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Abstract

A general class of adaptive process in games is developed, which significantly gen-

eralises weakened fictitious play (Van der Genugten, 2000) and includes several

interesting fictitious-play-like processes as special cases. The general model is rigor-

ously analysed using the best response differential inclusion, and shown to converge

in games with the fictitious play property. Furthermore, a new actor–critic process

is introduced, in which the only information given to a player is the reward received

as a result of selecting an action— a player need not even know they are playing

a game. It is shown that this results in a generalised weakened fictitious play pro-

cess, and can therefore be considered as a first step towards explaining how players

might learn to play Nash equilibrium strategies without having any knowledge of

the game, or even that they are playing a game.

Key words: fictitious play, best response differential inclusion, stochastic

approximation, actor–critic process
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1 Introduction

As observed by Brown (1951), a fictitious play process will follow trajectories

of the best response differential inclusion (Gilboa and Matsui, 1991; Cowan,

1992), with “mistakes” arising from the discretisation that eventually become

negligible due to the decreasing step size. This method has recently been

formalised by Benäım et al. (2003), allowing analysis of the best response

differential inclusion to provide convergence proofs for classical fictitious play,

and obviating the need for the ingenious but case-specific techniques employed

previously (Robinson, 1951; Miyasawa, 1961; Monderer and Shapley, 1996, and

see Berger (2004a) for further references).

Weakened fictitious play (Van der Genugten, 2000) is identical to fictitious

play, except for the fact that at each step the strategies played need only

be ǫ-best responses, with ǫ → 0 as time progresses. Intuitively, since these

“mistakes” vanish asymptotically, such processes should also follow the best

response differential inclusion in the limit (regardless of the rate at which ǫ →

0, in contrast with Van der Genugten’s analysis). In this work we introduce a

significant generalisation of weakened fictitious play and analyse it using the

method of Benäım et al. (2003). This unified approach to the analysis allows

us to discuss several interesting variations of fictitious play and show that they

will all converge to Nash equilibrium in games known to have the fictitious

play property, simply by showing that they are in fact generalised weakened

fictitious play processes. One such example is a fictitious play process which

places greater weight on recently observed actions than on actions observed in

the distant past; this may be seen as compensating for the fact that opponent

strategies change over time, as opposed to the implicit assumption in classical
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fictitious play that opponent strategies are stationary. A second example is

stochastic fictitious play (Fudenberg and Kreps, 1993; Benäım and Hirsch,

1999) for which the payoff perturbations become negligible as time proceeds.

A much more substantial application involves the introduction of a new actor-

critic process in which the only information given to a player is the reward

received as a result of selecting an action—a player need not even know they

are playing a game. This process is also shown to result in a generalised weak-

ened fictitious play process, and therefore to converge in the same games as

fictitious play, despite using significantly less information; this can therefore

be considered as a first step towards explaining how players might play Nash

equilibrium strategies without having any knowledge of the game, or even that

they are playing a game.

We note here that other analyses of “simple, payoff-based” learning (Foster

and Young, 2003b) tend to focus on the convergence of the average action

played, which does not preclude the possibility that strategies are very obvi-

ously cycling around an equilibria (Fudenberg and Levine, 1998). Furthermore,

they either prove that these averages converge only to correlated equilibria

(Hart and Mas-Colell, 2001), or prove convergence only in a very weak sense,

essentially due to the fact that if strategies vary randomly then at some point

they must get close to a Nash equilibrium (Foster and Young, 2003a,b). In con-

trast, for our actor-critic process the actual strategies of the players converge

for all of the games in which generalised weakened fictitious play is shown to

converge.

We note here that Hart and Mas-Colell (2003) prove that no “uncoupled”

dynamics can converge to equilibrium in general games. While the processes
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we consider in this paper are uncoupled (players do not consider any payoffs

other than their own) we believe these are still worthy of study. Partly this is

for historical interest—several interesting models of learning are combined into

a single large class and analysed with a unified approach. In addition, if players

are not aware of the fact that they are playing a game, it is less easy to escape

the class of uncoupled processes, and so it is important to understand which

classes of games may result in convergence to Nash equilibrium strategies

under these minimal information requirements.

The paper is structured as follows. In the next section we introduce some

notation and preliminary ideas, then in Section 3 the generalised weakened

fictitious play model is introduced and analysed. Several interesting examples

of the model are discussed in Section 4, and the new actor–critic process is

proposed and studied in Section 5.

2 Preliminaries

We consider myopic boundedly-rational players in a repeated N -player normal-

form game, in which player i has pure strategy set Ai, mixed strategy set ∆i

(so that ∆i is the set of probability distributions over Ai), and bounded re-

ward function ri : ×N
i=1∆

i → R. We will write ri(ai, π−i) (resp. ri(πi, π−i))

for the expected reward to player i if they select pure strategy ai (resp.

mixed strategy πi) and all other players play the mixed strategy profile π−i =

(π1, . . . , πi−1, πi+1, . . . , πN); also write

bi(π−i) = argmax
πi∈∆i

ri(πi, π−i) and b(π) = ×N
i=1b

i(π−i)
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for player i’s set of best responses to π−i, and for the set of joint best responses

to mixed strategy profile π respectively.

In a classical fictitious play process, assuming the players all start with the

same prior beliefs about strategies, these beliefs follow the difference inclusion

σn+1 ∈
(

1 − 1

n + 1

)

σn +
1

n + 1
b(σn)

(notice this is an “inclusion” since b is not necessarily single-valued). We can

rewrite this as

σn+1 − σn ∈ αn+1 (b(σn) − σn)

with αn+1 = (n + 1)−1 → 0. It is easy to convince oneself that it is reasonable

to expect the iterations σn to track the differential inclusion

d
dt

σt ∈ b(σt) − σt

for sufficiently large n. Indeed Benäım et al. (2003) prove the following general

theorem, which holds for any norm ‖ · ‖:

Theorem 1 Assume F : R
m → R

m is a closed set-valued map such that F (x)

is a non-empty compact convex subset of R
m with sup{‖z‖ : z ∈ F (x)} ≤

c(1 + ‖x‖) for all all x. Let {xn}n≥0 be a process satisfying

xn+1 − xn − αn+1Un+1 ∈ αn+1F (xn),

where {αn}n≥1 is a sequence of non-negative numbers such that

∑

n≥1

αn = ∞, and αn → 0 as n → ∞,
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and {Un}n≥1 is a sequence of (deterministic or random) perturbations. If

(1) For all T > 0

lim
n→∞

sup
k

{∥

∥

∥

∥

∥

k−1
∑

i=n

αi+1Ui+1

∥

∥

∥

∥

∥

:
k−1
∑

i=n

αi ≤ T

}

= 0

(2) supn≥0 ‖xn‖ < ∞

then the set of limit points of {xn}n≥0 is a connected internally chain-recurrent

set of the differential inclusion

d
dt

xt ∈ F (xt).

This result requires some explanation: an internally chain-recurrent set X of

a differential inclusion is a set such that for each x ∈ X, there exists a chain

of trajectories of the differential inclusion linking x to itself, all of which are

fully contained in X, and where the start of each trajectory may be a slight

perturbation of the end of the previous trajectory (see Benäım and Hirsch

(1999) for a full exposition of this idea in a game-theoretical context). This

notion was introduced by Conley (1978), and extends the traditional notion

of a recurrent set to the situation where small shocks can be applied to the

trajectory of a system, such as those resulting from discretisation. (Benäım

et al. (2003) prefer the phrase “internally chain-transitive” to “connected in-

ternally chain-recurrent”, but we feel that this is a confusing way to describe

an extension of recurrence.)

Benäım et al. (2003) show that the conditions are met for a fictitious play pro-

cess, for which Un = 0 for all n, and so prove that the limit points of a fictitious

play process are a connected internally chain-recurrent set of the best-response

differential inclusion. This result can be used to prove the convergence of ficti-
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tious play by showing that all connected internally chain-recurrent sets consist

purely of Nash equilibria, which has been shown for two-player zero-sum games

(Hofbauer, 1995), potential games (Benäım et al., 2003), and generic 2 × m

games (Berger, 2004a). Recent results (Berger, 2004b) show that all trajecto-

ries of the best-response differential inclusion converge to Nash equilibrium in

further classes of games (including all games known to have the fictitious play

property). Note, however, that this is not a sufficiently strong result for the

application of Theorem 1. On the other hand, since the purpose of this paper

is to study generalised weakened fictitious play, the strengthening of Berger’s

results is left to an anticipated paper by Benäım et al., and so the main result

will be in the same form as Theorem 1.

3 Generalised weakened fictitious play

Van der Genugten (2000) introduced weakened fictitious play, described briefly

in §1, as a mechanism for speeding up the convergence of fictitious play in zero-

sum games, and therefore proved the result only for two-player zero-sum games

and for a rather restricted sequence of ǫn determining the degree of weakening

of the best responses. On the other hand, by linking such a process to the

best response differential inclusion, it is intuitively clear that identical results

should be achievable for any weakened fictitious play as for classical fictitious

play. We proceed to define generalised weakened fictitious play, before proving

Theorem 3 which applies Theorem 1 to prove convergence for this wider class

of processes.

Define the ǫ-best responses of player i to opponent mixed strategy profile π−i
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to be the set

bi
ǫ(π

−i) = {πi ∈ ∆i : ri(πi, π−i) ≥ ri(bi(π−i), π−i) − ǫ}.

That is, the set of player i’s strategies that perform not more than ǫ worse than

player i’s best response. The joint ǫ-best response to mixed strategy profile π

is defined, analogously to the case of best responses, as the set

bǫ(π) = ×N
i=1b

i
ǫ(π

−i).

Definition 2 A generalised weakened fictitious play process is any process

{σn}n≥0, with σn ∈ ×N
i=1∆

i, such that

σn+1 ∈ (1 − αn+1)σn + αn+1 (bǫn
(σn) + Mn+1) (1)

with αn → 0 and ǫn → 0 as n → ∞,

∑

n≥1

αn = ∞,

and {Mn}n≥1 a sequence of perturbations such that, for any T > 0,

lim
n→∞

sup
k

{∥

∥

∥

∥

∥

k−1
∑

i=n

αi+1Mi+1

∥

∥

∥

∥

∥

:
k−1
∑

i=n

αi ≤ T

}

= 0.

In other words, the current strategies are adapted towards a (possibly per-

turbed) joint ǫ-best response. Clearly, a classical fictitious play process is a

generalised weakened fictitious play process with ǫn = Mn = 0 and αn = 1/n

for all n. However we will see that both weakening (i.e. allowing non-zero ǫn),

generalising (letting αn be chosen differently), and allowing (certain) pertur-

bations does not affect the convergence result of Benäım et al. (2003), but

allows interesting processes to be considered.
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Theorem 3 The set of limit points of a generalised weakened fictitious play

process is a connected internally chain-recurrent set of the best response dif-

ferential inclusion.

PROOF. The proof consists of showing that {σn}n≥0 satisfies the conditions

of Theorem 1. We start by rewriting the definition of a generalised weakened

fictitious play process in the form

σn+1 − σn − αn+1 {bǫn
(σn) − b(σn) − Mn+1} ∈ αn {b(σn) − σn} .

Benäım et al. (2003) prove that F (σ) = b(σ) − σ meets the requirements of

Theorem 1, and the sequence {αn}n≥1 is of the correct form by definition.

Therefore it suffices to verify conditions 1 and 2 of Theorem 1. Condition 2 is

trivial, since σn ∈ ×N
i=1∆

i for all n. If we take k such that
∑k−1

i=n αi ≤ T , then

sup
k

∥

∥

∥

∥

∥

k−1
∑

i=n

αi+1 {bǫi
(σi) − b(σi) − Mi+1}

∥

∥

∥

∥

∥

≤ sup
k

{

k−1
∑

i=n

αi+1 ‖bǫi
(σi) − b(σi)‖

}

+ sup
k

∥

∥

∥

∥

∥

k−1
∑

i=n

αi+1Mi+1

∥

∥

∥

∥

∥

≤T sup
k

‖bǫk
(σk) − b(σk)‖ + sup

k

∥

∥

∥

∥

∥

k−1
∑

i=n

αi+1Mi+1

∥

∥

∥

∥

∥

.

The second term tends to zero by assumption, and therefore if bǫ(σ) → b(σ)

uniformly in σ as ǫ → 0 then the result follows. However, this is immediate

from the upper semi-continuity of b, since the rewards ri are bounded. 2

Corollary 4 Any generalised weakened fictitious play process will converge to

the set of Nash equilibria in two-player zero-sum games, in potential games,

and in generic 2 × m games.
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PROOF. Hofbauer (1995) shows that the set of Nash equilibria is globally at-

tracting for two-player games, and Berger (2004a) proves the same for generic

2 × m games. This is sufficient to prove that any connected internally chain-

recurrent set is contained in the set of Nash equilibria. Benäım et al. (2003)

show that any connected internally chain-recurrent set is contained in the set

of Nash equilibria for potential games. Combining this with Theorem 3 gives

the result. 2

We see that this is a significant strengthening of Van der Genugten’s result,

which considered only specific sequences ǫn → 0, and restricted to the case

αn = 1/n, while also considering only two-player zero-sum games.

Note that for classical fictitious play, and Van der Genugten’s weakened fic-

titious play, the perturbations Mn are identically 0. Indeed, for most applica-

tions we consider here that is also the case. However, for our modification of

stochastic fictitious play in Section 4.2 we need to have the generality of this

theorem—a suitable form of perturbation sequence {Mn}n≥1 will be discussed

in that section.

4 Examples of GWFP processes

As well as classical fictitious play, and Van der Genugten’s weakened ficti-

tious play, there are several other interesting models of learning that result

in generalised weakened fictitious play processes. We discuss three examples

here.
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4.1 Fictitious play with emphasis on recent observations

Recall that in classical fictitious play the adaptation parameters αn are simply

1/n, and this means that players make an implicit assumption that all other

players have been using the same mixed strategy for all time (since the current

estimate of opponent strategy is simply the empirical distribution of actions

observed in the past).

However, opponent strategy is not fixed, and an obvious modification is to

place greater emphasis on recently observed actions than on the actions played

in the early stages of learning. One way in which this can be achieved is to let

αn → 0 more slowly than 1/n, for example by setting αn = (Cα +n)−ρα where

Cα and ρα ∈ (0, 1] are fixed parameters. Hence a small ρα means that αn → 0

slowly, and so recent observations receive greater weight than under classical

fictitious play. An even more extreme example, which still fits the conditions

of the theorem, would be αn = 1/ log(Cα + n).

The effect of such a change, in terms of the model, is that beliefs move fur-

ther on each step of the process, and so should travel more “quickly” along

trajectories of the best response differential inclusion. We see this happening

in Fig. 1.

4.2 Stochastic fictitious play with vanishing smoothing

One of the major recent modifications of fictitious play is stochastic fictitious

play (Fudenberg and Kreps, 1993; Benäım and Hirsch, 1999), in which players

use a smooth best response to their beliefs. An obvious question to ask is,
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Fig. 1. Belief that Player 1 plays Heads over 200 plays of the two-player matching

pennies game under classical fictitious play (top) and under a modified fictitious

play with αn = 1/
√

n (middle). The extreme case of αn = 1/ log(n + 2) is shown in

the bottom plot, where the apparent lack of convergence is due to the fact that the

step size is still large (α200 ≈ 0.188)—this slowly decreasing step size is, however,

likely to be helpful in more complex games.

“What happens when the smooth best responses approach best responses as

time progresses?”

Player i’s smooth best response with parameter τ to opponent strategy π−i is

defined to be the mixed strategy

βi
τ (π

−i) = argmax
πi∈∆i

{

ri(πi, π−i) + τvi(πi)
}

where τ > 0 is a temperature parameter, and the function vi is a smooth,

strictly differentiably concave function such that as πi approaches the bound-

ary of ∆i the slope of vi becomes infinite (Fudenberg and Levine, 1998, Chapter

4). The assumption is either that players choose to play this mixed strategy, or

alternatively that they receive payoff perturbations that induce such a mixed
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strategy (Hofbauer and Sandholm, 2002).

Thus, under vanishing smoothing, if at time n the players play according to a

smooth best response to their current beliefs, instead of (1) we have

σi
n+1 = (1 − αn+1)σ

i
n + αn+1(β

i
τn

(σ−i
n ) + M i

n+1)

where τn → 0 as n → ∞ (vanishing smoothing), and M i
n+1 is the zero mean

random variable giving the difference between the actual and expected change

in σi
n (which exists since the beliefs are not updated towards the mixed strat-

egy βi
τn

(σ−i
n ) but instead towards the observed action, as in Benäım and Hirsch

(1999)). These M i
n+1 are bounded martingale differences, so if {αn}n≥1 is de-

terministic and o(1/ log(n)) then the condition on {Mn}n≥1 in Definition 2

holds with probability 1 (Benäım et al., 2003).

Furthermore, it is clear that, as τ → 0, βi
τ (π

−i) → bi(π−i) for all π−i, and

so βi
τn

(σ−i
n ) ∈ bi

ǫn
(σ−i

n ) where ǫn → 0 as n → ∞. Hence a stochastic fictitious

play with decreasing smoothing parameters (or equivalently vanishing pay-

off perturbations) results almost surely in a generalised weakened fictitious

play process, and therefore converges to Nash equilibrium whenever classical

fictitious play does.

4.3 Fictitious play in a converging sequence of games

Vrieze and Tijs (1982) considered fictitious play in a converging sequence of

games, which proved useful in their study of fictitious play in stochastic games.

We note here that such a fictitious play results in a generalised weakened ficti-

tious play for the limit game, since a best response in the converging sequence
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of games is an ǫ-best response in the limit game. However the notational over-

head required here to prove this is not justified by the result, which is instead

proved in Leslie (2003).

5 An actor–critic process

All of the processes discussed so far require players to observe opponent ac-

tions, and to use their knowledge of the payoff functions to calculate a best

response. However, it is of interest to determine whether simple adaptive play-

ers can converge to equilibrium strategies without this information, and with-

out even knowing that they are playing a game. Such learning processes have

been described as “simple, payoff-based” learning processes (Foster and Young,

2003b).

Suppose that an oracle tells each player the current expected reward associated

with each action, and that players adjust their strategies towards a reward-

maximising action. Then the strategies will follow a process

πn+1 ∈ (1 − αn+1)πn + αn+1b(πn),

which is clearly the same as a fictitious play process. However, relying on an

oracle is not a feasible learning process in the real world; we will see in this

section how players can effectively provide themselves with a fuzzy oracle,

which tells them approximately what their current expected rewards are, and

this allows strategies to follow a generalised weakened fictitious play process.

The process described here is a modification of the one studied by Leslie and

Collins (2003), in which players adjust their strategies towards smooth best
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responses to the estimates of action values.

In an actor–critic process, each player has both an actor component (the

current strategy) and a critic component (estimates of action values) which

is used to inform the actor (i.e. update the strategy). We will write πi
n ∈ ∆i

for player i’s strategy at time n, and Qi
n ∈ R

|Ai| for player i’s estimates of

action values at time n. At each stage of the process, πi
n will be adjusted

towards a smooth best response based upon the estimates Qi
n, while Qi

n will

be updated based on the observed payoff. As before, we will write πn = ×N
i=1π

i
n,

Qn = ×N
i=1Q

i
n, and r(π) = ×N

i=1r
i(·, π−i) (so that Qn will approximate r(πn)),

and define the following analogues of the ǫ-best response correspondences:

b̃i
ǫ(Q

i) = {πi ∈ ∆i : πi · Qi ≥ max
ai∈Ai

Qi(ai) − ǫ}

b̃ǫ(Q) =×N
i=1b̃

i
ǫ(Q

i).

Lemma 5 If the strategies πn follow a process

πn+1 ∈ (1 − αn+1)πn + αn+1b̃ǫn
(Qn)

with αn → 0 and ǫn → 0, and if ‖Qn − r(πn)‖ → 0 as n → ∞, then the πn

follow a generalised weakened fictitious play process.

PROOF. Suppose ‖Q − r(π)‖ < η, and π̃ ∈ b̃ǫ(Q). Then

π̃i · Qi ≥ max
ai∈Ai

Qi(ai) − ǫ ≥ max
ai∈Ai

ri(ai, π−i) − η − ǫ.

Hence

b̃ǫn
(Qn) ⊂ bǫ′n

(πn)
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for some ǫ′n → 0, and the πn follow a generalised weakened fictitious play

process. 2

This leaves only the problem of how to obtain estimates Qn that are asymp-

totically close to r(πn). These can be obtained using reinforcement learning

(Sutton and Barto, 1998), although we need to be careful that all actions are

played often enough that estimates remain close. We start by extending a re-

sult of Singh et al. (2000) to give conditions under which the probability of

playing any action is bounded below by a suitable decreasing sequence. (In

Leslie (2003) the condition was forced by projecting strategies away from the

boundary of strategy space, but the approach here is more readily justified as

a model of learning.)

Lemma 6 Suppose that strategies evolve according to

πi
n+1(a

i) = (1 − αn+1)π
i
n(ai) + αn+1β

i
n(ai) (2)

for each i and each ai ∈ Ai, where βi
n is Player i’s Boltzmann smooth best

response, with

βi
n(ai) =

exp(Qn(ai)/τ i
n)

∑

a∈Ai exp(Qn(a)/τ i
n)

for each ai ∈ Ai. (3)

Suppose further that the temperature parameters τ i
n are chosen to be

τ i
n =

maxa∈Ai Qi
n(a) − mina∈Ai Qi

n(a)

ρ log(n)
(4)

with fixed constant ρ ∈ (0, 1]. If supn ‖Qn‖ < ∞ then:

(1) τ i
n → 0 for all i, and
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(2) ∃K,κ > 0 such that for n ≥ K, for each i and for each ai ∈ Ai,

πi
n(ai) ≥ κ

nρ
.

PROOF. We start by noting that, since supn ‖Qn‖ < ∞, τ i
n → 0 for all i.

For the second part, note first that

τ i
n ≥ maxa∈Ai Qi

n(a) − Qi
n(ai)

ρ log n

for all ai ∈ Ai, so that

nρ exp(Q(ai)/τ i
n)≥ exp(max

a∈Ai
Qi

n(a)/τ i
n)

=
1

|Ai|

(

|Ai| exp(max
a∈Ai

Qi
n(a)/τ i

n)
)

≥ 1

|Ai|
∑

a∈Ai

exp(Qi
n(a)/τ i

n),

and hence

βi
n(ai) =

exp(Qi
n(ai)/τ i

n)
∑

a∈Ai exp(Qi
n(a)/τ)

≥ 1

|Ai|nρ

for all ai ∈ Ai.

To show that πi
n(ai) ≥ κ

nρ for sufficiently large n, observe from (2) that

if πi
n(ai) ≥ 1

|Ai|nρ then πi
n+1(a

i) > 1
|Ai|(n+1)ρ , and if πi

n(ai) < 1
|Ai|nρ then

πi
n+1(a

i) > πi
n(ai). Hence there exists an Ki such that πi

Ki
(ai) ≥ 1

|Ai|K
ρ
i

(since

otherwise πi
n(ai) is monotonically increasing and always less than 1

|Ai|nρ ), and

then πi
n(ai) ≥ 1

|Ai|nρ for all n ≥ Ki. The result follows on taking κ = mini
1

|Ai|

and K = maxi Ki. 2

This result enables us to define the following actor–critic process, in which
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players estimate expected rewards and adapt strategies towards smooth best

responses to these rewards in such a way as to ensure that all actions are

played sufficiently often to maintain accurate estimates.

Proposition 7 Suppose that πn and Qn follow the recursions

πi
n+1(a

i) = (1 − αn+1)π
i
n(ai) + αn+1β

i
n(ai) (5)

Qi
n+1(a

i) = Qi
n(ai) + λi

n+1I{ai
n=ai}(R

i
n − Qi

n(ai)), (6)

for each i and each ai ∈ Ai, where:

• ai
n, the action played by player i at time n, is selected according to strategy

πi
n, and results in reward Ri

n,

• αn+1 = (Cα + n)−ρα for some Cα > 0 and ρα ∈ (0.5, 1],

• λi
n+1 = (Cλ +ci

n(ai
n))−ρλ for some Cλ > 0 and ρλ ∈ (0.5, ρα), where ci

n(ai) =

∑n
k=1 I{ai

k
=ai} is the number of times action ai has been selected up to and

including game n,

• βi
n is as defined in (3) and (4), with ρ = ρπ ∈ (0, ρα − ρλ).

Then, with probability 1, the πn follow a generalised weakened fictitious play

process.

PROOF. By Lemma 6, if ‖Qn − r(πn)‖ → 0 then τ i
n → 0 for each i and

by Lemma 5 we have a generalised weakened fictitious play process. Hence it

suffices to prove that ‖Qn − r(πn)‖ → 0. We assume in what follows that n

is sufficiently large such that πi
n(ai) ≥ κn−ρπ for each i and each ai ∈ Ai (see

Lemma 6).

Fix i and ai, and let {νk}k≥1 be the sequence of times when action ai is played

by player i (this sequence is well-defined, by Lemma 6 and the Borel–Cantelli
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lemma), and define the differences

Dk = Qi
νk

(ai) − ri(ai, π−i
νk

).

We will show that Dk → 0 almost surely, which is sufficient to prove the result,

since all actions are played with positive probability at all times.

Note, from (6) and the definition of νk, that

Qi
ν(k+1)

(ai) = Qi
(νk)+1(a

i) = (1 − λi
(νk)+1)Q

i
νk

(ai) + λi
(νk)+1R

i
νk

.

Hence

Dk+1 = Qi
ν(k+1)

− ri(ai, π−i
ν(k+1)

)

= (1 − λi
(νk)+1)(Dk + ri(ai, π−i

νk
)) + λi

(νk)+1R
i
νk
− ri(ai, π−i

ν(k+1)
)

= (1 − λi
(νk)+1)Dk + λi

(νk)+1(R
i
n − ri(ai, π−i

νk
)) + ri(ai, π−i

νk
) − ri(ai, π−i

ν(k+1)
).

Since λi
(νk)+1 = (Cλ + k)−ρλ , we see that

Dk+1 = (1 − (Cλ + k)−ρλ)Dk + (Cλ + k)−ρλ(Mk − Ek),

where Mk is a bounded martingale difference, and

Ek = (Cλ + k)ρλ{ri(ai, π−i
νk+1

) − ri(ai, π−i
νk

)}.

If we can show that ‖Ek‖ → 0 almost surely, then Lemma 1 of Singh et al.

(2000) gives the result.

Notice that ri(ai, π−i) is continuous in π−i, so from (5)

‖ri(ai, π−i
n+1) − ri(ai, π−i

n )‖ ≤ Cαn+1
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for some C (depending only on the reward function ri). Therefore

C−1‖Ek‖ ≤ (Cλ + k)ρλ

νk+1−1
∑

j=νk

αj+1 ≤ (Cλ + k)ρλ(νk+1 − νk)α(νk)+1.

Furthermore, since νk ≥ k, and α(νk)+1 = (Cα + νk)
−ρα ,

‖Ek‖ ≤ C ′νk+1 − νk

νk
ρα−ρλ

,

for some constant C ′. Thus, by the Borel–Cantelli lemma, we see that ‖Ek‖ →

0 almost surely if, for arbitrary δ > 0,

∑

k≥1

P

(

νk+1 − νk

νk
ρα−ρλ

> δ
)

< ∞. (7)

Fix νk, and let j be the greatest integer less than or equal to δ(νk)
ρα−ρλ . Then

P

(

νk+1 − νk

νk
ρα−ρλ

> δ
)

≤P (νk+1 > νk + j)

≤ (1 − κ(νk + 1)−ρπ)(1 − κ(νk + 2)−ρπ) · · · (1 − κ(νk + j)−ρπ)

(since πi
n(ai) ≥ κn−ρπ)

< (1 − κ(νk + j)−ρπ)j

< exp

{

− jκ

(νk + j)ρπ

}

< exp

{

−κ
δ(νk)

ρα−ρλ − 1

(νk + δ(νk)ρα−ρλ)ρπ

}

= exp

{

κ

(νk + δ(νk)ρα−ρλ)ρπ

}

exp

{

−κδ
(νk)

ρα−ρλ−ρπ

(1 + δ(νk)ρα−ρλ−1)ρπ

}

Since νk ≥ 1, and 0 < ρα − ρλ < 1,

κ

(νk + δ(νk)ρα−ρλ)ρπ
≤ κ

(1 + δ)ρπ
, and

−κδ
(νk)

ρα−ρλ−ρπ

(1 + δ(νk)ρα−ρλ−1)ρπ
≤−κδ

(νk)
ρα−ρλ−ρπ

(1 + δ)ρπ
.
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Fig. 2. Strategies of both players over 107 iterations of the discontinuous actor–critic

process in the game (8) (first 5000 iterations omitted). The parameters are ρα = 1.0,

ρλ = 0.6, and ρπ = 0.1, with Cα = Cλ = 1. Strategies spiral clockwise towards the

unique equilibrium point.

Hence there exist constants C1, C2 > 0, independent of k and νk, such that

P

(

νk+1 − νk

νk
ρα−ρλ

> δ
)

≤ C1 exp
{

−C2(νk)
ρα−ρλ−ρπ

}

.

Now, for η > 0,

∞
∫

0

e−C2xη

dx
y:=xη

= η−1

∞
∫

0

yη−1−1e−C2y dy = η−1Γ(η−1)C2
−η−1

where Γ is the Gamma function. Therefore
∑

k≥0 C1 exp{−C2k
ρα−ρλ−ρπ} < ∞,

since ρπ < ρα − ρλ by assumption, and we see that (7) holds. 2

Thus we have shown that this actor–critic process, in which players do not

know the reward function, and pay no attention to the other players, is a

member of the same class of processes as fictitious play and its variants. Hence

it converges in the same games in which we have shown all the other generalised
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weakened fictitious play processes to converge. This shows that players can

learn to play Nash equilibrium strategies in certain classes of games, without

having knowledge of the game, or even knowing they are playing a game.

We conclude our analysis of this process by presenting the results of an ex-

periment in the game with reward matrix

















(2, 0) (0, 1)

(0, 2) (1, 0)

















. (8)

This is a rescaled zero-sum game, so strategies evolve exactly as if it is zero-sum

(Hofbauer and Sigmund, 1998), and should therefore converge to the unique

Nash equilibrium where π1 = (2/3, 1/3) and π2 = (1/3, 2/3). This equilibrium

requires the players to assign unequal probabilities to their two actions, despite

the fact that both actions receive the same expected reward when equilibrium

strategies are played—a situation that could easily cause problems for players

that do not observe opponent behaviour or know anything about the game

(see Leslie and Collins (2004) for further discussion of this issue). However,

as observed here, and as predicted by the theoretical results, the actor–critic

process is not afflicted by this problem.

References
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