissel who

used it to compute π(109) (incorrectly, he was out by 56) which was subse-

quently improved by Lehmer [53] who used it to compute π(1010) (incorrectly,

but only by 1 this time, and only because he considered 1 to be prime [53]).

In 1972 Bohmam [10] computed π(1013) (incorrectly, out by 941), followed by

Lagarias, Miller and Odlyzko [50] who got to π(1016). The baton then passed
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to Deléglise and Rivat [28] who reached π(1018), then to Gourdon with his

distributed implementation [35] who reached π(4 × 1022). The unconditional

world record mentioned earlier is due to Tomás Oliveira e Silva.

The Meissel method in its latest incarnation has time complexity O
(

x2/3

log2 x

)
.

Gourdon actually produced a figure for π(1023) but internal checks revealed an

error which could not be isolated. It was about 6 years before the correct figure

was computed and this, coupled with the lack of results since 2007 might lead

one to suspect that combinatorial methods have reached the limits of their

applicability.

However, as long ago as 1987, Lagarias and Odlyzko [49] identified an alter-

native, analytic approach to this problem and the following sections describe

our (unconditional) implementation of that algorithm.

6.2 Derivation of the Analytic Algorithm

6.2.1 Riemann’s Explicit Formula

We define

π∗(x) :=
1

2

[
∑

pm<x

1

m
+

∑

pm≤x

1

m

]
.

Now, according to Edwards [30], the “main result” of Riemann’s 1859 paper

[70] was his explicit formula. This states, for x > 1,

π∗(x) = Ei(log x) −
∑

ρ

Ei(ρ log x) − log(2) +

∞∫

x

dt

t(t2 − 1) log(t)
. (6.2.1)

(We note that Edwards uses Li(x) and Li (xρ) respectively in place of the Ei

terms. We prefer this formulation to avoid ambiguity in the case of Li (xρ) in

terms of which branch of the logarithm to take.)

The ρ in the sum are the non-trivial zeros of the Riemann Zeta function,

taken in order of increasing absolute imaginary part.

We note π(x) can be recovered from π∗(x) cheaply (by Möbius inversion)

but even so the conditional (and slow) convergence of the sum over ρ renders
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this equation useless for computational purposes. Riesel and Göhl describe

some computations using this formula and the first 29 pairs of zeros in [71].

6.2.2 The Lagarias and Odlyzko Algorithm

In their 1987 paper [49] Lagarias and Odlyzko suggested that Riemann’s ex-

plicit formula could be modified to render a computationally efficient, analytic

algorithm for π∗(x) and hence π(x). They go back to Riemann’s original

derivation of 6.2.1 which starts with, for <s > 1,

log ζ(s)

s
=

∞∫

0

π∗(x)x−s dx

x
.

Now since π∗(x) is piecewise continuous on R>0 and defined to take the value

halfway between the limit values at each jump discontinuity, and since the

integral converges absolutely for all <s > 1, we can apply the Mellin Inversion

Theorem to obtain, for σ > 1,

π∗(x) =
1

2πi

σ+i∞∫

σ−i∞

log ζ(s)xs ds

s
.

Riemann’s explicit formula is the result of evaluating this integral.

At this point, Lagarias and Odlyzko introduce a “suitable” Mellin trans-

form pair φ(t) and φ̂(s) and derive

π∗(x) =
1

2πi

σ+i∞∫

σ−i∞

log ζ(s)φ̂(s) ds +
∑

pm

1

m
[χx(p

m) − φ(pm)]

where χx(t) is the characteristic function of x, defined by

χx(t) :=





1 t < x

1/2 t = x.

0 t > x

We note that taking φ̂(s) = xs

s
makes φ(t) = χx(t) and we recover Riemann’s

explicit formula.
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80 90 100 110 120
t

Figure 6.1: χx(t) − φ(t) for x = 100 and λ = 1
20

6.2.3 Galway’s Analysis

In his PhD thesis [33] Galway investigated the proposed algorithm and sug-

gested using the Mellin transform pair

φ̂(s) :=
xs

s
exp

(
λ2s2

2

)

and

φ(t) :=
1

2
erfc

(
log

(
t
x

)
√

2λ

)
.

Here erfc the complementary error function

erfc(x) :=
2√
π

∞∫

x

exp
(
−t2

)
dt

and λ is a positive real parameter used to balance the convergence of the

integral with that of the prime sieve.

Galway showed that φ and φ̂ as defined are indeed “suitable”. Further the

Fourier uncertainty principle (see Appendix 1 of [89]) informally stated says

that there is a lower limit to the product of the widths of a function and its

Fourier transform. Since the Gaussian is the only function that achieves this

lower limit, the pair suggested by Galway are in some sense at least optimal.

An example graph of the prime sieving element is given as Figure 6.1
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Like Lagarias and Odlyzko before him, Galway proposed computing the

integral numerically. This poses some difficulties, notably the size of xσ once

we move past s = 1. We therefore adopt a different approach, one that more

closely follows Riemann’s 1859 paper.

6.3 Evaluating the Integral

6.3.1 A Contour Integral

We wish to evaluate the integral 1
2πi

σ+i∞∫
σ−i∞

φ̂(s) log ζ(s) ds.

Before proceeding with the integral, we need a couple of lemmas.

Lemma 6.3.1. The “Round the Pole” lemma. Given a function f with a

simple pole at α with residue R, let Γ be the semicircular contour anticlockwise

from α + ε to α − ε. Then

lim
ε→0+

∫

Γ

f(z) dz = πiR.

Proof. See page 29 of [82].

Lemma 6.3.2. Let ε be small and positive. Then

lim
ε→0+

(log ζ(1 + ε) − log(−ζ(1 − ε))) = 0.

Proof.

lim
ε→0+

(log ζ(1 + ε) − log(−ζ(1 − ε)))

= lim
ε→0+

log
ζ(1 + ε)

−ζ(1 − ε)

= lim
ε→0+

log
1/ε + O(1)

1/ε + O(1)
= 0

Lemma 6.3.3. There exists a sequence of Tj → ∞ such that for any σ ∈
[−1, 2] we have for s = σ + iTj

ζ ′

ζ
(s) = O(log2 Tj).
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Proof. Referring to Davenport [26], for any zero β + iγ of ζ with γ large, there

are O(log γ) zeros with imaginary part ∈ [γ − 1, γ + 1] (Corollary (a), page

99). Therefore we can select a Tj within O(1) of γ such that Tj differs from

the imaginary part of any zero by À 1
log Tj

. By (4) on page 99 we have for

σ ∈ [−1, 2]

∣∣∣∣
ζ ′

ζ

(
1

2
+ iTj

)∣∣∣∣ =

∣∣∣∣∣
∑

ρ

′ 1
1
2

+ iTj − ρ
+ O(log Tj)

∣∣∣∣∣

where the sum is taken over zeros with imaginary part ∈ [Tj −1, Tj +1]. There

are O(log Tj) such zeros, each one making a contribution to the sum limited

by O(log Tj) and the result follows.

Lemma 6.3.4. For t ∈ R

|log(−ζ(−1 + it))| ≤ 5 + t2.

Proof. By the functional equation

log(−ζ(−1+it)) = log ζ(2−it)+log Γ

(
2 − it

2

)
−log Γ

(−1 + it

2

)
+

(
3

2
− it

)
log π.

We then use
(−1+it

2

)
Γ

(−1+it
2

)
= Γ

(
1+it

2

)
so we can apply Stirling’s approxi-

mation. Also, for <s > 1 we have

|log ζ(s)| =

∣∣∣∣∣

∞∑

n=2

Λ(n)

log(n)

1

ns

∣∣∣∣∣ ≤
∞∑

n=2

Λ(n)

log(n)

1

n<s
= log ζ(<s).

Lemma 6.3.5.
∣∣∣∣∣∣

1

2πi

−1+i∞∫

−1−i∞

log(−ζ(s))φ̂(s) ds

∣∣∣∣∣∣
≤

exp
(

λ2

2

)

2πxλ

(
5
√

2π +
2

λ

)
.

Proof. We use Lemma 6.3.4 and take absolute values, majorising with

exp
(

λ2

2

)

2πx


5

∞∫

−∞

exp

(−λ2t2

2

)
dt +

∞∫

−∞

|t| exp

(−λ2t2

2

)
dt




where both integrals can be evaluated.
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Lemma 6.3.6. Let Φ̂(s) be the unique holomorphic function Φ̂ : C \R≤0 → C

such that

• Φ̂′(s) = φ̂(s) and

• lim
t→∞

[
Φ̂(σ + it) + Φ̂(σ − it)

]
= 0 for any fixed real σ.

Then

1. Φ̂(s) − log s extends to an entire function,

2. lim
t→∞

Φ̂(σ + it) = C is purely imaginary and

3. Φ̂(σ ± it) ∓ C is rapidly decreasing as t → ∞.

Proof. To show (1) we define for s 6∈ R≤0

F (s) =

s∫

1

φ̂(z) dz

where the contour of integration is the straight line from 1 to s. We then define

Φ̂(s) := lim
T→∞

[
F (s) − F (1 + iT ) + F (1 − iT )

2

]

and we have

F (s) − log s =

s∫

1

(
φ̂(z) − 1

z

)
dz.

To show (2) we observe that Φ̂(s) = Φ̂(s) and from the definition we have

C + C = 0. To show (3), we take T > 0 and we have

|Φ̂(σ ± iT ) ∓ C| ≤ xσ

T
exp

(
σ2λ2

2

) ∞∫

T

exp

(−λ2t2

2

)
dt.

Theorem 6.3.7. Let Φ̂(s) and C be as defined in Lemma 6.3.6. Then

1

2πi

2+i∞∫

2−i∞

φ̂(s) log ζ(s) ds = Φ̂(1)−
∑

ρ

<Φ̂(ρ)−log(2)+
1

2πi

−1+i∞∫

−1−i∞

φ̂(s) log(−ζ(s)) ds.
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=s

<s

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

Γ7

Γ8

Γ9

Γ10

Γ11

Γ12
1
4

−1 −
1
2

0 1 3
2

2

−1 + iTj 2 + iTj

−1 − iTj 2 − iTj

<s = 1
2

Figure 6.2: Contours to evaluate 1
2πi

2+i∞∫
2−i∞

φ̂(s) log ζ(s) ds
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6.3. Evaluating the Integral

Proof. We will refer to the contours represented in Figure 6.2.

These contours are

• Γ1 - the semi-circle clockwise from 1− ε to 1 + ε for ε small and positive.

• Γ2 - the semi-circle clockwise from 1 + ε to 1 − ε.

• Γ3 - the horizontal line from 1 + ε to 2.

• Γ4 - the horizontal line from 2 to 1 + ε.

• Γ5 - the vertical line from 2 to 2 + iTj, Tj not the ordinate of a zero of ζ.

• Γ6 - the vertical line from 2 − iTj to 2.

• Γ7 - the horizontal line from 2 + iTj to −1 + iTj.

• Γ8 - the horizontal line from −1 − iTj to 2 − iTj.

• Γ9 - the vertical line from −1 + iTj to −1 + 5
4
i, followed by the clockwise

circular arc centred at −1 to 1
4
.

• Γ10 - the clockwise circular arc centred at −1 from 1
4

to −1− 5
4
i, followed

by the vertical line to −1 − iTj.

• Γ11 - the horizontal line from 1
4

to 1 − ε.

• Γ12 - the horizontal line from 1 − ε to 1
4
.

We consider the integrals

1

2πi

∫
(Φ̂(s) − C)

ζ ′(s)

ζ(s)
ds (6.3.1)

for the contours Γ1, Γ3, Γ5, Γ7 Γ9 and Γ11 in the upper half plane and

1

2πi

∫
(Φ̂(s) + C)

ζ ′(s)

ζ(s)
ds (6.3.2)

for Γ2, Γ4, Γ6, Γ8 Γ10 and Γ12 in the lower half.

We denote the integrals in Equations 6.3.1 or 6.3.2 as appropriate along Γn

by In and proceed as follows.

61



Chapter 6. Computing π(x) Analytically

For I5 and I6 we get

lim
j→∞

(I5 + I6) = lim
j→∞

1

2πi




∫

Γ5

(
Φ̂(s) − C

) ζ ′

ζ
(s) ds +

∫

Γ6

(
Φ̂(s) + C

) ζ ′

ζ
(s) ds




= lim
j→∞

1

2πi

[(
Φ̂(s) − C

)
log ζ(s)

∣∣∣
2+iTj

2
+

(
Φ̂(s) + C

)
log ζ(s)

∣∣∣
2

2−iTj

]

− 1

2πi




∫

Γ5,6

φ̂(s) log ζ(s) ds




=
1

2πi


2C log ζ(2) −

2+i∞∫

2−i∞

φ̂(s) log ζ(s) ds


 .

Considering the contours Γ7 and Γ8, we use Lemma 6.3.3 and the Gaussian

decay of Φ̂(s) ± C from Lemma 6.3.6 to conclude

lim
j→∞

(I7 + I8) = lim
j→∞

1

2πi




∫

Γ7

(
Φ̂(s) − C

) ζ ′

ζ
(s) ds +

∫

Γ8

(
Φ̂(s) + C

) ζ ′

ζ
(s) ds




= 0.

Considering I9 and I10 we have

lim
j→∞

(I9 + I10) = lim
j→∞

1

2πi




∫

Γ9

(
Φ̂(s) − C

) ζ ′

ζ
(s) ds +

∫

Γ10

(
Φ̂(s) + C

) ζ ′

ζ
(s) ds




= lim
j→∞

1

2πi

[(
Φ̂(s) − C

)
log(−ζ(s))

∣∣∣
1/4

−1+iTj

+
(
Φ̂(s) + C

)
log(−ζ(s))

∣∣∣
−1−iTj

1/4

]

− 1

2πi




∫

Γ9

φ̂(s) log(−ζ(s)) ds +

∫

Γ10

φ̂(s) log(−ζ(s)) ds




= − 1

2πi




∫

Γ9,Γ10

φ̂(s) log(−ζ(s)) ds + 2C log

(
−ζ

(
1

4

))


where the contour of integration is Γ9 followed by Γ10. Convergence of this

integral is due to Lemma 6.3.5 and the zero free region of ζ(s) with |s| ≤ 1
2
.
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For I11 and I12 we have

I11 + I12 =
1

2πi




∫

Γ11

(
Φ̂(s) − C

) ζ ′

ζ
(s) ds +

∫

Γ12

(
Φ̂(s) + C

) ζ ′

ζ
(s) ds




=
1

2πi

[(
Φ̂(s) − C

)
log(−ζ(s))

∣∣∣
1−ε

1/4
+

(
Φ̂(s) + C

)
log(−ζ(s))

∣∣∣
1/4

1−ε

]

− 1

2πi




∫

Γ11

φ̂(s) log(−ζ(s)) ds +

∫

Γ12

φ̂(s) log(−ζ(s)) ds




=
1

2πi

[
2C log

(
−ζ

(
1

4

))
− 2C log(−ζ(1 − ε))

]
.

For I1 and I2 we find

I1 + I2 =
1

2πi




∫

Γ1

(
Φ̂(s) − C

) ζ ′

ζ
(s) ds +

∫

Γ2

(
Φ̂(s) + C

) ζ ′

ζ
(s) ds




=
1

2πi




∮
Φ̂(s)

ζ ′(s)

ζ(s)
ds − C

∫

Γ1

ζ ′

ζ
(s) ds + C

∫

Γ2

ζ ′

ζ
(s) ds




= Φ̂(1) − C

2πi




∫

Γ1

ζ ′

ζ
(s) ds −

∫

Γ2

ζ ′

ζ
(s) ds




by Cauchy’s Theorem since the residue of ζ′

ζ
at 1 is −1.

Finally, for I3 and I4 we get

I3 + I4 =
1

2πi




∫

Γ3

(
Φ̂(s) − C

) ζ ′

ζ
(s) ds +

∫

Γ4

(
Φ̂(s) + C

) ζ ′

ζ
(s) ds




=
1

2πi

[(
Φ̂(s) − C

)
log ζ(s)

∣∣∣
2

1+ε
+

(
Φ̂(s) + C

)
log ζ(s)

∣∣∣
1+ε

2

]

− 1

2πi




∫

Γ3

φ̂(s) log ζ(s) ds +

∫

Γ4

φ̂(s) log ζ(s) ds




=
1

2πi
[2C log ζ(1 + ε) − 2C log ζ(2)] .

Now by Cauchy’s Theorem again, lim
j→∞

∑12
k=1 Ik =

∑
ρ

Φ̂(ρ) so we have
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∑

ρ

Φ̂(ρ) = Φ̂(1) − 1

2πi




2+i∞∫

2−i∞

φ̂(s) log ζ(s) ds +

∫

Γ9,Γ10

φ̂(s) log(−ζ(s)) ds




+
C

πi
[log ζ(1 + ε) − log(−ζ(1 − ε))]

− C

2πi




∫

Γ1

ζ ′(s)

ζ(s)
ds −

∫

Γ2

ζ ′(s)

ζ(s)
ds


 .

Now the result follows from taking the limit as ε → 0+ by Lemmas 6.3.2 and

6.3.1 and then straightening the line of integration of the second integral to

<s = −1. This introduces a contribution of log−ζ (0) = − log 2 from the pole

of φ̂(s) at s = 0 with residue 1.

6.3.2 Computing Φ̂
(

1

2
+ it

)

We now need an effective method for computing Φ̂. The following lemma is

our starting point.

Lemma 6.3.8. For <s0 6= 0 and h ∈ R

φ̂(s0 + ih) = φ̂(s0) exp
(
ih(s0λ

2 + log(x))
) exp

(
−λ2h2

2

)

1 + ih
s0

.

Proof. We start with

φ̂(s0 + ih) =
exp

(
λ2(s0+ih)2

2

)
xs0+ih

s0 + ih

and rearrange to get

exp
(

λ2s2
0

2

)
xs0

s0

exp (ih(s0λ
2 + log(x))) exp

(
−λ2h2

2

)

1 + ih
s0

.

Lemma 6.3.9. Let N ∈ 2Z>0, λ, h > 0 and λh < 1. Then

exp

(−λ2h2

2

)
=

N
2∑

n=0

(−1)n

n!

(
λ2h2

2

)n

+ EA,
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where

|EA| ≤
1(
N
2

)
!

(
λ2h2

2

)N
2

.

Proof. This function is entire and the restriction on λh makes the terms alter-

nating in sign and decreasing.

Lemma 6.3.10. Let N ∈ Z>0 and |h| < |s0|. Then

(
1 +

ih

s0

)−1

=
N∑

n=0

(−ih

s0

)n

+ EB,

where if R =
∣∣∣ h
s0

∣∣∣ we have

|EB| ≤
RN

1 − R
.

Proof. This function is analytic on the open disk |h| < |s0| and the missing

terms form a geometric series.

We can now fix some N ∈ 2Z>0 and multiply these two (degree N) poly-

nomials to yield a single (degree 2N) polynomial in h which we can integrate

against exp(ih(λ2 + log(x))) analytically. We note in passing that the polyno-

mial multiplication can be achieved efficiently by recourse to the Convolution

Theorem but in practice the limited number of terms required mean that the

trivial O(N2) algorithm suffices. We also mention that a more efficient version

of the Taylor approximation would be obtained if we computed it as a single

expansion, rather than splitting it into two. However, this approach sufficed

for our purposes.

We must consider the error introduced by truncating these Taylor expan-

sions and the following lemma addresses this.

Lemma 6.3.11. Let λ, x > 0, H ∈ (0, |s0|), <s0 6= 0, R =
∣∣∣H
s0

∣∣∣ and φ̂N(s)

denote the approximation to φ̂(s) resulting from truncating 6.3.9 at N
2

and

6.3.10 at N . Then
∣∣∣∣∣∣

H∫

−H

φ̂(s0 + ih) − φ̂N(s0 + ih) dh

∣∣∣∣∣∣
≤ 2H

∣∣∣φ̂(s0)
∣∣∣
(
|EA| |EB| + |EB| +

|EA|
1 − R

)
.
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Proof. We multiply out the expressions given in Lemmas 6.3.9 and 6.3.10 and

estimate the resulting integrals using absolute values.

6.3.3 More Error Bounds

We now provide rigorous bounds for the other sources of error that will not be

handled through interval arithmetic.

For t > 0, t not the imaginary part of a zero of ζ, define N(t) to be the

number of zeros of ζ(s) in the critical strip with =s ∈ [0, t].

Lemma 6.3.12. Let t ≥ 2. Then

∣∣∣∣N(t) − t

2π
log

(
t

2π e

)
− 7

8

∣∣∣∣ < 0.137 log(t) + 0.443 log log(t) + 1.588.

Proof. See [73] Theorem 19.

Lemma 6.3.13. For x, T, λ > 0 and σ ∈ [0, 1] define

B(σ, T ) := exp

(
λ2(1 − T 2)

2

) [
xσ

T log x
+

1

λ2T 2x

]
.

Then ∣∣∣<Φ̂ (σ + iT )
∣∣∣ ≤ B(σ, T ).

Proof. We integrate along the contour running vertically down from −1 + i∞
to −1 + iT , then right to σ + iT . For the horizontal contour we have

∣∣∣∣∣∣

σ∫

−1

exp
(

λ2(u+iT )2

2

)

u + iT
xu+iT du

∣∣∣∣∣∣
≤

exp
(

λ2(1−T 2)
2

)

T

σ∫

−1

xu du

<
exp

(
λ2(1−T 2)

2

)

T log x
xσ.
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For the vertical contour we have
∣∣∣∣∣∣

T∫

∞

exp
(

λ2(−1+it)2

2

)

−1 + it
x−1+it dt

∣∣∣∣∣∣
≤ x−1 exp

(
λ2

2

) T∫

∞

exp
(

−λ2t2

2

)

t
dt

<
exp

(
λ2

2

)

xT 2

T∫

∞

t exp

(−λ2t2

2

)
dt

=
exp

(
λ2(1−T 2)

2

)

λ2T 2x
.

Lemma 6.3.14. Let T > 0, σ ∈ [0, 1] and αT be such tαT ≥ N(t) for all

t ≥ T . Then

∑

=ρ≥T

<Φ̂(ρ) ≤ exp

(
λ2(1 − T 2)

2

) [
xσ

T log x
+

1

λ2T 2x

] [
λ2T 2 + 2

λ2T 2−αT
− N(T )

]
.

Proof. Referring to Lemma 6.3.13 and writing kσ := exp
(

λ2

2

) [
xσ

T log x
+ 1

λ2T 2x

]
,

we can majorise the sum with the Stieltjes integral

∞∫

T

kσ exp

(−λ2t2

2

)
dN(t).

We now integrate by parts and majorise N(t) with tαT to obtain

∑

=ρ>T

B(σ,=ρ) ≤ −kσ exp

(−λ2T 2

2

)
N(T ) − kσ

T 2−αT

∞∫

T

λ2t3 exp

(−λ2t2

2

)
dt

= kσ

[
λ2T 2 + 2

λ2T 2−αT
exp

(−λ2T 2

2

)
− exp

(−λ2T 2

2

)
N(T )

]
.

We note that the αT referred to above can be computed using Lemma

6.3.12.

We now consider the error introduced by truncating our sum over the zeros

of ζ. Let T1 be height below which we find and use all the zeros, and T2 the

height to which we know RH to hold. For our computations, we take the

results from the Zetagrid calculations [88], which showed that at least the first
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900 000 000 000 zeros lie on the 1/2 line, which equates to a value for T2 of at

least 2.419 × 1011. Zetagrid used Rieman-Siegel and its developers took great

care over error management so we feel justified in relying on its conclusions.

We note, however, that setting T1 = T2 in the following (i.e. only believing RH

up to the height we ourselves have verified) would require us to compute to

height about
√

2T1 to keep the sieve width constant.

Lemma 6.3.15. Let E1 be real part of the error introduced by ignoring zeros

with imaginary part of absolute value ∈ [T1, T2] (whose real parts are all known

to be 1
2
). Then

|E1| ≤ 2 exp

(
λ2(1 − T 2

1 )

2

)[ √
x

T1 log x
+

1

λ2T 2
1 x

] [
λ2T 2

1 + 2

λ2T
2−αT1
1

− N(T1)

]
.

Proof. We apply Lemma 6.3.14 with σ = 1
2

and introduce a factor of 2 for the

zeros with negative imaginary part.

We note this bound includes all the zeros with imaginary part > T2 but

their contribution will be negligible.

Lemma 6.3.16. Let E2 be the real part of the error introduced by omitting

the zeros with imaginary part 6∈ [−T2, T2] from the main sum, (which do not

necessarily have real part = 1
2
). Then

|E2| ≤ exp

(
λ2(1 − T 2

2 )

2

)[
x + 1

T2 log x
+

2

λ2T 2
2 x

][
λ2T 2

2 + 2

λ2T
2−αT2
2

− N(T2)

]
.

Proof. We pair each ρ with 1 − ρ and take the worst case when one of the

zeros has real part 1 and the other 0. The result then follows from Lemma

6.3.14.

6.4 The Sum Over Prime Powers

To enable us to compute the contribution to π∗(x) from the prime powers, we

need the following:
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• A rigorous bound for the error truncating the sieve to a finite window.

• A means of enumerating the primes within that window

• A means of computing φ(p) over those primes

We note that we will only consider the primes themselves. The task for prime

squares and higher powers is trivial by comparison.

We dispense with the error bound immediately whereas enumerating the

primes and computing φ(p) efficiently will be the subject of the next two

sections.

Lemma 6.4.1. Let ε ∈ (0, λx] and τ := λ
(√

2 log
(

λx
ε

)
+ 1

)
. Then

∣∣∣∣∣∣

∑

pm

1

m
(χx (pm) − φ (pm)) −

∑

pm∈[x e−τ ,x eτ ]

1

m
(χx (pm) − φ (pm))

∣∣∣∣∣∣
≤ ε.

Proof. See Galway [33] Theorem 3.10.

6.4.1 Enumerating Primes in Wide, High Intervals

To compute π (x) with x = 1023 with access to the non-trivial zeros of ζ to

height ≤ 1.1 × 1010 or so required us to enumerate the primes in a window of

width ≈ 1.1 × 1015 (see section 6.5.2 for details on the choice of parameters).

By the prime number theorem, we would expect to find about 2.1×1013 primes.

Two alternative basic techniques present themselves, primality testing and

sieving.

6.4.1.1 Primality Tests

One approach would be to quickly sieve out the majority of composites and

then to apply a strong primality test to the remainder. Experiments suggest

that such methods will not be competitive. For example, using Pari’s isprime

function [5] is orders of magnitude slower at x = 1023 than the method we

eventually selected.
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A related method would be to enumerate the Fermat pseudoprimes, say

base 2 and 3, within our window. We would then sieve the segment using

small primes, strike out the known Fermat pseudoprimes, then sieve again

using the (weak) Fermat primality test. Again initial investigations suggested

that this method is not going to compete with sieving at these heights.

Both of these methods have the advantage of being very efficient in terms

of space when compared with prime sieves. However, these advantages do not

manifest themselves at x = 1023, nor would we expect them to at 1024.

6.4.1.2 The Sieve of Eratosthenes

The oldest (B.C.) and simplest prime sieve is the Sieve of Eratosthenes. In

pseudo code, the algorithm is:

for i:=2 to x

do

primes[i]:=true

od

for j=4 to x by 2

do

primes[j]:=false

od

for i:=3 to floor(sqrt(x)) by 2

do

if primes[i] then

for j := i*i to N by i

do

primes[j]:=false

od

fi

od
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Since for each prime p ≤ √
x we must cross out O(x

p
) multiples of p, the number

of operations for the Sieve of Eratosthenes is

∑

p≤√
x

x

p
= O(x log log x)

The space required is O(x). We note that by working modulo K and allowing

K to increase slowly with x, we can save a factor of log log x in the time

complexity but that is not significant in what follows.

The width of the interval we wish to sieve, even for π (1023), is too large to

fit in memory. At 1 bit per integer and working modulo 2 × 3 × 5 we would

need 37 Tbytes. We are therefore forced to segment the sieve [6].

Assume in what follows that our sieve interval of width W ends at x and

that we segment it into pieces of length S (determined by the memory we have

available to us). We must compute the base primes up to
√

x (not necessarily

all at once). Here we have several options:

• Pre-compute all the primes and store them on disk. Read them in as

required.

• Use (segmented) Eratosthenes recursively to compute the base primes

on demand for each segment.

• Use some other method to compute the primes on demand.

Storing the pre-computed primes to disk is feasible. We store the differences

between successive primes divided by 2 as single bytes and for the few cases

where the gap between successive primes exceeds 511 we use a simple multi-

byte encoding. However, simply reading this 35 Gbyte file takes a comparable

amount of time to computing the primes on the fly, and that is before taking

account of I/O clashes when multiple cores try to access the same device.

Recursively segmenting Eratosthenes down to x1/3 or so (by which point

we can compute all the primes in memory) is also competitive. However, using

Bernstein’s own 64 bit implementation of the asymptotically better Atkin-

Bernstein sieve (see below and [7]) outperformed both.
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The run time appears to be dominated by the time taken to locate the first

multiple of each base prime in the target segment (or to conclude there isn’t

one), probably because it involves 128 bit division. This contributes O
( √

x
log x

)

but, as we will discuss shortly, using the Atkin-Bernstein sieve to compute

the primes to
√

x is already O
( √

x
log log x

)
so the overall time complexity is

O
(

W
√

x
S log log x

)
.

6.4.1.3 The Atkin-Bernstein Sieve

With the Sieve of Eratosthenes, we are considering solutions of the reducible

binary quadratic form xy. If we use irreducible binary quadratic forms instead,

we construct a sieve first described by Atkin and Bernstein [4]. Specifically for

square free n > 3

• n ∈ 1 + 4Z is prime iff #{(x, y) : x > 0, y > 0, 4x2 + y2 = n} is odd.

• n ∈ 7 + 12Z is prime iff #{(x, y) : x > 0, y > 0, 3x2 + y2 = n} is odd.

• n ∈ 11 + 12Z is prime iff #{(x, y) : x > y > 0, 3x2 − y2 = n} is odd.

Atkin and Bernstein do not claim that this choice of binary quadratic forms

is optimal. They go on to show that its time complexity is O(x) (or O
(

x
log log x

)

if we work modulo K and allow K to increase slowly with x) and O(
√

x) space.

This sieve segments more readily than the Sieve of Eratosthenes because

there is no need to re-compute “small” primes for each segment. The difficulty

that arises is a practical one. The n in the congruences given above will all be

of a size that exceeds the 64 bit native word size of most modern CPUs. (64

bits equates to about 1019). This means we must use software library routines

in place of native hardware instructions and to date we have been unable to

produce a version of Atkin-Bernstein more efficient than Eratosthenes at this

height.
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6.4.1.4 Dissected Sieves

In his thesis [33] Galway introduces a novel sieving method based on Atkin-

Bernstein which he referred to as a dissected sieve. His analysis showed it to

have time complexity (in our terms) of O
(
W

(
1 + x1/3

S

))
with space require-

ments of O
(
x

1
3

)
. The timing data Galway provides as Table 5.3 are for sieves

of width 109 at heights up to 1017 (i.e. all 64 bit). The results seem to suggest

that the implied constants are quite large and even allowing for the improve-

ments in hardware since 2004, it seemed unlikely that this algorithm would

be competitive. However, we have not attempted to implement the dissected

Atkin-Bernstein sieve (or the Eratosthenes variant Galway also describes) at

large height and it may yet prove workable in practice.

6.4.2 Computing φ(p)

We compute φ(p) using the following lemma.

Lemma 6.4.2. Let 0 < ξ < p0 and p ∈ [p0 − ξ, p0 + ξ]. Then for some

η ∈ [p0 − ξ, p0 + ξ] we have
∣∣∣∣∣φ(p) −

m∑

n=0

φ(n)(p0)(p − p0)
n

n!

∣∣∣∣∣ =

∣∣∣∣
φ(m+1)(η)ξm+1

(m + 1)!

∣∣∣∣ .

Proof. Lagrange’s form for the error term in Taylor’s theorem.

Simply computing φ(p) for each the 2.1 × 1013 primes enumerated by the

sieve (at x = 1023) using the Taylor approximation coded in a multiple preci-

sion interval arithmetic package would be prohibitively slow.

To circumvent this, we divide the interval into sub-intervals of width 2ξ and

for each sub-interval, centred at t0, we compute in (fast) integer arithmetic

•
∑
p

1

•
∑
p

(p − t0)

• ∑
p

(p − t0)
2
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Note that if we chose the length of sub-interval to be ≤ 232, the first two

sums can be achieved entirely in 64 bit arithmetic. The last sum requires 32

bit multiplications into 64 bit results which are then summed. Thus the only

non 64 bit operation is this summation, but multiple precision integer addition

is still relatively fast. Also note that including a (p− t0)
3 term would force us

to use non 64 bit multiplication, which we eschew.

These three sums now provide a basis for computing the sum of φ(p) in

multiple precision interval arithmetic.

Even though we wish to avoid using the cubic term of the Taylor approx-

imation, the following lemma obtains some of the improvement in accuracy,

effectively for free.

Lemma 6.4.3. If we approximate the real cubic y = a3x
3 on the interval

x ∈ [−w,w] where w > 0 with the line y = ax with a = 3a3w2

4
, then the

magnitude of the error over the interval is ≤ |a3|w3

4
. What is more, in terms of

minimising the worst case error, this line is the best choice of any quadratic.

Proof. We refer to Figure 6.3. Without loss of generality, take a3 > 0 and since

both a3x
3 and ax are odd, we consider only the interval x ∈ [0, w]. The error

E1 is simply a3w
3 − aw and E2 is at its maximum where the slopes of the line

and the cubic are equal. This happens at x =
√

a
3a3

so E2 =
√

a3

3a3
−

√
a3

27a3
.

The worst case error follows from setting E1 = E2 and solving for a.

The maximum error occurs 4 times at x ∈ {±w,±
√

a
3a3

}. This means that

any curve which improves on the line must be below the line at x ∈ {−w,
√

a
3a3

}

and above it at x ∈ {w,−
√

a
3a3

}. Thus, such a curve would have to cross the

line at least 3 times which is not possible for a quadratic.

Thus we can use a quadratic approximation to the cubic Taylor approxi-

mation but with a worst case error falling in between the two. We now simply

set ξ small enough to achieve the necessary accuracy. At x = 1023 we find that

ξ = 221 suffices.
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y

x

y = a3x
3

y = ax

w

aw

a3w
3

E1

E2

Figure 6.3: Approximating a Cubic with a Line (Lemma 6.4.3)
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6.5 Implementation and Results

We set out to confirm the largest unconditionally known value of π(x), that

for x = 1023.

6.5.1 Isolating the Zeros

Using Turing’s method with a region of width 42 above and below the target

window, we compute the number of zeros we expect to find. Each sign change

in f identifies the location of a zero to within 21
4 096

(determined by the choices

of section 5.11). We then apply a (non-rigorous) version of Newton-Raphson

root finding to identify the zeros more precisely, followed by a rigorous up-

sampling step to confirm the position of the zero to an absolute accuracy of

±2−102.

If two or more zeros are located between sample points, then our zero count

will not match that predicted by Turing’s method. To locate such (pairs of)

zeros, we look at the zeros of f ′. If the RH is true, then the local maxima

and local minima of f(t) will be positive and negative respectively [11]. Thus,

there must be (conditional on RH) at least two zeros between any consecutive

maxima or minima. Armed with this, we up-sample using a simple bisection

algorithm to drill down and locate the sign changes in f . Importantly, because

we confirm the existence of such sign changes rigorously, our method is not

conditional on RH.

Below t = 5 000 our algorithm is not effective so the zeros below this height

were located using mpmath [41] and rigorously checked to ±2−102 using a high

precision interval arithmetic implementation of Euler-Maclaurin.

6.5.2 Parameters for the π(x) algorithm

We allowed for an error of slightly less than ±1
2

allocated equally to the trun-

cation of the sum over the ζ zeros (Lemmas 6.3.15 and 6.3.16) and to the

truncation of the prime sieve (Lemma 6.4.1).
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Selecting the appropriate value of λ depends on the knowledge of the rela-

tive run time of the zero locating routine versus the prime sieve (it turns out

that the time taken to compute the necessary sums in both cases is insignifi-

cant).

We set the parameter λ to, as far a possible, equate the run time of the

zero search and the prime sieve. To compute π (1023) we used

• λ = 6 224 003 264 759 175 × 2−83

• x exp(τ) − x exp(−τ) = 1 154 487 209 164 800, the width of the prime

sieve

and we summed over the 36 037 434 430 zeros of ζ with 0 < =ρ < 11 155 646 000.

Both computations were executed on the University of Bristol cluster [2].

Bluecrystal Phase 2 consists of 416 standard compute nodes, each of which

houses two 4 core 2.8 GHz Intel Harpertown processors sharing 8 Gbyte of

memory. Depending on load, it is possible for a single user to be allocated

up to 512 cores (64 nodes) but in practice we typically see just under half

this. In total the computation required about 1 000 days of CPU time and

the elapsed time was about 6 weeks. Unfortunately, we could not find any

published timing data relating to the successful combinatorial computation of

π (1023).

6.5.3 Computing <∑
ρ

Φ̂(ρ)

We implemented the Taylor series based method described in section 6.3.2,

again using ’C’ and MPFI. Starting with N zeros numbered 1 to N up the

critical line (and with a fictional zero ρ0 at 1
2
+14i), we compute Φ̂(ρn)−Φ̂(ρn−1)

and form the sums

N∑

n=1

[
Φ̂(ρn) − Φ̂(ρn−1)

]
= Φ̂(ρN) − Φ̂

(
1

2
+ 14i

)

77



Chapter 6. Computing π(x) Analytically

and

N∑

n=1

n(Φ̂(ρn) − Φ̂(ρn−1)) = NΦ̂(ρN) −
N−1∑

n=1

Φ̂ (ρn) − Φ̂

(
1

2
+ 14i

)
.

These sums, together with estimates for Φ̂
(

1
2

+ 14i
)
− Φ̂

(
1
2

)
and Φ̂ (1) −

Φ̂
(

1
2

)
mean we can compute all the terms of Theorem 6.3.7.

6.5.4 Results

• a = <(Φ̂(1) − Φ̂
(

1
2

)
)

∈ [1 925 320 391 601 622 250 242.410, 1 925 320 391 601 622 250 242.411]

• b = <(Φ̂
(

1
2

+ 14i
)
−Φ̂

(
1
2

)
) ∈ [−12 410 224 303.294,−12 410 224 303.293]

• c = <(Φ̂(ρN) − Φ̂
(

1
2

+ 14i
)
) ∈ [−21 680 976.702,−21 680 976.701]

• d = <(NΦ̂(ρN) −
N−1∑
n=1

Φ̂ (ρn) − Φ̂
(

1
2

+ 14i
)
)

∈ [−538 287 888.668,−538 287 888.640]

• e =
∑

p∈[xe−τ ,xeτ ]

(χx(p) − φ(p)) ∈ [−87 064.242,−87 064.241]

• f =
∑

pn∈[xe−τ ,xeτ ]
n>1

1
n

(χx (pn) − φ (pn)) ∈ [0.099, 0.100]

• g =
∑
n>1

1
n
π

(
x

1
n

)
∈ [6 216 885 710.894, 6 216 885 710.895]

• k = (2N(T1) − 3)G
(

1
2

+ iT1

)
∈ [−0.229,−0.228]

where c and d are the results of the sum over zeros, e and f are the results of

the prime sieve and g was computed using Booker’s “Nth Prime Page” [12]. a

is the result of the integration of a real function along an interval of the real

line where it is strictly increasing so any simple quadrature technique can be

made rigorous. b uses the same quadrature algorithm as for c and d. Finally

k is computed by integrating from 1
2

+ iT1 to −1 + iT1 and adding an error

term.
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We now have

Theorem 6.5.1. π (1023) = 1 925 320 391 606 803 968 923.

Proof. Using the parameters above, the error from truncating the sum over

zeros and the prime sieve is ∈ [−0.301, 0.301]. We compute the interval a −
b + 2d − 3c + e + f − g − k − log(2) + [−0.301, 0.301] which gives

π
(
1023

)
∈ [1 925 320 391 606 803 968 922.665, 1 925 320 391 606 803 968 923.333]

This brackets a single integer which is therefore the value of π (1023).

We are pleased to note that this agrees with the figure published by Thomás

Oliveira e Silva [63].
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Computing Lχ(s) Rigorously

The aim of this section is to describe two algorithms for computing Lχ(1/2+it)

rigorously and efficiently and three applications. The first algorithm, used

when the modulus is relatively small, is based on the generic method to com-

pute L-functions described in Booker’s paper [13]. The other algorithm is new

and exploits Theorem 3.2.6.

7.1 Booker’s Algorithm

We specialise Booker’s generic algorithm from [13] to Dirichlet L-functions.

For η ∈ (−1, 1) and even primitive characters χ define

Fe(t, χ) :=εχq
it
2 π− 1/2+it

2 Γ

(
1/2 + it

2

)
exp

(
πηt

4

)
Lχ

(
1

2
+ it

)
and

F̂e(x, χ) :=
1

2π

∞∫

−∞

Fe(t, χ)e−ixt dt.

For odd primitive characters χ define

Fo(t, χ) :=εχq
it
2 π− 3/2+it

2 Γ

(
3/2 + it

2

)
exp

(
πηt

4

)
Lχ

(
1

2
+ it

)
and

F̂o(x, χ) :=
1

2π

∞∫

−∞

Fo(t, χ)e−ixt dt.
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We chose the parameter η to control the decay of the gamma factor as t

increases. εχ is the square root of the root number ωχ with argument in
(
−π

2
, π

2

]
.

We have chosen to adhere to the form of the Fourier transform used in [13]

for easier cross-reference.

We now chose A,B > 0 with AB ∈ 2Z>0 and define

˜̂
F e(n, χ) :=

∑

k∈Z

F̂e

(
2πn

B
+ 2πkA, χ

)

and

˜̂
F o(n, χ) :=

∑

k∈Z

F̂o

(
2πn

B
+ 2πkA, χ

)
.

Similarly, define

F̃e(m,χ) :=
∑

k∈Z

Fe

(m

A
+ kB, χ

)

and

F̃o(m,χ) :=
∑

k∈Z

Fo

(m

A
+ kB, χ

)
.

In outline, the method is

1. Compute F̂e

(
2πn
B

)
or F̂o

(
2πn
B

)
for n = 0 . . . N − 1.

2. Use these values as an approximation to
˜̂
F e(n, χ) or

˜̂
F o(n, χ) respectively.

3. Appealing to Theorem 3.2.2, perform a DFT to yield F̃e(m,χ) or F̃o(m,χ)

respectively.

4. Use F̃e(m,χ) or F̃o(m,χ) as an approximation to Fe

(
m
A

, χ
)

or Fo

(
m
A

, χ
)

respectively.

Continuing in the notation of [13], we have r = 1, m = 0, P (s) = 1, C = 1,

α = 0 and c′ = 0 with the balance of the parameters as per Table 7.1.

We now make the above outline rigorous.

81



Chapter 7. Computing Lχ(s) Rigorously

Table 7.1: Parameters
Even χ Odd χ

µ1 0 1
ν1 0 1

2

µ 1
2

3
2

c 1 2

7.1.1 Computing F̂e(t) and F̂o(t)

Lemma 7.1.1. Let u(x) := πηi
4

+x, δ = π
2
(1− |η|) and X(x) := πδe2x−δ

q
. Then

for M ∈ Z>0 and X(x)M2 > 1 we have

∣∣∣∣∣∣
F̂e(x, χ) −

2εχ exp
(

u(x)
2

)

q
1
4

M∑

n=1

χ(n) exp

(
−πn2 exp(2u(x))

q

)∣∣∣∣∣∣
≤ 2 exp

(
x
2
− X(x)M2

)

q1/4δ1/2X(x)M
.

Proof. Writing s = 1/2 + it we get

F̂e(x, χ) =
εχ

2πi

∫

<(s)= 1
2

q
s−1/2

2 π− s
2 Γ

(s

2

)
exp

(−πηi(s − 1/2)

4

)
exp(−x(s − 1/2))Lχ(s) ds

=
εχ

2πi

∫

<(s)=2

q
s−1/2

2 π− s
2 Γ

(s

2

)
exp

(−πηi(s − 1/2)

4

)
exp(−x(s − 1/2))Lχ(s) ds

=
εχ

q
1
4

1

2πi

∫

<(s)=2

( q

π

) s
2
Γ

(s

2

)
exp

(
−

(
πηi + 4x

4

)
(s − 1/2)

) ∞∑

n=1

χ(n)n−s ds

=
εχ exp(u(x)/2)

q
1
4

∞∑

n=1

χ(n)
1

2πi

∫

<(s)=2

(
πn2

q

)− s
2

Γ
(s

2

)
exp(2u(x))−s/2 ds

=
2εχ exp

(
u(x)

2

)

q
1
4

∞∑

n=1

χ(n) exp

(
−πn2 exp(2u(x))

q

)
.

We now apply Lemma 5.4 of [13] to bound the error introduced by trun-

cating the above sum at n = M .

Lemma 7.1.2. Let u(x), δ and X(x) be as defined in Lemma 7.1.1. Then for

M ∈ Z>0 and X(x)M2 > 1 we have

∣∣∣∣∣∣
F̂o(x, χ) −

2εχ exp
(

3u(x)
2

)

q
3
4

M∑

n=1

nχ(n) exp

(
−πn2 exp(2u(x))

q

)∣∣∣∣∣∣
≤
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2 exp
(

3x
2
− X(x)M2

)

q3/4δ1/2X(x)

(
1 +

1

2X(x)M2

) 1
2

.

Proof. The proof follows the same lines as Lemma 7.1.1.

7.1.2 Approximating
˜̂
F e and

˜̂
F o with F̂e and F̂o

We intend to chose our parameters to allow us to use F̂e and F̂o as approx-

imations to
˜̂
F e and

˜̂
F o respectively. We therefore need to bound the error

introduced and we start with a lemma.

Lemma 7.1.3. For t ∈ R we have

∣∣∣∣Lχ

(
1

2
+ it

)∣∣∣∣ ≤ ζ

(
9

8

) ( q

2π

)5/16
(

3

2
+ |t|

)5/16

.

Proof. We evaluate Rademacher’s bound [66]

|Lχ(s)| ≤ ζ(1 + η)

(
q|1 + s|

2π

) 1+η−<(s)
2

with η = 1/8 and s = 1/2 + it.

We can now proceed to the necessary bounds.

Lemma 7.1.4. Let A ≥ 1
2π

, B > 0, w1 = 2πn
B

+ 2πA, w2 = −2πn
B

+ 2πA, with

X(x) and δ as defined in Lemma 7.1.1 and X(w1), X(w2) > 1. Then

∣∣∣∣
˜̂
F e(n, χ) − F̂e

(
2πn

B
, χ

)∣∣∣∣ ≤

4
(
exp

(
w1

2
− X(w1)

) (
1 + 1

2X(w1)

)
+ exp

(
w2

2
− X(w2)

) (
1 + 1

2X(w2)

))

q1/4δ1/2(1 − e−πA)

and ∣∣∣∣
˜̂
F o(n, χ) − F̂o

(
2πn

B
, χ

)∣∣∣∣ ≤

4

(
exp

(
3w1

2
− X(w1)

) (
1 + 1

2X(w1)

) 3
2

+ exp
(

3w2

2
− X(w2)

) (
1 + 1

2X(w2)

) 3
2

)

q3/4δ1/2(1 − e−πA)
.

Proof. We apply Lemma 5.6 of [13] with x = 2πn
B

± 2πA.
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Lemma 7.1.5. Given t ∈ R and B > 0, we define

Ee(t) := ζ

(
9

8

)
π− 1

4

∣∣∣∣Γ
(

1

4
+

it

2

)∣∣∣∣ e
π
4
ηt

(
q

2π

∣∣∣∣
3

2
+ t

∣∣∣∣
) 5

16

,

βe(t) :=
π

4
− 1

2
arctan

(
1

2|t|

)
− 4

π2|t2 − 1
4
| ,

Eo(t) := ζ

(
9

8

)
π− 3

4

∣∣∣∣Γ
(

3

4
+

it

2

)∣∣∣∣ e
π
4
ηt

(
q

2π

∣∣∣∣
3

2
+ t

∣∣∣∣
) 5

16

and

βo(t) :=
π

4
− 3

2
arctan

(
1

2|t|

)
− 4

π2|t2 − 9
4
| .

Then for βe,o

(
m
A

+ B
)

> π
4
η and βe,o

(
m
A
− B

)
> −π

4
η we have

∣∣∣F̃e(m,χ) − Fe

(m

A
,χ

)∣∣∣ ≤

Ee

(
m
A

+ B
)

1 − exp(−B(βe(m/A + B) − π
4
η))

+
Ee

(
m
A
− B

)

1 − exp(−B(βe(m/A − B) + π
4
η))

and ∣∣∣F̃o(m,χ) − Fo

(m

A
,χ

)∣∣∣ ≤

Eo

(
m
A

+ B
)

1 − exp(−B(βo(m/A + B) − π
4
η))

+
Eo

(
m
A
− B

)

1 − exp(−B(βo(m/A − B) + π
4
η))

.

Proof. We apply Lemma 5.7 (i) of [13] with t = m
A

+ B and 5.7 (ii) with

t = m
A
− B, replacing the bound for Lχ(s) with our Lemma 7.1.3.

We note here that the condition on βe,o(t) will fail when t is small, i.e. when

m
A

≈ B. However, this only happens for m approaching AB, by which point

the loss of precision through other factors has rendered these values useless for

computational purposes anyway.

7.2 A DFT Based Algorithm for Lχ(1/2 + it)

Equation 2.4.1 tells us that we can compute Dirichlet L-functions as a sum over

Dirichlet characters of values of the Hurwitz zeta function ζ(s, α). Theorem

3.2.6 tells us how, given those values of ζ(s, α), we can compute Lχ(s) in, on

average, O(log q) operations. The following section discusses a rigorous but

fast method of computing Hurwitz zeta.
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7.2. A DFT Based Algorithm for Lχ(1/2 + it)

7.2.1 Computing ζ(s, α)

We need to be able to compute ζ(1/2 + it, a/q) for 1 ≤ a < q with (a, q) = 1.

We use the following lemma:

Lemma 7.2.1. For s 6∈ Z≤0, α ∈ (0, 1] and |δ| < α

ζ(s, α + δ) =
∞∑

k=0

(−δ)kζ(s + k, α)
∏k−1

j=0(s + j)

k!
.

Proof. Starting with <s > 1 and differentiating term by term we have

ζ(k)(s, α) =
∞∑

n=0

(−1)ks(s + 1)(s + 2) . . . (s + k − 1)(n + α)−s−k

and the result follows for <s > 1 by Taylor’s Theorem. The Taylor expansion

also gives us the analytic continuation to C \ Z≤0.

In practice, it is better to work with

ζM(s, α) = ζ(s, α) −
M∑

n=0

(n + α)−s

for some M ∈ Z>0 and to recover ζ(s, α) by adding back the missing terms.

To be able to rigorously bound the error in truncating the series definition

and the Taylor approximation, we use the following lemmas.

Lemma 7.2.2. For α ∈ (0, 1], <(s) > 1 and M ≥ 2

|ζM(s, α)| ≤ (M + α − 1)1−<(s)

<(s) − 1
.

Proof. Integral test.

Lemma 7.2.3. If we use the first N terms of the Taylor approximation to

ζM(s, α + δ), then the absolute error is bounded by

(N + 1) |s(s + 1) . . . (s + N − 1)ζM(s + N,α)| δN

N !(N + 1 − (|s| + N)δ)

and the approximation is valid for

(|s| + N)δ

N + 1
< 1.
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Chapter 7. Computing Lχ(s) Rigorously

Proof. The first term dropped is

s(s + 1) . . . (s + N − 1)ζM(s + N,α)δN

N !

and the result follows by considering the geometric sequence with this first

term and with common ratio

(|s| + N)δ

N + 1
.

7.3 Up-sampling

The output from both algorithms is a lattice of values of Λχ(t) (defined in

section 2.4). We use the results of section 2.6 to rigorously up-sample.

For t0 ∈ R and H > 0 define W : R → R by

W (t, χ) := Λχ(t) exp

(−(t − t0)
2

2H2

)

so W (t0, χ) = Λχ(t).

We aim to estimate W (t0, χ) from our samples using theorems 2.6.1 (Whittaker-

Shannon) and 2.6.2. The following lemmas provide the necessary rigorous

bounds.

Lemma 7.3.1. For aχ ∈ {0, 1}
∣∣∣∣Γ

( 1
2

+ it + aχ

2

)∣∣∣∣ e
πt
4

≤ max

(
21/4

√
π

(
3

2
+ max(t, 0)

) 1
4

exp

(
1

6

)
,
√

2π exp

(
π

8
+

1

4

))
.

Proof. We use Stirling’s approximation separately for aχ = 0 and aχ = 1.

Lemma 7.3.2. Define Iχ by

Iχ := 4

∞∫

B

∣∣∣∣∣∣

∞∫

−∞

W (t, χ) e(−xt) dt

∣∣∣∣∣∣
dx.
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7.3. Up-sampling

Then, writing M in place of 5
2
− aχ we have

Iχ ≤
2
(

q
π

)M
2 ζ(M + 1/2) exp

(
M2

2h2 − 2πBM
)

P (t0, h)

Mπ

where

P (t0, h) =

∞∫

−∞

∣∣∣∣Γ
(

3 + it

2

)∣∣∣∣ exp

(
πt

4

)
exp

(
−(t − t0)

2

2h2

)
dt.

Proof. Writing s = 1/2 + it we get

Iχ ≤4

∞∫

B

∣∣∣∣∣∣∣

∫

<(s)=1/2

( q

π

) s−1/2
2

Γ

(
s + aχ

2

)
exp

(
πi(1/2 − s)

4

)
Lχ(s)

exp(2π(1/2 − s)x) exp

(−(i(1/2 − s) − t0)
2

2h2

)
ds

∣∣∣∣ dx.

We now shift the contour of integration to the right so that <(s) = σ = 3−aχ

and write s = M + 1/2 + it to get

Iχ ≤ 4

∞∫

B

∞∫

−∞

∣∣∣∣
( q

π

)M
2

Γ

(
3 + it

2

)
exp

(
πt

4

)
ζ(M + 1/2)

exp(−2πMx) exp

(
M2 − (t − t0)

2

2h2

)∣∣∣∣ dt dx.

Integrating with respect to t gives us

Iχ ≤ 4
( q

π

)M
2

ζ(M + 1/2) exp

(
M2

2h2

)
P (t0, h)

∞∫

B

exp(−2πMx) dx

and the result follows after integrating with respect to x.

Lemma 7.3.3. Let t0 ≥ 0. Then

P (t0, h) ≤ hπ

(
t0 +

h√
2π

+ 1 +
1

2
√

2

)
.
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Proof. We have

P (t0, h) ≤
∞∫

0

∣∣∣∣Γ
(

3 + it

2

)∣∣∣∣ exp

(
πt

4

)
exp

(−(t − t0)
2

2h2

)
dt

+

0∫

−∞

∣∣∣∣Γ
(

3 + it

2

)∣∣∣∣ exp

(
πt

4

)
exp

(−(t − t0)
2

2h2

)
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≤
∞∫

0

(1 + t)

2

∣∣∣∣Γ
(

1 + it

2

)∣∣∣∣ exp

(
πt

4

)
exp

(−(t − t0)
2

2h2

)
dt

+ Γ

(
3

2

)
h
√

2π

2

(
1 − erf

(√
2t0
2

))

≤
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0

(1 + t)

2

√
π

cosh(πt/2)
exp

(
πt

4

)
exp

(−(t − t0)
2

2h2

)
dt

+ Γ

(
3

2

)
h
√

2π

2

≤
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0

(1 + t)

2

√
2π exp

(−(t − t0)
2

2h2

)
dt +

hπ
√

2

4

≤hπ

(
h√
2π

+ t0 + 1

)
+
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√
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4
.

Lemma 7.3.4. Let h,B > 0, t0 = n0

2B
for some n0 ∈ Z>0 and N ∈ Z>0. Now

define

G(n) :=

(
3
2

+ t0 + N+n
2B

)9/16
exp

(
−(N+n)2

8B2h2

)

π(N + n)
.

Then

∑

n≥2Bt0+N

(
3

2
+

n

2B

)9/16

exp

(
−

(
n

2B
− t0

)2

2h2

)
sinc

(
2Bπ

( n

2B
− t0

))

≤ G(0)

1 − G(1)/G(0)
.

Proof. G(n) is at least as large as the corresponding term in the sum and the

ratio G(n + 1)/G(n) is a decreasing function of n so the result follows as the

sum of a geometric series.
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7.4. Application to Rigorous Verification of the GRH

We can now combine Lemmas 7.1.3, 7.3.1 and 7.3.4.

Lemma 7.3.5. Define

E :=
∑

|n|≥N

W
( n

2B

)
sinc

(
2Bπ

( n

2B
− t0

))
.

Then for large enough t0 we have

|E| ≤
√

πζ

(
9

8

)
exp(1/6)25/4

( q

2π

)5/16 G(0)

1 − G(1)/G(0)
.

7.4 Application to Rigorous Verification of the

GRH

7.4.1 History and Background

The largest rigorous computation to test the GRH for multiple moduli was

described by Rumely in [76]. This confirmed the GRH for moduli q ≤ 13

to height T = 10 000 and then various q to height T = 2 500. The largest

modulus tested was q = 432.

We set out to test the GRH for all moduli ≤ 100 000 up to height T such

that qT ≥ 100 000 000. There are 1 847 865 074 primitive characters to

consider and approximately 9.2× 1012 zeros to check. This number of zeros is

about a factor of 800 000 beyond Rumely and is of the same order of magnitude

as the (non-rigorous) computations of Gourdon [36] with Riemann’s zeta. We

note, however, that the Rumely went on to isolate those zeros to within 10−12

and produced statistics on their location. The number of zeros involved our

calculation made such analysis impractical.

7.4.2 Method

To be able to isolate the zeros of Lχ(s), we consider the zero density expected

at qT = 108 which is 1
2π

log
(

qT
2π e

)
≈ 2.5. Empirically, we find that sampling at

about 5 times this rate strikes a good balance between the cost of computing
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Chapter 7. Computing Lχ(s) Rigorously

more points versus the expense of tracking down zeros that get missed at any

given sample rate. We used a spacing 5
64

or a sample rate of A = 12.8.

7.4.2.1 Implementing the DFT based algorithm

We implemented the DFT based algorithm for q ∈ [10 401, 100 000]. We first

pre-computed a lattice of values of ζ1 using ’C’ and MPFI. Specifically, we

computed a lattice for each t from 0 to 9 680 in steps of 1
A

where an individual

lattice consisted of 4097 rows and 15 columns. The j, k’th entry for a given t

was ζ1

(
1/2 + k + it, j

4096

)
. The 0’th row was initialised to ζ(1/2 + k + it) and

the 4097’th row to ζ(1/2 + k + it) − 1. The middle row was computed using

the identity

ζ

(
s,

1

2

)
= (2s − 1)ζ(s)

and then the lattice was filled top-down, bottom-up and middle-out using the

Taylor approximation (Lemma 7.2.1) or the series definition depending on the

size of <s.

Once computed, each lattice was saved as double precision intervals. In

all, we computed nearly 124 000 such lattices and it was the disk space they

consumed that limited the maximum t (and therefore minimum q) to which

the DFT based algorithm was applicable.

Next, for each q and for each t we used the lattice file to compute the values

ζ
(
1/2 + it, a

q

)
for (a, q) = 1 by Taylor approximation with 15 terms and then

computed the values Lχ(1/2 + it) by multi-dimensional DFT as described in

Theorem 3.2.6. For primitive χ we then used Lχ(1/2 + it) to compute Λχ(t).

We note that since Λχ(t) is real valued, we would be able to deduce (up

to sign) εχ from Lχ(1/2 + it) and the Γ and π factors. However, we compute

all the εχ for a given modulus via Theorem 3.2.6. Testing that the intervals

representing the imaginary parts of Λχ(t) all contains zero then acts as a useful

internal check.
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7.4. Application to Rigorous Verification of the GRH

7.4.2.2 Implementing Booker’s algorithm

We implemented Booker’s algorithm described in section 7.1 in ’C’ using MPFI

and ’C++’ using int complex and applied it to q ∈ [3, 10 400].

The first part of the computation is the sum in Lemmas 7.1.1 and 7.1.2.

These sums consist of M = O((qT )1/2) terms but by summing these terms into

their residue classes modulo q and then using Theorem 3.2.6 we save a factor

of ϕ(q)1−ε. We compute the sums into residue classes using multiple precision

intervals with MPFI, then approximate those results with double precision

intervals and use our own double precision interval routines from there on.

For small q, the savings of this technique reduce (vanishing for q ∈ {3, 4})
and our algorithm has similar complexity to those based on the approximate

functional equation. However, over all q, the average time to isolate a single

zero remains essentially bounded.

The main technical challenge for small q is the size of the DFT that we

need to compute when passing from
˜̂
F e,o to F̃e,o. For q = 3 we wish to compute

Lχ(1/2+ it) to height t = 108

3
and to ensure that F̂ has decayed sufficiently, we

actually need to go at least 5 times higher still. Thus we have N ≈ 5× 108

3
×A ≈

231. Since our double precision complex intervals consist of 32 bytes each, our

data is of size 236 bytes or 64 Gbytes. The hardware at our disposal was limited

to 8 Gbytes of memory, so after allowing for the space to store the roots of

unity we were restricted to FFTs of length 227 so we made use of section 3.2.8

to bridge the gap. We note that we could achieve a factor of two saving because

one side of the DFT is real, but we did not exploit this.

7.4.2.3 Implementing Turing’s method

Regardless of which algorithm has been used to this point, confirming the

GRH now reduces to applying Turing’s method as discussed in section 2.5.2,

potentially after up-sampling to resolve closely spaced zeros using the bounds

of section 7.3.

91



Chapter 7. Computing Lχ(s) Rigorously

We initially up-sample by a factor of 8, then (if necessary) by 32, 128 and

finally by 512. By this stage the step size is 5
32768

(≈ 0.00015) and only about

0.0003% of the characters remain. By now, we have several possible issues

• A single zero is unaccounted for, but the sign of Λχ(0) is indeterminate

(i.e. an interval straddling zero). Computing Λχ(0) in high precision with

Euler-Maclaurin allows us to resolve the true sign and thus locate the

missing zero.

• Turing’s method produces an upper limit on the number of zeros to find

which is non-integral or too large because of pairs of zeros missed in the

region above t0 used to calculate the integral over Ñt0 . Locating these

pairs using high precision resolves the problem.

• Pairs of zeros are missing, but there are regions where, at double pre-

cision, Λχ(t) is positive (resp. negative), then indeterminate, then posi-

tive again (negative). High precision examination of the indeterminate

stretch yields a sign change indicating a pair of zeros.

• Pairs of zeros are missing, but there are regions where, at double pre-

cision, Λχ(t) is positive (resp. negative), indeterminate for many points,

then negative (resp. positive). Rather than indicating a single zero, the

indeterminate region is hiding three sign changes which are resolved using

high precision.

7.4.2.4 Results

Theorem 7.4.1. The GRH holds for Dirichlet L-functions of primitive char-

acter modulus q ≤ 100 000 to height T such that qT = 100 000 000.

Corollary 7.4.2. There are no positive real zeros of Lχ for any primitive χ

of modulus q ≤ 100 000.

Proof. The existence of a real zero of Lχ(s) at s 6= 1
2

would have created a

mismatch between Turing’s estimate and the number of zeros found. There
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7.5. Distribution of Central Values

were, however, 8 cases where the double precision interval computed for Λχ

(
1
2

)

included 0. These cases were all eliminated using higher precision computa-

tions.

7.5 Distribution of Central Values

In [44] Katz and Sarnak investigated the relationship between low lying ze-

ros of L-functions and the eigenvalues of matrices from various ensembles of

Random Matrix Theory (RMT). Conrey and Farmer [24] extended this to the

mean values of families of L-functions at their central point and Keating and

Snaith [46], [45] derived exact expressions for the moments of the characteristic

polynomials of matrices with respect to these ensembles at the corresponding

point (θ = 0).

Specifically, the distribution of the values of < log Lχ(1/2) for primitive χ

of a given modulus q is expected to resemble the distribution of the values

of < log Z(U, θ) = det(I − U exp(−iθ)) of N × N unitary matrices from the

Circular Unitary Ensemble of RMT, when we equate N with log q.

We define (see Equation (6) of [46])

MN(s) :=
N∑

j=1

Γ(j)Γ(j + s)

Γ
(
j + s

2

)2 .

Then (from Equation (36) of [46]) the probability density function rN for

< log Z is approximately

rN(x) =
1

2π

∞∫

−∞

MN(iy) exp(−ixy) dy. (7.5.1)

We compute (non-rigorously) ζ
(

1
2
, a

q

)
for q = 1 000 000 007 (a prime)

and a = 1 . . . q − 1 by Euler-Maclaurin summation. By appealing to Theorem

3.2.6 and using the (non-rigorous) FFTW package [31] on a machine with large

memory, we compute Lχ(1/2) for all q − 2 primitive characters with a single

length q − 1 DFT. These two steps take a couple of hours of CPU time. We
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rN(x) with N=21 no Arithmetic factor
Re log L(1/2) with q=109+7

Gaussian

Figure 7.1: < log Lχ(1/2) vs. RMT Conjecture w/o Arithmetic Factor

then compute < log Lχ(1/2) and place the values into 500 equal width buckets,

then normalise to mean 0 and unit variance.

We now compute a similar number of values for equation 7.5.1 by numerical

integration (we used PARI [5] truncating the integral at ±10), normalised again

to 0 mean and unit variance.

We plot both curves, with a normalised Gaussian for reference, as Figure

7.1.

We note that while the two curves are similar, they are discernibly different.

In an attempt to at least partially explain this difference, and referring to [46]

again, we introduce the arithmetic factor a for ζ as

a(λ) :=
∏

p

[
(1 − p−1)λ2

( ∞∑

m=0

(
Γ(λ + m)

m!Γ(λ)

)2

p−m

)]
.

For the central value of Dirichlet L-functions, this term is modified by a

product over primes dividing the modulus (Conjecture 1 of [17]) but for our
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Gaussian

Figure 7.2: < log Lχ(1/2) vs. RMT Conjecture with Arithmetic Factor

large, prime modulus, this factor will be negligible. Thus we would like to plot

RN(x) :=

∞∫

−∞

MN(iy)a(iy/2) exp(−iyx) dy.

In a personal communication, Booker has provided a polynomial approxi-

mation to a which allows us to estimate the integral for RN numerically. The

resulting plot is shown as Figure 7.2.

The distribution from computed values of Lχ(1/2) and that predicted by

RMT once the arithmetic factor is included are a significantly better match

than before the arithmetic factor was taken into account. It would be inter-

esting to investigate whether this remains true for different q, in particular for

q divisible by small primes.

7.6 Non-vanishing of Lχ(1/2)

Chowla conjectured in [20] that Lχ(1/2) 6= 0 for quadratic characters. This has

been tested numerically and Watkins [87] shows there are no real positive zeros
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for real odd characters of modulus q ≤ 3× 108 while Chua [21] established the

same for real even characters of modulus q ≤ 2×105. More recently, Omar [64]

established the non-vanishing of all real characters with q ≤ 1010. Our result

establishes the same for all primitive characters, real and complex, of modulus

q ≤ 2 × 106.

Theorem 7.6.1. Lχ(1/2) 6= 0 for all primitive χ of modulus ≤ 2 000 000.

Proof. We ran the DFT algorithm for q ∈ [3, 2 000 000] (739 151 526 102

primitive characters) against the single Hurwitz zeta lattice file for t = 0, thus

computing Λχ(0) as a double precision interval. In 438 152 cases the result-

ing interval contained zero, so we recomputed those points, again in double

precision interval arithmetic, but this time using Euler-Maclaurin summation.

This resolved the sign in 438 132 cases, leaving just 20 of indeterminate sign.

These in turn were all resolved using a multiple precision interval version of

Euler-Maclaurin.
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Chapter 8

Areas for Further Research

What follows is a brief survey of some areas we have identified that may warrant

continuing research.

• As we have already observed Rubinstein’s “lcalc” [74] computes (non-

rigorously) single values for generic L-functions using the smoothed ap-

proximate functional equation. The input consists of information about

the L-function’s poles and its functional equation, together with enough

co-efficients of its Dirichlet series. Molin’s PhD thesis [55] develops rig-

orous bounds for the application of double exponential integral formulae.

In particular, Molin’s results would allow us make Rubinstein’s method

rigorous. It would be interesting to investigate whether a combination

of a rigorous implementation of the smoothed (or windowed) approxi-

mate functional equation and FFT techniques could be used to provide

a generic calculator to be used when many values of an L-function or a

family of L-functions are required.

• Lagarias and Odlyzko observe in their analytic π(x) paper [49] that “This

technique can be generalized to evaluate many other arithmetic func-

tions, including the functions π(x; k, a) counting the number of primes

p ≡ a (mod k) with p ≤ x, and the function M(x) which is the partial

sum of the Möbius function µ(n) for all n ≤ x.” Any such new algo-
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rithms that rely on ζ and its zeros can obviously re-use the data we have

already computed, which might make them an attractive candidate for

future research.

• The extreme values of Lχ(1) for families of Dirichlet L-functions are of

interest to number theorists. Our DFT based algorithm for computing

Dirichlet L-functions can be readily adapted to this task. Since this

algorithm depends on the values of ζ(s, α) and this has a pole at s = 1,

we would work instead with a lattice of values of lim
s→1+

ζ(s, α)− ζ(s). We

believe we could certainly investigate the behaviour of Lχ(1) to modulus

106 or so.

• We would like to extend our investigations into the non-vanishing of

Lχ(1/2) for general primitive characters beyond our current result for

modulus q ≤ 2 × 106. There are two issues with this. The first is the

size of the computation (it is O(q2) in time) and the other is the loss of

precision we suffer as the size of the DFT’s increase. Neither appears

insurmountable.

• At the time of writing, we are running the analytic prime counting al-

gorithm to compute π (1024). If successful, this will improve on known

unconditional results (including ours) by a factor of 10 and will match

the conditional result of Buethe et al. announced in [18].

We have argued that using interval arithmetic to help achieve rigorous

computation is both desirable and achievable. However, we have also identified

areas for research that would help to encourage this philosophy.

• We discussed in section 3.1.3 some of the challenges in going from real

to complex intervals. The approach we adopted, whilst expedient for

our applications, will mean that our complex interval class suffers from

excessive loss of precision. Tackling the challenge of producing a less
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wasteful representation which is not computationally burdensome is, in

our opinion, worthy of further effort.

• Our interval arithmetic armoury consists of implementations in double

precision and multiple precision. The penalty moving from double to

multiple is large, even if the extra precision needed is only a few bits.

There might be a role for fixed precision interval packages in quad or

even higher formats.

• The desire for high performance graphics capability, particularly for the

computer games industry, spurred the development of Graphics Process-

ing Units (GPU’s) which sit alongside the work-station’s CPU and take

away the computational load of rendering, shading and 3-D effects. These

multiprocessor devices have now been developed to the point where they

can be used as a high performance processing engine for other applica-

tions (see for example [60]). Recently, hardware with IEEE compliant

floating point processors has been released, importantly including the

ability to control rounding modes. Limitations include the I/O bottle-

neck between the GPU and host CPU, and the relatively small amounts

of memory available to the GPU. However, we believe that it would be

worthwhile to see if these limitations can be overcome in practice to al-

low us to exploit the 500 Gflops or so of double precision performance

available.
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