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Abstract

The action of natural selection results in organisms that are good at surviving and

reproducing. We show how this intuitive idea can be given a formal definition in

terms of fitness and reproductive value. An optimal strategy maximizes fitness,

and reproductive value provides a common currency for comparing different ac-

tions. We provide a broad review of models and methods that have been used in

this area, stressing the conceptual issues and exposing the logic of evolutionary

explanations.

Key words: Natural selection, fitness, reproductive value, optimization, game

theory, evolutionarily stable strategy.
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1 Introduction

1.1 Adaptation and optimisation

If you look around you in the natural world you will see animals performing a

diverse range of activities. Birds sing, flock, migrate; males fight over access to

females (Figure 1); peacocks display; bees and ants bring resources back to their

colonies. There are a variety of levels at which explanations of these phenomena

can be given (Tinbergen, 1963). For example, suppose that it is observed that a

vole tends to avoid foraging away from cover when a hawk is overhead. At one

level this occurs because the vole is frightened of the hawk. This is a mechanistic

explanation of the vole’s behaviour, but begs the question of why the vole has

this particular mechanism. An ultimate or functional explanation is that fear of

hawks is adaptive; a vole that avoids hawks will have a greater chance of survival

and reproduction than a vole that ignores the presence of a hawk. Here we are

concerned with such adaptive explanations of behaviour rather than mechanisms

such as fear that are used to implement behaviour.

Adaptive explanations view an organism’s behaviour as a product of the pro-

cess of natural selection. They are couched in terms of the behaviour increasing

the fitness of the organism, but are really based on the following four assumptions.

1. Stationary environment. The ancestors of the current population faced a

similar situation to the one analysed.

2. Inheritance. The behavioural trait used by an individual to deal with the

situation is (in part) specified by its genetics. Thus an individual tends to

pass on its trait to offspring through its genes.

3. Variation. In the past there was genetic variation in the population so that

3



population members varied in their behaviour trait.

4. Differential fitness. The trait that an individual inherited affected the num-

ber of surviving offspring produced by the individual over its lifetime. That

is, the trait affected fitness.

Under the above assumptions the action of natural selection tends to lead to

the population being dominated by individuals that have high fitness.

Explanations of behaviour in terms of the action of natural selection have

been given ever since Darwin. Until quite recently most adaptive explanations

were purely verbal. But about 30 years ago biologists started to quantify their

arguments and to use mathematics to analyse behaviour. This approach was

adopted at around the same time by workers in a number of areas, particularly

in foraging theory, evolutionary game theory and life history theory. Whatever

the area, the approach entails starting with a specification of those behavioural

strategies that can be adopted, together with an appropriate measure of fitness.

The dependence of fitness on the behavioural strategy adopted is then quanti-

fied. Finally, a suitable mathematical optimisation technique such as dynamic

programming is used to find the strategy that maximises fitness. Often the fit-

ness of an organism depends on both its behavioural strategy and the strategies

of other population members. In such cases, optimisation is done within a game

theoretic context.

Even when assumptions 1-4 hold, natural selection does not always maximise

fitness. For example, it is possible to find genetic sytems in which natural se-

lection has the effect of decreasing mean population fitness (Moran, 1964). In

response to such examples it has been argued that the long-term evolution of the

genetic system needs to be considered. Stable endpoints of evolution will then
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be optima (Eshel 1996, Hammerstein 1996, Weissing 1996, Eshel et al. 1998).

Even if attention is restricted to such endpoints, we do not expect organisms

to be exactly optimal. Behavioural strategies are implemented by underlying

physiological or psychological mechanisms. These will typically be simple rules

of thumb that approximately maximise fitness under natural circumstances, but

may produce anomalous behaviour in some circumstances. For example, birds

have simple rules for deciding which eggs to incubate and often prefer the largest

egg. This preference rule probably has adaptive value in the wild, but under

artificial conditions it can result in birds trying to incubate objects which are too

large to be eggs. What this means is that if we wish to use optimality models

to predict behaviour we must observe behaviour in the environment in which it

has evolved. In these circumstances simple optimisation models often make rea-

sonably accurate predictions about behaviour as well as giving insight into the

effects of natural selection.

In this paper we focus on adaptations rather than the details of genetics and

mechanisms, and review work that uses optimisation to make predictions about

behaviour. We use the term ‘behaviour’ not just to refer to actions such as

foraging or singing, but also to include decisions about the allocation of resources

to growth and other aspects of morphology. The aim of the models we present

is not to make detailed quantative predictions about behaviour. Rather, it is

to capture the essential underlying biological features, so that analysis of these

models can be used to provide general understanding of the behavioural outcomes

produced by the process of natural selection.
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1.2 Preview of topics

The following illustrates the range of important activities that an organism per-

forms. By introducing these activities we motivate the topics reviewed in this

paper. We start by considering the behaviour of members of a bird population

over a year. During this period a bird must perform a range of activities. Each ac-

tivity typically involves one or more trade-offs, so that a change in behaviour that

enhances one component of fitness has a deleterious effect on another component

of fitness. Activities include:

(1) Foraging.

Food supplies the bird with energy that fuels all its activities. If it does not

get enough food to balance its energy expenditure then it will die of starvation

once its energy reserves are used up. Different activities require different amounts

of energy; for example migration and feeding young are particularly expensive.

When foraging a bird must decide, for example

(a) whether to spend further time exploiting a given food source or use the

time to attempt to find and exploit other food sources.

(b) whether to exploit a reliable but mediocre food source as opposed to a

highly variable food source which may provide a lot of food if a bird is

lucky or little food if it is unlucky. In other words the bird must decide

whether to take a gamble.

(c) whether to exploit a food source with high yield but high predation risk or

one of low yield but less risk.

The answers to questions (b) and (c) depend on the value of food to the bird,

which in turn depends on the bird’s energy reserves and the use to which the
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food is put.

(2) Finding a mate.

It is generally observed that females are more choosy about their mates than

males are. As we suggest in Section 4.5, there are good reasons for this difference

between the sexes. Females choose mates on the basis of male quality. A female

must decide between accepting the current male or continuing to search for a

better partner. Choice is more complex if quality cannot be directly observed.

There are then two interrelated questions. What indicator of male quality should

the female use? How should the resources that a male puts into attracting a

female depend on his quality? For example, singing is energetically costly. Should

female choice be based on male song, and if so how often and when should a male

sing given his foraging ability? A crucial question in this area is whether we

expect female preference and male behaviour to co-evolve so that the level of

resource allocation by the male (the signal) is an honest indicator of his quality.

(3) Caring for young.

When a male and a female have mated and produced young they each face the

choice of whether to care for the young or to desert. The decision is based on a

trade-off between current and future reproduction. If a parent cares it reduces its

chances of further broods that year, but young have greater survival prospects.

The best choice for an individual depends on the behaviour of other population

members for two reasons. One is that the effect of an individual’s care on the

survival of the young depends on the partner’s behaviour. The other is that the

chance of remating to produce a further brood depends on the availability of

mates, which depends on the care decisions of all other population members.

The above activities were motivated by bird behaviour. Birds do not continue

to grow throughout their life. Many fish and trees do so. These organisms face a
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trade-off in that energy allocated to reproduction is not available for growth.

Annual routines.

In discussing the above activities we have considered each one in isolation.

This may often be a reasonable simplification, but it is important to realise that

the activities that are performed over the year are linked. If we look at the

whole year, a bird may have to migrate, survive the winter, breed and moult.

Performing one activity may preclude another activity at this time. It may also

have consequences for the state of the bird in the future. For example, the

effort devoted to breeding may influence the state of the immune system and

energy reserves at the end of the breeding season. The values of these state

variables will affect the bird’s ability to survive the winter. Thus the optimal

level of reproductive effort depends on winter conditions and the strategy used

by the bird during the winter. Conversely, reproductive success in the breeding

season depends on the condition at the end of winter. Thus the optimal strategy

overwinter depends on behaviour in the breeding season.

From the above examples the following general features of an adequate theo-

retical framework emerge.

(a) Decisions should be allowed to depend on state and time. In the above

examples we have already introduced the idea of an organism’s state. In the

construction of an optimisation model any biologically important aspects

of an organism can be included as part of its state. Components of an

organism’s state vector could be physiological or morphological variables

such as energy reserves, body temperature, the state of the immune system

or plumage colour. Components could also be external to the organism and

include number of young, quality of the mate and size of the territory. The

consequences of an action will typically depend on state and hence optimal
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actions are state dependent. We can also expect optimal actions to depend

on time of day or year.

(b) The behaviour of other population members needs to be taken into account.

In our discussion of mate choice, we raised the question of whether the

signal of the male is an honest indicator of quality. To answer this question

we cannot consider males in isolation, but need to consider the interaction

between male signals and female preference. In this example the fitness of

an organism following a given strategy depends on the strategies of other

population members. The standard framework for analysing such situations

is evolutionary game theory. We discuss this framework in detail in Section

2.4. It is clear that the interactions between animals that we described in

the context of caring for young also require a game-theoretic approach.

(c) Actions cannot be considered in isolation. Consider the problem of whether

an animal should expose itself to a predator in order to obtain an item of

food. The best decision depends on how much food the animal will obtain

in the future. This depends in part on the animal’s future behaviour. Thus

it is not possible to specify the best current action until future behaviour

has been specified (McNamara and Houston 1986). This dependence makes

it natural to consider sequences of decisions and to find optimal strategies

rather than single actions. Here by the term ‘strategy’ we mean a rule π(x, t)

that specifies the dependence of the action taken on state x and time t. In

this context we take the organism’s state at time t to be a random variable,

X(t), whose time course depends on environmental effects that may be

stochastic and on the strategy of the organism. The optimisation problem

can then be viewed as choosing a behavioural strategy to optimally control
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the stochastic process {X(t)}. The problem can then (often) be solved

by standard techniques such as dynamic programming (see Section 2.2 for

details).

Throughout our discussion so far we have talked about maximisation of fit-

ness without being specific about the definition of fitness. In some situations the

number of offspring produced over an organism’s life may be an adequate measure

of fitness. This measure ignores the fact that offspring may be in different states

so that not all offspring can be considered to be equal. Furthermore, because

offspring go on to produce offspring themselves, it may be better to produce off-

spring earlier rather than later in order to increase the proportion of descendants

in the population in the future. One of the central issues that we will address is

the general definition of fitness (Sections 5.2, 6.2). Given the definition of fitness

we can determine how an animal should behave over its lifetime to maximise

fitness. In particular we can determine how growth and reproduction should be

scheduled over the lifetime. Life history theory (discussed in Section 5) is con-

cerned with this problem. Central questions addressed by the theory include

when to start reproduction, whether to have a single bout of reproduction or to

spread reproduction over several bouts and whether growth should stop when

reproduction starts.

2 Setting the mathematical framework

2.1 Introduction

In this section we describe some mathematical tools that are needed in analyses

of adaptive behaviour. We begin by defining how the “reproductive value” of an

individual depends on its state. In the simplest setting reproductive value is de-
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fined in terms of future offspring. The general definition is not given until Section

5, but in Section 2.3 we develop the necessary mathematical framework based on

long-term growth. Finally, in Section 2.4 we outline the game-theoretical frame-

work that is used to take into account the fact that the fitness of an individual

can depend on the strategies adopted by other population members.

2.2 Reproductive value as a common currency

To analyse optimal behaviour requires the advantages and disadvantages of per-

forming an action to be quantified. For example, in modelling whether a vole

should come out into the open to obtain a food item, the value of that item

and the cost of death to the animal must be quantified. Similarly, in modelling

parental effort the advantage to the young of a given level of effort and disad-

vantages to the parent such as decreased future survival must be specified. For

these and other situations we need a common currency to compare the effects of

possible actions (McNamara and Houston 1986, Mangel and Clark 1986).

The common currency used depends on the measure of fitness that is appro-

priate to the situation. We discuss fitness measures in the section on life history

theory. For the present we deal with scenarios in which the fitness assigned to

a behavioural strategy is the expected number of surviving offspring produced

over its lifetime by an individual following that strategy. In this case actions are

compared via their effect on surviving offspring. To do this let the reproductive

value, V (x, t), of an organism in state x at time t be defined by

V (x, t) = E{number of surviving offspring produced from time t onwards |X(t) = x}.

Here E{·|X(t) = x} denotes the expectation given X(t) = x. Consider an or-

ganism that is in state x at time t. We regard the action taken at this time

as determining what happens between times t and t + 1, and ask what action
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maximises the expected number of surviving offspring produced from time t on-

wards for given reproductive value V (·, t+1) at time t+1. Define the organism’s

immediate reproductive success under action u to be

Boff(x, t; u) = Eu{offspring produced between t and t+1 that survive until t+1|X(t) = x},

where Eu denotes the expectation under action u. Then the expected total future

number of surviving offspring under this action is

H(x, t; u) = Boff(x, t; u) + Eu{V (X(t + 1), t + 1)|X(t) = x}. (1)

It is implicitly assumed that the organism has reproductive value 0 at time t + 1

if it is dead at this time. Future offspring are maximised (for given V (·, t + 1))

by choosing u to maximise H(x, t; u), and an organism that takes this optimal

action has reproductive value

V (x, t) = max
u∈Q

H(x, t; u), (2)

where the maximisation is over the set Q of all possible actions.

Equations (1) and (2) are the dynamic programming equations determining

V (·, t) in terms of V (·, t + 1).

Example: should the vole emerge from cover?

To illustrate the above framework suppose that a vole has the choice between

staying under cover (action u1) or emerging from cover to obtain a food item of

energetic content e (action u2). Let the state of the vole be its level of energy

reserves. Suppose the vole has reserves x at time t. Assume that if the vole stays

under cover it is still alive at time t + 1 and its reserves have decreased to x− 1.

If the vole comes out of cover it is killed by a predator during (t, t + 1) with

probability z. If it manages to survive its reserves at t + 1 are x + e− 1. Thus

H(x, t; u1) = V (x− 1, t + 1)
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and

H(x, t; u2) = (1− z)V (x + e− 1, t + 1).

It is optimal to emerge from cover if H(x, t; u2) > H(x, t; u1); that is if

V (x + e− 1, t + 1)− V (x− 1, t + 1) > zV (x + e− 1, t + 1). (3)

The left hand side of inequality (3) is the value, in terms of future offspring, of

the food item. The right hand side is the probability of death times the loss in

future offspring if the vole is killed. Thus offspring act as a common currency

and it is optimal to emerge from cover if the benefit in terms of this currency

exceeds the cost.

In many biological scenarios V (·, t + 1) is a concave increasing function of

reserves. Thus the left hand side of inequality (3) decreases with increasing x

while the right hand side increases. It follows that there is a critical level of

reserves, xc(z) such that it is optimal to emerge from cover if and only if reserves

are below xc(z). Not surprisingly xc(z) decreases as z increases.

This example can be extended or generalised in various ways. For example the

food supply could be made stochastic or the number of foraging options increased.

We might also be concerned with a sequence of actions rather than a single action.

To illustrate this, consider the behaviour of an animal over a day. During daylight

the animal forages; at dusk it stops and rests during darkness. If the animal is

to survive until the following dawn it must ensure that during daylight reserves

never fall to zero (when it starves) and it is not killed by a predator. It must also

ensure that reserves at dusk are sufficiently high to survive the night. To model

behaviour let time 0 be dawn and time T be dusk. Suppose that the animal must

choose a foraging option at each of the times t = 0, 1, . . . , T − 1. We assume that

reproductive value at dusk is given by a terminal reward function R; specifically
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if the animal is alive with reserves x at this time its reproductive value is R(x).

Here we might, as an approximation, take R(x) = 0 for x ≤ x∗ and R(x) = K

for x > x*, where x∗ is the energy used overnight. For this decision problem we

take V (·, T ) = R(·) and then use equations (1) and (2) to work backwards over

the day. This backwards induction gives, for every x and t, both V (x, t) and the

action u = π∗(x, t) that achieves the maximum in equation (2). The function π∗

specifies how the action chosen should depend on energy reserves and time of day

and is called the optimal strategy.

For further examples of reproductive value as a common currency see Houston

and McNamara (1999).

2.3 Long-term survival problems

In a number of important biological scenarios the relevant optimisation criterion

is the maximisation of some suitable measure of long-term growth. Here we

present an analysis of the mathematics of one such scenario: maximisation of the

probability of surviving a “long” winter. Later we describe how exactly the same

mathematics is used to find daily and annual routines, and is used in life history

theory to define fitness.

Consider the behaviour of an animal over a winter in which it must try to

avoid starving or being killed by a predator while ensuring that its condition at

the end of winter enables it to breed in the spring. To model the animal’s decision

problem divide the winter into a finite number of epochs t = 0, 1, . . . , T , where

times 0 and T are the start and end of winter respectively. The animal’s state

at time t is its level of energy reserves. For simplicity reserves are modelled on a

discrete grid S = {1, 2, . . . , L}. At each of the decision epochs t = 0, 1, . . . , T − 1

the animal must choose an action from a finite set Q. If the animal has reserves
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x ∈ S at time t and chooses action u ∈ Q then it is alive at time t+1 with reserves

y ∈ S with probability axy(u). In this notation there is no state corresponding to

the animal being dead. Instead the probability the animal dies of starvation or

predation during (t, t+1) is just 1−
∑
y∈S

axy(u). If the animal is alive with reserves

x at final time T then its reproductive value is R(x). Here R is a non-negative

valued function on the state space S.

For this decision problem a strategy is a map π : S × {0, 1, . . . , T − 1} → Q

that specifies, for each state x and time t, the action taken π(x, t). An optimal

strategy maximises the expected reproductive value at time T and can be found

by dynamic programming. Before analysing this strategy, however, we first look

at the performance of time-stationary strategies in the limit as the length of

winter T tends to infinity.

Consider an animal that follows the stationary strategy π where π(x, t) = π(x)

is a function of reserves alone. Then the animal’s state changes according to a

stationary Markov chain (e.g. Grimmett and Stirzaker 1992) with transition law

P (X(t + 1) = y|X(t) = x) = axy(π(x)).

Let Aπ denote the matrix with (x, y) component axy(π(x)). Let nx(t) = P (X(t) =

x) and let n(t) = (n1(t), n2(t), . . . , nL(t)). Then n(0) gives the probability dis-

tribution of states of the animal at the beginning of winter, and the distribution

after t time periods is

n(t) = n(0)At
π.

The animal is alive at time t with probability

alive(t) =
∑
x∈S

nx(t).

Thus, conditional on it being alive at t it has reserves x at this time with
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probability ρx(t) = nx(t)/alive(t), and hence ρ(t) ≡ (ρ1(t), ρ2(t), . . . , ρL(t)) =

n(t)/alive(t).

The matrix Aπ is non-negative. Following McNamara (1990a) we restrict

attention to strategies π for which it is also primitive. That is, there exists a k such

that all the components of Ak
π are positive. Standard Perron-Frobenius theory

(Gantmacher 1959) then gives the following results. Let λπ be the eigenvalue

of Aπ of maximum modulus. Then this eigenvalue is real and positive and all

other eigenvalues of Aπ have strictly smaller modulus than this Perron-Frobenius

eigenvalue. Let ω be the corresponding left eigenvector; i.e. ωAπ = λπω. Then

we can normalise ω so that all its components are positive and they sum to 1.

We also have

λ−t
π n(t) → Cω as t →∞

where the constant C depends on n(0). From this result we then have

ρ(t) → ω as t →∞ (4)

and

alive(t + 1)/alive(t) → λπ as t →∞. (5)

Thus conditional on the animal being alive at t it is still alive at t + 1 with

probability λπ.

We can apply these same formulae to a large cohort of animals each inde-

pendently following strategy π. nx(t) is now interpreted as the number of cohort

members in state x at time t and alive(t) is the total number of cohort members

still alive at this time. Regardless of the distribution of energy reserves amongst

group members at the start of winter, the distribution amongst those still alive

settles down to a quasi-equilibrium distribution ω as winter progresses. At this

equilibrium, of those alive at a given time a proportion λπ are alive one time
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epoch later. Thus 1−λπ can be regarded as the equilibrium mortality rate under

strategy π.

Of course, whether formulae (4) and (5) are useful in practice depends on

whether the length of winter is sufficient for convergence. The rate of conver-

gence is determined by the subdominant eigenvalue. In the case of a small bird

computations suggest that around two weeks is usually sufficient for effective

convergence.

The reproductive value of an animal following strategy π during the winter is

affected by both the long-term performance λπ of the strategy and the short term

effect of the animal’s current energy reserves. To analyse the combined effect of

these factors let L = {f : S → [0,∞)} be the set of non-negative real valued

functions on the state space S. Let Tπ : L → L be given by

(Tπf)(x) =
∑
y∈S

axy(π(x))f(y) x ∈ S. (6)

Thus the action of Tπ is equivalent to that of multiplication of the column vec-

tor f = (f(1), f(2), . . . , f(L))T by the matrix Aπ. Let Vπ(x, t) denote the re-

productive value of an animal with reserves x at time t given that the animal

follows strategy π for the remainder of the winter. Then Vπ(·, T ) = R(·) and

Vπ(·, T − k) = TπVπ(·, T − (k − 1)) for k ≥ 1. Thus

Vπ(·, T − k) = T k
π R k ≥ 0. (7)

Let V̂π ∈ L be the eigenvector of Tπ given by

TπV̂π = λπV̂π. (8)

As normalisation we set V̂π(L) = 1 where L is the maximum level of energy

reserves. Then by the Perron-Frobenius theorems

Vπ(x, T − k) ∼ C̃λk
πV̂π(x) as k →∞ (9)
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and hence

Vπ(x, T − k)

Vπ(L, T − k)
→ V̂π(x) as k →∞. (10)

This last formula shows that, when the time to go is large, the value of having

reserves x relative to the value of having the maximum reserves L is independent

of time to go and of the terminal reward R.

Expression (9) can be used to directly compare the performance of different

time-stationary strategies. Suppose π1 and π2 are stationary strategies whose

one-step transition matrices have Perron-Frobenius eigenvalues λπ1 and λπ2 re-

spectively. Let λπ1 > λπ2 . Then Vπ1(x, T − k) > Vπ2(x, T − k) for all x ∈ S for

all k sufficiently large. Motivated by this we define a strategy π+ to be the best

stationary strategy if

λπ+ = max
π

λπ,

where the maximum is over all stationary strategies π. Heuristically this is the

stationary strategy that does best in the long term.

We now drop the restriction that strategies are time stationary. Let V ∗ be the

reproductive value function of an animal that follows an optimal strategy. Thus

V ∗(x, t) = max
π

Eπ{R(X(T ))|X(t) = x}

where the maximum is taken over all strategies π. Let T ∗ : L → L be the dynamic

programming operator given by

(T ∗f)(x) = max
u∈Q

∑
y∈S

axy(u)f(y). (11)

Then for k ≥ 0

V ∗(·, T − k) = T ∗kR. (12)

Unlike Tπ, T ∗ is a non-linear operator. The mathematics of operators of this

type have been studied by a number of authors (e.g. Kennedy 1978, Grey 1984,
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Whittle 1983). Under suitable assumptions T ∗ has a real positive eigenvalue λ∗

with eigenvector V̂ ∗ ∈ L. That is

T ∗V̂ ∗ = λ∗V̂ ∗ (13)

Furthermore

V ∗(x, T − k) ∼ (λ∗)kV̂ ∗(x)K as k →∞, (14)

where the constant K depends on R. If we normalise V̂ ∗ so that V̂ ∗(L) = 1 then

it can be seen that

V ∗(x, T − k)

V ∗(L, T − k)
→ V̂ ∗(x) as k →∞. (15)

Thus under the optimal strategy, the value of being in state x relative to the

value of being in state L tends to a limit as time to go increases, and the limit is

independent of R.

Define the stationary strategy π+ to satisfy Tπ+V̂ ∗ = T ∗V̂ ∗. That is, for each

x, π+(x) satisfies

∑
y∈S

axy(π+(x))V̂ ∗(y) = max
u∈Q

∑
y∈S

axy(u)V̂ ∗(y). (16)

Thus under π+ the action taken in each state maximises the expected value one

time step later where “value” is assigned by the function V̂ ∗. Then, provided the

matrix Aπ+ is primitive it can be shown that π+ is the best stationary strategy

(McNamara, 1990a). A stronger version of these results will be used in discussing

optimal life histories (Section 5.3).

2.4 Evolutionary game theory

In the preview of topics (Section 1.2) a parent had to decide whether or not to

desert the brood of young. We noted that the fitness consequences of its decision
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depended on the behaviour of its mate and the behaviour of all other members

of the breeding population. Such ‘frequency dependence’ is ubiquitous in the

natural world. For example the benefits to an individual of growth to a given

size may depend on the size of competitors. If a female can control the sex of

her offspring the benefits of producing sons will depend on the proportion of sons

produced by other females. Here we outline the theory that has been developed

to accomodate this frequency dependence.

Consider a large (essentially infinite) population. If almost all population

members follow a strategy π then π is called the resident population strategy.

Within such a population the fitness of a single individual that follows strategy

π′ will be denoted by W (π′, π). We refer to W as the payoff function, and refer to

the single individual following a different strategy as a mutant; the idea being that

the rare strategy π′ has arisen through genetic mutation. It is important to allow

for different behaviours within the same population. Given a set of strategies

and a probability measure on this set we can define a new strategy under which

each of the given strategies is followed with the appropriate probability. This new

strategy is refered to as a mixed strategy. If members of a resident population are

observed to follow different behavioural rules this could be because all are playing

the same mixed strategy or because different members deterministically choose

to follow different strategies; that is the population is polymorphic. The payoff to

a given mutant is, however, the same regardless of how the different behavioural

rules arise. Given two strategies π0 and π1 and a real number λ ∈ [0, 1], denote

the mixed strategy under which π0 is followed with probability 1 − λ and π1 is

followed with probability λ by

πλ = (1− λ)π0 + λπ1.
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In this notation the payoff function W is linear in its first argument. W is only

linear in its second argument in certain special cases such as two-player games.

The physical environment and resident population strategy together deter-

mine the fitness of members of the population and of all possible mutants that

could arise. As natural selection changes the frequency of the various strategies

within the population, the resident strategy changes. This changes the fitnesses

of the various possible strategies and hence changes the differential selection on

them. One way to analyse this process is to regard the frequencies of the various

possible strategies as specifying the state of a dynamical system. The dynamics

for this system are typically extremely complex. Furthermore, they depend on

the details of the underlying genetics which are often unknown in practice. Thus

this is not a feasible approach for most scenarios. Instead the standard biological

approach is to assume that the population is at a stable endpoint of the dynamics

and attempt to give a purely phenotypic classification of this endpoint, so ignor-

ing the messy details of the genetics. Maynard Smith and Price (1973) were the

first to formalise this idea with the concept of an evolutionarily stable strategy

(ESS) (reviewed in Maynard Smith 1982). The idea was to look for resident

strategies which were stable to invasion by small numbers of identical mutants.

A basic requirement for a resident population strategy π∗ to be stable is that

no single mutant in this population has higher fitness than resident population

members; i.e.

W (π∗, π∗) ≥ W (π, π∗) for all π.

This is the Nash equilibrium condition of economics. This condition allows for a

mutant to have payoff equal to that of a resident. Such a mutant could potentially

increase in numbers due to random drift. To ensure that this does not occur the

equilibrium condition is strengthened as follows
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Definition. A strategy π∗ is an ESS if and only if for every π 6= π∗ one of the

following two conditions hold.

(i) W (π∗, π∗) > W (π, π∗), or

(ii) W (π∗, π∗) = W (π, π∗) and there exists δ > 0 such that for all η ∈ (0, δ)

W (π∗, πη) > W (π, πη), where πη is the mixed strategy (1− η)π∗ + ηπ.

Thus, for every mutant strategy either (i) when present singly a mutant does

worse than resident population members, or (ii) when mutant numbers increase

to a small positive proportion η of the population, mutants do worse than the

original residents.

This stability criterion is concerned with whether a population already follow-

ing π∗ is invadable. In contrast the criterion of continuous stability is concerned

with whether a population that is perturbed away from π∗ will evolve back to-

wards π∗ (Eshel 1983, see also Taylor 1989, Christiansen 1991). In the case where

the set of strategies form an interval on the real line the definition is as follows.

Definition. A strategy π∗ is continuously stable if there exists δ > 0 such that

0 < |π − π∗| < δ implies there exists ε > 0 such that 0 < |π′ − π| < ε implies

W (π′, π) > W (π, π) if |π′ − π∗| < |π − π∗|

and

W (π′, π) < W (π, π) if |π′ − π∗| > |π − π∗|.

In one dimension a continuously stable equilibrium is an attractor for the evo-

lutionary dynamics under suitably well-behaved genetics, but may not be an at-

tractor for other specifications of the genetics (Eshel et al. 1997, Weissing 1991).

In more than one dimension the situation is even more complex (see Matessi and

Di Pasquale 1996).
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It is easy to find Nash equilibria that are stable under neither, one or both of

these criteria. The evolutionary significance of the combination of criteria that

hold is discussed by Geritz et al. (1998). In particular they argue that continuous

stability without evolutionary stability can lead to evolutionary bifurcations.

3 Foraging

3.1 Introduction

Foraging is a general term that includes where animals search for food and which

sorts of food they eat. The idea that foraging behaviour could be predicted on

the basis of maximising fitness was put forward in the 1960s. A large number of

models have been based on this idea and constitute what is known as optimal

foraging theory (see Stephens and Krebs 1986 for a review).

Exactly how an animal should forage depends on what it is going to do with

the energy that it obtains. Sometimes an animal may be building up energy

to reproduce, and its reproductive success will increase with the energy that it

obtains. In this case it might be reasonable to expect the animal to maximise the

amount of energy obtained from a period of foraging. In other circumstances, an

animal might benefit from having as much time as possible to devote to activities

other than foraging. In this case we might expect the animal to minimize the

time to obtain a given amount of energy. Maximising the rate of energetic gain

usually achieves both of these goals when behaviour is considered over a long time

interval so that transitory effects at the beginning of the interval can be ignored.

Thus, many models asume that a forager maximises its fitness by maximising its

net rate of energetic gain.

However, there are important classes of models where criteria other than

simple rate maximisation are appropriate. Examples include models of foraging
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under predation risk and models with stochasticity in the food supply. The latter

may exhibit risk-sensitive behaviour if there are bounds on the energy reserves

or if the terminal reward is a non-linear function of the energy reserves.

We start by reviewing work in the area of rate maximisation and then go on

to look at risk-sensitive foraging before finally addressing the energy-predation

trade-off.

3.2 Rate maximisation: renewal reward cycles

In this section we describe rate maximisation strategies when food is obtained

in bouts and the system “renews” after each bout. Such a renewal cycle can be

illustrated in the context of an animal exploiting patches that contain food. We

can take a cycle to start when the animal leaves a patch to search for a new one.

Once a patch has been found, the animal gains energy at a rate that decreases

as the food becomes depleted. Eventually the animal leaves the patch and a new

cycle starts. Other examples of renewal cycles are given below. Let G denote

the net energy gain on a cycle and let T denote the time taken to complete a

cycle. Typically G and T are random variables whose distribution depends on

the behavioural strategy adopted by the foraging animal. The mean net rate of

energetic gain achieved by the animal is

γ =
E(G)

E(T )
, (17)

(e.g. Johns and Miller 1963). Let

γ∗ = max γ (18)

where the maximum is over all possible foraging strategies. Then an optimal

strategy achieves mean net rate γ∗.
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By equations (17) and (18) E(G)−γ∗E(T ) ≤ 0 for all strategies, with equality

if and only if the strategy is optimal. Thus a strategy is optimal if and only if it

maximises E(G − γ∗T ). Furthermore, it can be shown that this is equivalent to

maximising

H = E(Gain from remainder of cycle − γ∗ × Time left on cycle) (19)

at every stage of the cycle (McNamara 1982). Thus γ∗ acts as a rate of exchange,

converting time spent in the current cycle into energy lost in future cycles. We

can thus think of γ∗ as the opportunity cost per unit time. This brings out the

trade-off between time and energy that is at the heart of rate maximization.

We now give a brief account of two “classic” renewal cycle paradigms and

a third, based on diving, that exhibits additional complexity (for simplicity we

ignore energy expenditure, i.e. we work with gross rate of energy gain in all

examples).

(i) Patch use

Consider an animal that finds food in discrete patches. If the animal spends

a time t foraging in a patch of type i, then its total expected energetic gain is

Gi(t), where G′
i > 0 and G′′

i < 0. The animal can leave a patch at any time (this

is the renewal time) and spend a mean time τ travelling to a new patch. When

should the animal leave each patch type if the mean rate of energetic gain is to

be maximised? The approach based on maximisation of expression (19) shows

that the optimal time t∗i on a patch of type i maximises

Gi(t)− γ∗t,

and hence satisfies

G′
i(t

∗
i ) = γ∗.
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Thus it is optimal to leave a patch when the marginal rate at which energy is

gained falls to the overall mean rate for the environment. This result is the

marginal value theorem (Charnov 1976).

The marginal value theorem has been applied in contexts other than gaining

energy. For example, it can be used to predict how long a male dung fly should

spend copulating with a female if he is to maximize the rate at which he fertilises

eggs – see Parker (1978) for details. The migratory behaviour of birds provides

another example. Many species alternate between bouts of flying and bouts

of feeding to replace the energy lost during flight. It has been suggested that

such birds choose their migration speed to maximise their mean rate of travel

(Alerstam 1991; see also Hedenström and Alerstam 1995). For this scenario

we can take a renewal cycle to comprise a flight together with the subsequent

refueling phase, and take the reward on a cycle to be the distance covered during

the flight phase. The energy expenditure during flight is a function P (v) of the

flight speed v. It is easy to see that the optimal flight speed maximises
γv

γ + P (v)
,

where γ is the rate of refueling. This optimal speed exceeds the speed that

maximises the distance flown per unit of energy (the maximum range speed) but

is close to this maximum range speed when the time to refuel is long compared

to flight times.

(ii) Prey choice

Consider an animal that forages in an environment where there are several

types of prey. Prey type i yields an amount of energy ei when consumed and

takes a time hi to handle and consume. Types are encountered as independent

Poisson processes with λi being the encounter rate with type i items. The animal

cannot encounter prey while handling. Which types should be accepted (i.e.

eaten when encountered) and which should be rejected? For this scenario we can

26



take the renewal time as the time at which search recommences after inspecting

and possibly eating an item. Assume that a prey item of type i has just been

encountered. The optimal decision maximises the value of expression (19). We

have

H(accept) = ei − γ∗hi and H(reject) = 0.

It follows that a type i item should be accepted if and only if

ei/hi > γ∗.

In both of these examples, we have specified the optimal behaviour in terms

of γ∗. But γ∗ is the rate given that behaviour is optimal. Thus there is a

circularity in the specification, but this is not a problem – the condition uniquely

determines both the optimal behaviour and γ∗. The circularity does, however,

raise the questions of how to compute γ∗ and how an animal might achieve this

rate. To investigate these questions McNamara (1985) defines f : (0,∞) → [0,∞)

as follows. For each γ > 0 consider the strategy that maximises E{G− γT} and

let f(γ) equal the mean rate E{G}/E{T} under this strategy. The properties of

f are illustrated in Figure 2. The figure also illustrates one method of computing

γ∗ by constructing a sequence γ1, γ2, γ3, . . . as follows. First consider any strategy

and let γ1 be the mean rate under this strategy (it is assumed that the strategy

is chosen so that γ1 > 0). Then set γn = f(γn−1) for n ≥ 2. As the figure

illustrates, and McNamara (1985) proves, γn → γ∗ as n →∞.

Figure 2 about here

An animal that encounters a new environment composed of patchily dis-

tributed food will at first not even know the distribution of patch qualities in
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this environment. One simple rule that allows it to asymptotically learn γ∗ is as

follows. The animal starts with some prior estimate γ0 =
G(0)

T(0)

for γ∗. On the nth

patch encountered it behaves as if γn−1 were the true value of γ∗. On leaving this

patch it updates its estimate of γ∗ to

γn =
G(0) + G(1) + · · ·+ G(n)

T(0) + T(1) + · · ·+ T(n)

,

where G(i) is the gain on the ith patch and T(i) is the duration of the ith cycle.

McNamara (1985) shows that γn → γ∗ with probability 1. The difficulty in

the proof is in showing that the sequence {γn} converges. The key to this lies

in considering the sequence of random variables {Wn}∞n=1 where Wn = G(n) −

f(γn−1)T(n). This sequence has the properties that E(Wn) = 0 for all n and there

exists a constant K such that E(W 2
n) ≤ K for all n. Thus by standard martingale

results

lim
n→∞

1

n

n∑
k=1

Wk = 0 a.s. (20)

Having obtained this convergence result the strong law of large numbers is then

used to show that lim sup
n→∞

γn ≤ γ∗ a.s., and hence that lim inf
n→∞

γn ≥ γ∗ a.s. as well.

(iii) Diving for food

In the above examples of patch use and prey choice the opportunity cost of

spending an additional unit of time foraging is just γ∗. As we now explain, for

diving animals the opportunity cost contains an additional term.

Birds such as penguins, puffins and cormorants and mammals such as otters,

seals and whales hunt for their food while submerged in water. The need to return

to the surface to breathe places an upper limit on the time that can be spent

underwater, and the recovery time on the surface is liable to be an accelerating

function of the oxygen debt on surfacing. We focus on the following renewal

cycle. The diver starts a dive with no oxygen debt. It dives to a foraging area,
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spends a time t there and returns to the surface. The total time spent travelling

to and from the foraging area is τ . At the surface, the diver spends a time S(d)

recovering, where d(t, τ) is the oxygen debt incurred while underwater. If the

diver has been in the foraging area for a time t, the extra time on the surface, if

the diver spends a further time unit foraging, is S(d(t + 1, τ))− S(d(t, τ)). Thus

the opportunity cost of searching for an extra unit of time when time t has been

spent foraging is

γ∗(1 + S(d(t + 1, τ))− S(d(t, τ)).

If S is an accelerating function and d is linear in t, then this cost increases as t

increases. Consequently, it may be optimal to return to the surface before the

diver runs out of oxygen. For this diving problem the optimal strategy can again

be computed by constructing a sequence γ1, γ2, . . . where γn = f(γn−1). But in

order to evaluate f(γ), dynamic programming is used to find the strategy that

maximises expected total gains minus expected total costs in the cycle, where

the cost incurred in staying between times t and t + 1 is

cγ(t) = γ(1 + S(d(t + 1, T ))− S(d(t, T ))).

To explore the implications of this modified opportunity cost, we need to

specify the foraging process. Two cases have been examined:

(i) The diver can take at most one prey item to the surface (Houston and Mc-

Namara 1985a). Here interest focuses on how the diver’s prey choice criterion

changes with time spent on the bottom, and the maximum time the diver should

be prepared to search before surfacing.

(ii) The diver’s energetic gain is proportional to the time spent in the foraging

area. This case has also been used to investigate how the time at the surface

depends on time underwater if behaviour is optimal. Assume that the oxygen
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debt is given by d(t, τ) = m1t+m2τ . Now consider the effect of increasing τ when

m1 6= m2. If the animal adopted a fixed value of t, then the resulting time at the

surface would reflect the time cost associated with increasing τ . In contrast, if

the animal’s foraging time t∗(τ) is optimal given τ , then the resulting time at the

surface does not reflect the underlying costs; indeed a plot of S(d(t∗(τ), τ)) against

time underwater t∗(τ) + τ may suggest that there is no time cost (Houston and

Carbone 1992). An example is given in Figure 3. This illustrates an important

general biological point: the behaviour of an organism determines certain costs

or consequences, but within a population individuals differ in some confounding

factor which affects optimal behaviour; thus the correlation between behaviour

and its consequences observed in the population does not reflect the true effect of

behaviour on consequences. In other words, natural selection hides the underlying

functions.

Figure 3 about here

3.3 Risk-sensitive foraging

If animals are sensitive not only to the mean net rate of energetic gain, but also

to the variance, then their foraging is said to be risk-sensitive. Risk-sensitive

foraging has been reported in a variety of species (see Kacelnik and Bateson 1996

for a review).

The evolutionary approach to risk-sensitive foraging is straightforward. As-

sume that two options result in the same mean energetic gain but differ in that

one is variable whereas the other yields the mean with certainty. Let the random

variable X denote the energetic gain from the variable option, with mean E(X),
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so the fixed gain from the other option is also E(X). If reproductive value V is

a non-linear function of the energy gained, then Jensen’s inequality (e.g. Feller

1971) can be used to predict whether animals should prefer a gamble to a sure

thing. When V is convex, the inequality says

E[V (X)] ≥ V (E(X)),

so the expected reproductive value is higher if the animal gambles on the variable

option. This preference for variability is known as being risk-prone. When V is

concave, the inequality becomes E[V (X)] ≤ V (E(X)), so it is better not to

gamble, i.e. it is better to be risk-averse.

From a biological perspective the interesting question is what makes V non-

linear. Some general reasons for non-linearity emerge from a consideration of the

conditions that underlie the justification of rate maximisation. We pointed out

above that rate maximisation will not hold if the terminal reward is nonlinear.

Houston and McNamara (1999) show how an upper boundary on possible energy

reserves and a lower boundary on reserves at which starvation occurs also makes

V a non-linear function of reserves.

The first models of risk-sensitive foraging (Stephens 1981, Houston and Mc-

Namara 1982) were based on the foraging behaviour of a bird that stops foraging

at dusk. Let the random variable X(t) denote the energy reserves of the bird at

times t = 0, 1, . . . , T during the day (where dawn = 0 and dusk = T ) and let

V (x, t) denote the reproductive value of a bird with energy reserves x at time t

during the day. The models assume that the bird will die during the night if it

has less than a critical level of energy reserves x∗ at dusk. As in the discussion of

reproductive value as a common currency (Section 2.2), a simple terminal reward
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that captures this idea is to take

V (x, T ) = R(x) =

{
K x > x∗

0 x ≤ x∗,

so maximising expected reproductive value at dusk is equivalent to maximising

P (X(T ) > x∗).

Stephens (1981) considers the optimal decision for an animal with reserves x0

at time 0. At this time, the animal has a single choice between options that differ

in terms of the mean and variance of the energy gained per unit time. Once an

option is chosen, it has to be used from 0 until final time T i.e. no subsequent

changes in behaviour are allowed. This means that the model is static rather

than dynamic (or sequential). Using the central limit theorem, Stephens shows

that

P (X(T ) > x∗) = Φ

[
x0 + γiT − x∗

σi

√
T

]
where Φ is the normal distribution function and option i has mean gain γi and

variance σ2
i . It follows that the optimal decision is to choose the option that

maximises (x0 + γiT − x∗)/σi. When there are two options with the same mean,

γ, then it is optimal to choose the one with the smaller variance if and only if

x0 + γT > x∗.

In other words, the animal should be risk-prone if it does not expect to get enough

energy during the day to survive the following night and should be risk-averse if

it does expect to get enough energy to survive the night.

However, it is not very realistic to constrain the animal to make just one

decision. When the animal makes repeated decisions its level of reserves can

be modelled as a diffusion process with the decisions controlling the mean and

variance of this process (McNamara 1983, 1984). The general case in which the
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means are unequal is analyzed by McNamara (1984). Option i has mean γi and

variance σ2
i , with σ1 < σ2. McNamara shows that it is optimal for an animal

with reserves x at time left until dusk s = T − t to choose Option 1 if and only if

x +

[
γ1σ2 − γ2σ1

σ2 − σ1

]
s > x∗.

(This result makes an accurate estimate of the switching line in models in which

reserves do not follow a diffusion process but food items are found as Poisson

processes (Houston and McNamara 1985b).) When γ1 = γ2 this condition means

that the less variable option should be chosen if and only if x + γs > x∗. This

is exactly the same rule as Stephens (1981) obtains for a problem with fixed

time till dusk s. There is, however, a fundamental difference between the rules.

In Stephens’ model, the animal has to persist with the option originally chosen

for the remainder of the time until T , whereas in the dynamic model the an-

imal repeatedly chooses between the options on the basis of the current value

of its reserves. This difference in behaviour is reflected in a difference in sur-

vival probability. For example, if we consider an animal with reserves at dawn

of x0 = x∗ − γT , then its probability of having reserves greater than x∗ at T ,

and hence surviving the night, is 0.5 under Stephens’ formulation. In contrast,

survival probability under the optimal dynamic strategy is σ2/(σ1 + σ2) (see Mc-

Namara 1983 for details). We have concentrated on survival in environments

with a day-night cycle. Different assumptions about ecology result in different

predictions about risk-sensitivity (see McNamara and Houston 1992 for a review).

The above predictions of risk-prone behaviour are not supported by the data

(Kacelnik and Bateson 1996). A problem that arises in interpreting experiments

on risk-sensitive foraging is that the animal may not have the same view of the

experiment as the experimenter. What we mean by this is that an experiment
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typically offers an animal the choice between two options that do not change

over time. During the experiment the animal will not be exposed to bad weather

and will not be attacked by predators. Optimal behaviour is calculated on the

basis of these facts. But the animal cannot be expected to know that the options

will not change over time. It may not even be reasonable to assume that the

animal knows the distribution of outcomes associated with each option. The

animal’s behaviour has evolved in an environment that is much richer than the

environment of a typical laboratory experiment. It is a challenge to the theory to

explain the behaviour in simple laboratory settings as a byproduct of behaviour

that is adaptive in this wider setting. This and other modelling issues are the

focus of current work (McNamara 1996, Kacelnik and Bateson 1996).

3.4 The energy-predation trade-off

The maximisation of the net rate of energetic gain is not an appropriate currency

when a foraging animal may run the risk of being killed by a predator. There is

evidence that a higher rate of energetic gain may be associated with a higher risk

(see Lima and Dill 1990, Lima 1998 for reviews). This can arise, for example,

because a foraging animal may be able to allocate time to foraging or time to

looking around for predators (i.e. being vigilant). As the time that it devotes to

foraging increases its intake rate increases, but so does its predation rate.

If we wish to model the optimal foraging decision when an animal is faced

with an energy-predation trade-off, we have to compare a gain to the animal as

a result of obtaining energy with a loss that results from being killed (Section

2.2). Reproductive value provides a common currency for making this compari-

son. Let V be the animal’s reproductive value and assume that by its choice of

foraging option the animal can control both its net rate of energetic gain γ and
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the predation rate M to which it is subjected. Then it can be shown (Houston

and McNamara 1989) that the animal should choose the foraging option that

maximises

γ
∂V

∂x
−MV.

To understand this result, note that γ is the rate at which energy reserves x

increase, and ∂V/∂x is the rate at which reproductive value increases with re-

serves, so γ∂V/∂x is the rate of increase of reproductive value as a consequence

of food intake. M is the rate of mortality as a result of predation, and V is the

value of the animal’s life, so MV is the rate of decrease of reproductive value as

a consequence of predation. Thus the whole expression is the net rate at which

reproductive value increases as a consequence of the animal’s foraging decision,

and the optimal decision maximises this net rate.

We can rewrite the optimality criterion as maximisation of γ − θV , where

θ =
1

V

∂V

∂x

is the marginal rate of substitution of predation risk for energy. The concept

of marginal rate of substitution is a standard part of economic theory and has

been used by Caraco (1979) and Brown (1988) to analyse the energy-predation

trade-off.

To apply this analysis we need to know θ. We can find θ from V and get V

from an appropriate model of the future. Some examples are given in Figure 4.

Figure 4 about here

The above analysis deals with a single decision for given future expectations.

We now describe a dynamic optimisation problem in which a bird makes a se-

quence of decisions, each of which involves an energy-predation trade-off.
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Fat levels of small birds in winter

Winter can be a difficult time for small birds at high latitudes. The days

are short and the nights are long and cold. Many species of birds avoid these

conditions by migrating to somewhere warmer. The species that don’t migrate

adopt various strategies (both behavioural and physiological) that help them to

survive. In this section we concentrate on the adaptive regulation of fat reserves.

The basic idea is that a bird’s level of fat can be understood in terms of the

trade-off between starvation and predation (cf. the vole example of Section 2.2).

A bird’s fat reserves help it to survive a period when it cannot forage. The night

is one such period, but it is also likely that foraging will be interrupted by bad

weather. The higher the level of fat, the better is the bird’s chance of avoiding

starvation during an interruption. On this view, the bird should carry the highest

possible level of fat. Of course a predation risk incurred in obtaining food may

mean that it is not optimal to put on fat reserves in the first place. However,

McNamara (1990a) shows that if risks do not depend on current reserves, then

in the long term these initial costs do not matter (see also Houston et al. 1997a).

Specifically McNamara (1990a) shows that under the strategy that maximises

long-term survival, the equilibrium distribution of reserves conditional on being

alive (Section 2.3) assigns positive probability to every level of reserves. Since

birds are observed to regulate their fat levels below the maximum possible levels

this suggests that predation costs increase with fat levels. Costs associated with

high levels of fat are reviewed by Witter and Cuthill (1993). McNamara and

Houston (1990) identified two costs that result in an increase in predation. Both

are based on the fact that an increase in fat (all else being equal) will increase

the bird’s mass. An increase in mass is likely to increase the rate of energy

expenditure during flight. This will mean that the bird has to spend more time
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foraging to maintain its reserves at a high as opposed to a low level. A longer

time spent foraging means a longer time exposed to predators. The second cost

is a direct increase in predation risk as a result of increased mass. This effect is

expected because an increase in mass will reduce the bird’s flight performance

and hence its ability to escape from a predator (Hedenström 1992).

Given that fat has costs as well as benefits, how should a bird regulate its

level of fat so as to minimise total mortality (starvation plus predation)? The

first models to explore this question considered a single level of fat (Lima 1986,

McNamara and Houston 1990). In contrast, Houston and McNamara (1993)

found the optimal behaviour and the resultant level of fat as a function of time

during the day. The mathematics describing these optimal daily foraging routines

is a direct extension of that relevant to the long-term survival problem of Section

2.3. Unlike that problem the scenario here envisages a day-night cycle, so that the

actions available (and possibly their consequences) depend on the time within a 24

hour cycle. However, we can embed the current problem into the previous time-

homogeneous framework by defining the decision epochs t = 0, 1, 2, . . . of Section

2.3 to be at dusk on successive days. The state- and time-dependent strategy used

over the 24 hour period between times t and t+1 is then regarded as a single action

taken at time t, and the action that maximizes expected reproductive value in one

day’s time is found by dynamic programming over the 24 hour period. The best

stationary strategy π+ of Section 2.3 now specifies the optimal choice of action as

a function of reserves and time of day. Having found this strategy Houston and

McNamara (1993) calculated the distribution of energy reserves expected in a

large group of birds that all follow this strategy. Figure 5a illustrates the optimal

strategy and resultant levels of reserves for a specific case. The proportion of

birds foraging when the optimal strategy is followed is shown in Figure 5b.
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Figure 5 about here

Levels of starvation and predation

As well as making predictions about behaviour, models of optimal fat reserves

also specify the levels of mortality as a result of starvation and predation if the

optimal strategy is followed. An interesting general feature of the models is

that the level of starvation tends to be much lower than the level of predation.

Natural selection leads to the marginal levels being equal rather than the levels

themselves. As a consequence the absolute level of a factor does not indicate

its importance. This has been explored by Abrams (1993) who shows that the

magnitude of the effect that a factor has on fitness does not predict how much

of an influence the factor has on optimal behaviour. Related to this point, it

is easy to construct models that exhibit “paradoxical” effects. For example,

McNamara (1990b) illustrates that an increase in the food supply can increase

levels of starvation. In this example animals divide their time between two food

sources. Source A is poor but safe from predators. Source B is good but risky. A

small improvement in Source A leads to animals spending a greater proportion

of their time on this source. The predation rate thus decreases. But since Source

A is still not as good as Source B, mean intake rate decreases and the starvation

rate increases. McNamara (1990b) also shows that an increase in the predation

risk can decrease the number of individuals that die of predation. See McNamara

and Houston (1994) for a review.

4 Reproduction

Reproduction is central to an evolutionary account of behaviour: no matter how

well it forages, an animal that fails to reproduce leaves no descendants. From

38



our human perspective, we automatically think of reproduction as involving sex,

but there are other forms of reproduction, and why sexual reproduction occurs is

a deep and fundamental question (see Maynard Smith 1978, Michod and Levin

1988 for reviews). Sexual reproduction involves the fusion of gametes. In many

species there are two types of gametes: large ones that contain nutrients (eggs)

and small mobile ones (sperm). This condition is known as anisogamy and the

circumstances in which it is stable have been considered (e.g. Parker et al. 1972,

Matsuda and Abrams 1999). In species with separate sexes, females are defined

as the sex that produces eggs and males are defined as the sex that produces

sperm. There may be competition between sperm from different males to fer-

tilise a female. Models of sperm competition are reviewed by Parker (1998). A

fundamental feature of sexual reproduction in diploid species is that every in-

dividual has two parents, one male and one female. With characteristic insight

Fisher (1930) realised that this simple fact has profound implications for our un-

derstanding of the allocation of resources to male and female reproduction. The

total reproductive success of males has to equal the total reproductive success

of females. This means that if one sex is rare, then it pays to invest in it, and

so there is a frequency-dependence that can maintain a particular allocation of

resources to the production of males and females. Although not phrased in terms

of ESS’s, this is the first example of a model using the principle of evolutionary

stability. See Charnov (1982), Frank (1990) for reviews.

In this section we are primarily concerned with two aspects of reproduction:

obtaining a mate and investing in offspring. These two aspects are closely related.

A cost of caring for young is a loss of future matings. Future matings depend on

the number of males and females seeking mates and the rules used by population

members in deciding whether to mate with a particular individual. But numbers
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of males and females searching for mates depends on patterns of care, and the

choice rules that should be used depend on the value of mating with a particular

individual, which in turn depends on the individual’s care behaviour. It is clear

from this that a complete analysis would be very complicated. What is usually

done to simplify the problem is to consider various components in relative isola-

tion. We follow this approach by first concentrating on decisions about care and

then decisions about the choice of mate.

4.1 Limiting rates of reproduction

Maynard Smith (1977; model 3) and Grafen and Sibly (1978) independently pre-

sented models in which the dependence of the time to find a mate on population

decisions about care is explicit. The models are based on a species in which

breeding is continuous. There is no mortality, so the only cost of care is time

wasted (cf. prey choice, Section 3.2), and fitness can be measured by the long-

term average rate at which offspring are produced. The essence of the model is

that the potential rate of reproduction of one sex may be higher than that of the

other sex. As a result, this sex has to “wait” for members of the other sex to be-

come available. To see this principle in action, we make the following definitions.

Let Rm be the reproductive rate achieved by males and Rf be the reproductive

rate achieved by females, and assume that in the breeding population there are

S males for every female. Then the Fisher condition of equal reproduction by

males and females means that

RmS = Rf . (21)

Let τm be the time required by a male to recover from one breeding attempt

before it searches for a mate again. Let τf be the corresponding recovery time

for a female. These recovery times are taken as a constraint. The times that are
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allowed to evolve are the times spent caring by males, tm, and the time spent

caring by females, tf . The number of offspring that survive from a breeding

attempt V depends on tm and tf . Let the time spent searching for a mate be wm

for males and wf for females. Then from these definitions

Rm =
V

τm + tm + wm

and

Rf =
V

τf + tf + wf

.

We now seek ESS values of tm, tf , wf and wm, subject to the constraint imposed

by equation (21) together with the assumption that only one sex is waiting so

that minimum {wm, wf} = 0.

The analysis of Grafen and Sibly (1978) brings out the importance of the sex

ratio. In particular, they showed that if two parents are much better than one

in terms of caring for the young, then desertion will only occur at extreme sex

ratios. They also show that if the sex ratio is one, then desertion first occurs

when the value of both parents caring is twice that of the parent that deserts.

Yamamura and Tsuji (1993) simplified the problem by assuming that the time

that the parents devote to their offspring can only take two values, 0 (i.e. no care

is given) and T (corresponding to a fixed duration of care). This simplification

enabled them to give a complete characterisation of the stable patterns of care as

a function of the model’s parameters. An interesting finding was that for some

parameter values, the stable outcome involves some individuals of at least one sex

caring, while other individuals of the same sex do not care. It is a fundamental

result of Selten (1980) that in a two-player game with asymmetric rôles (for

example, male and female) an ESS cannot involve a random choice of action. As

Webb et al. (1999) point out, a mixed strategy ESS is possible here because the
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game between the parents is not really a two-player game but implicitly involves

the whole population. Specifically, the payoffs in the game between the parents

depend on the time it would take a deserting parent to find a new mate. But the

time to find a mate depends on the availability of unmated individuals, which in

turn depends on the outcome of the desertion games between all parents in the

population. Once this feedback is taken into account mixed strategy solutions

are possible.

The above models are based on rate maximisation over an infinite time hori-

zon. McNamara et al. (2000) consider a variant of the model in which there is a

breeding season of finite length. It is then possible to obtain oscillations in the

pattern of care that propagate back from the end of the breeding season (Figure

6). One of the reasons for these oscillations is the difference in mating opportu-

nities for the two sexes, and the reason for the difference in mating opportunities

is the pattern of care. Another reason for oscillations is changing future expec-

tations but expectations change because of the oscillations themselves, resulting

overall in a complex pattern of behavior and rewards.

Figure 6 about here

In addition to models that investigate care and desertion, the concept of rates

of reproduction forms the basis of attempts to understand competition for mates

and sex rôles (e.g. Clutton-Brock and Parker 1992). The basic idea is that the

sex with the lower potential rate of reproduction limits the rate of reproduction

of members of the opposite sex who then compete for access to the sex with the

limiting rate. In many species females care; they have a lower potential rate of

reproduction as a result, and competition among males for access to females is
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usually observed. In some species (e.g. phalaropes, Figure 7), males have the

lower rate of reproduction and females compete for access to males; a condition

known as reversed sex rôles (Clutton-Brock and Vincent 1991).

4.2 Parental effort games

An alternative approach to parental care is to focus on a single reproductive

bout and embed the game between parents in a life-history model. We start by

outlining a simple, but widely quoted, standard model based on Houston and

Davies (1985). Under the model, each parent can choose the level of effort that

it devotes to the current offspring. Let the effort of the male be x and the effort

of the female be y. The the total reproductive success of the male is assumed to

be given by

B(x + y) + f1(x),

where B is the success of the current brood (an increasing function of total effort)

and f1(x) is the male’s future reproductive success (a decreasing function of his

current effort). Similarly the total reproductive success of the female is

B(x + y) + f2(y).

The evolutionary stable efforts x∗ and y∗ are best responses to each other and

hence emerge as joint solutions to the equations

B′(x∗ + y∗) + f ′1(x
∗) = 0 and B′(x∗ + y∗) + f ′2(y

∗) = 0.

The model above assumes that future reproductive success depends only on

the level of effort of the parents and ignores any variation in the quality in either

population. As a result, the equilibrium strategy for each parent is to adopt a

fixed level of effort, independently of the behaviour of its partner. It is clear,
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however, that in practice parents respond to each other’s behaviour. Responding

alters the analysis since a change in the effort of one parent alters the effort of

the other. Specifically if the effort of the female is a function rf (x) of the male

effort x, then the payoff to the male if he adopts fixed effort x is

B(x + rf (x)) + f1(x).

McNamara et al. (1999) point out that responding is likely to be widespread,

particularly if individuals differ in quality and these differences cannot be imme-

diately recognised by the partner. To model this they assume that the future

reproductive success of an individual depends on both its effort and its qual-

ity. Parents respond iteratively to each other until their efforts settle down to

negotiated values. McNamara et al. seek a pair of negotiation rules r∗m and r∗f

for males and females respectively, such that each is the best rule given the rule

employed by the other sex. For a particular cost structure they are able to find

the evolutionarily stable negotiation rule. Following this rule a male of quality

qm should respond to female effort y by adopting effort

r∗m(y, qm) = x∗ + ρ + µq − λ(y − y∗),

wheren ρ, µ and λ are constants. Females have an analogous rule. The parameter

λ specifies how responsive one parent should be to the effort of its partner. As

McNamara et al. show, it is not evolutionarily stable to respond to one’s partner

by adopting the effort that is the best given that of the partner, since this can be

exploited by a lazy partner. McNamara et al. also show that the efforts reached

by a pair as a result of using these negotiation rules are not best responses to one

another.
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4.3 The cost of obtaining a mate

Finding a mate may be costly both in terms of energy and an associated risk of

mortality (Magnhagen 1991). For example, male birds sing to attract a mate.

Song costs energy and may be incompatible with foraging. McNamara et al.

(1987) investigate daily routines of singing by allowing a male to choose between

singing and foraging throughout the day. During the night, the bird rests. The

resulting optimal routines are driven by the possibility of starvation, even though

starvation is very unlikely under the optimal strategy. Because the food supply is

unpredictable birds build up reserves well before dusk, typically achieving their

target dusk levels before dusk. They then sing until dusk. Because overnight

temperature and hence energy used overnight are unpredictable, birds cater for

a worse-case scenario, typically having excess reserves at dawn and singing until

the excess is used up. Thus realistic routines with a dusk and dawn chorus can

be obtained without the need to invoke any variation in the food supply or the

probability of attracting a female as a function of time of day.

In general, males have to compete with each other for access to females. Real-

istic models will typically involve repeated decisions, and hence will be modelled

as a dynamic game. Sometimes such games can be solved analytically (e.g. Iwasa

and Odendaal 1984), but usually this is not possible. For example, Lucas and

Howard (1995) and Lucas et al. (1996) model the calling decisions of male frogs

over the season. Alonzo and Warner (2000) analyse the competitive interac-

tions between territorial and non-territorial male fish over the breeding season.

These are complex game-theoretical models involving state- and time-dependent

behaviour that must be solved numerically. Even a numerical solution may be

difficult because the best response is typically a discontinuous function of the

resident population strategy. One way in which this difficulty can be overcome
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is the realistic assumption that animals make errors in their decisions, where the

probability of an error decreases as the cost of the error increases (McNamara et

al. 1997).

4.4 Why should individuals be selective in their choice of
mate?

Being selective about a mate only makes sense if potential mates differ in the

benefit that results if they are chosen. For convenience we consider the possible

benefits in the context of females choosing between males. (The reasons why fe-

males are likely to be choosy are discussed in the next section.) Broadly speaking,

the benefits that a female obtains from mate choice are either direct or indirect

(e.g. Kirkpatrick and Ryan 1991).

(i) Direct benefits. These are benefits that have a direct effect on a female’s

survival or fecundity. They include the food that a male brings to a female or

that the female obtains from a male’s territory. They also include any care of the

offspring that the male might provide.

(ii) Indirect effects. Indirect effects are based on the male’s genetic contribution

to the female. Two sorts of genetic effect have been considered. Fisher (1930)

argued that given an initial female preference for a male trait, the preference and

the trait could both become exaggerated because of a positive feedback process in

which females that choose males with a large value of the trait have an advantage

because their sons have the exaggerated trait and hence are preferred. This is

known as Fisher’s runaway process. The alternative is that females get genes from

the male which result in better offspring. When this is so, females may be unable

to determine male quality directly, but have to rely on some signal from the male.

Interest in this idea was stimulated by Zahavi’s suggestion that a reliable signal
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of quality must carry a cost i.e. be a handicap (Zahavi 1975), so his claim is

known as the handicap principle. Zahavi did not present a formal model and the

principle was not initially accepted. The consensus now is that genetic models can

show the effects that Zahavi claimed: to quote the title of Pomiankowski (1987)

“The handicap principle does work - sometimes”. Pomiankowski concluded that

although these handicaps in isolation cannot result in an initial increase in female

preference for the handicap when it is rare, they can substantially increase the

probability that the handicap and the female preference become fixed in the

population (see Andersson 1994 for a review).

Discussions of the handicap principle and the idea that a male’s trait should

depend on his condition led to an important general idea: honest signalling.

Grafen (1990a,b) has done much to bring this idea to prominence. Grafen (1990a)

considers a model in which males vary in quality q, independently of genotype.

A male strategy is an advertising function A, so a male of quality q advertises

himself to females at level a = A(q). A female strategy is a function D(a, t)

specifying the probability that a female accepts as a mate a male with level of

advertisement a met at time t in the season. A female’s fecundity is an increasing

function of her mate’s quality and an eventually decreasing function of the time

in the season at which she mates. While higher quality increases survival and

more advertising decreases survival, an important feature of Grafen’s model is

the assumption that the survival disadvantage of increasing advertising is greater

for lower quality males, i.e.

α(q1, a2)

α(q1, a1)
<

α(q2, a2)

α(q2, a1)
for a1 < a2, q1 < q2,

where α(q, a) is the probability that a male survives to the breeding season as

a function of q and a. Grafen concluded that there were essentially only two
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possible ‘smooth’ equilibria – a degenerate equilibrium in which A(q) = 0, and a

unique non-degenerate equilibrium in which A(q) was increasing in q (i.e. better

quality males have higher levels of advertisement) and females prefer males with

high levels of advertisement to males with low levels. The males develop a costly

signal because of the choice behaviour of the females, and the female’s choice

behaviour gives them males of higher quality that they would otherwise obtain.

Although female choice is costly, the benefit obtained makes it worthwhile.

Honest signalling is now a major area of interest. Conditions for signals to be

honest are discussed by Grafen (1990b), Getty (1998a,b), Számadó (1999) and

Eshel et al. (2000).

Because indirect effects are based on genes, it is natural to investigate them

with genetic models. This area has been the principal battleground in disputes

over the strengths and weaknesses of genotypic as opposed to phenotypic models.

The evolutionary process can be regarded as a dynamic system whose change

over time depends on the details of the underlying genetics. The debate is over

whether the stable endpoints of this dynamic system can be characterised in sim-

ple phenotype terms, independently the genetic details. This debate is ongoing.

(See, for example, Kirkpatrick 1985, Grafen 1990a pp 481-2, Grafen 1990b p. 541,

Kirkpatrick 1992, Andersson 1994 p. 33, Iwasa and Pomiankowski 1999 p. 106.

For a general review see Gomulkiewicz 1998).

So far we have considered the benefits that a female may obtain from mate

choice. It is possible that the female gains no benefit, but that the signals used

by males have evolved to exploit the sensory system of females (e.g. Ryan 1998

– but see Bradbury and Vehrencamp 2000).
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4.5 Optimal mate choice

Our discussion of the benefits of choice has led us to models in which female

choice can evolve. We now look in more detail at non-genetic models of optimal

mate choice.

In the most basic class of models the female must choose a single mate from

an infinite sequence of males whose qualities are the observed values of a sequence

of independent identically distributed random variables. On inspecting a male

she must decide whether to accept that male or reject him and move on to the

next. There is no recall of previously rejected males. To illustrate a specific

model in this class, assume that between each inspection the female is killed with

probability 1−θ, and that if she mates with a male her reproductive value equals

his quality. For this model let W be the reproductive value of the female on

rejecting a male, assuming that the female behaves optimally. Then the female

accepts the first male whose quality exceeds W . Thus W is the unique solution

of the equation

W = θE{max(X, W )},

where the random variable X has the male quality distribution. (See Real 1990

for a review of this problem.)

The problem becomes more interesting both biologically and mathematically

if interactions between the animals are present. This means that a game-theoretic

approach is required. One sort of interaction, analysed in Collins and McNamara

(1993), arises if more than one female is choosing, and chosen mates are no

longer available to other choosers. Thus the quality of mates available to a

female declines over time due to the actions of other females. (This would arise

if animals form a pair to raise young, which illustrates the interactions between
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patterns of care and patterns of mating.) Let β denote the overall ratio of males

to females and let L(x, t) denote the rate at which a searching female finds males

of quality greater than x at time t (so L(·, 0) models the initial quality distribution

of available males). Collins and McNamara show that, for an arbitrary smooth

male availability function L(·, ·), an optimal female choice rule is a control-limit

rule of the form ‘accept a male of quality x found at time t if and only if x ≥ f(t)’,

where f is a non-negative, non-increasing function satisfying

f ′(t) = −
∫ ∞

f(t)

L(x, t)dx (t ≥ 0).

Moreover, if all females use a common non-negative, non-increasing control-limit

choice rule, then the actual male availability rule resulting from their actions can

be characterised by a set of linked differential equations. Combining these results,

they show that there is a unique evolutionarily stable female choice rule (i.e. one

that is an optimal choice rule for precisely the the pattern of male availability

created when all females use this rule). The control-limit function c∗ for this rule

is a solution to the equation

c′(t) = β[c(0)− h(c(t))],

where h(x) = x + β−1
∫∞

x
L(v, 0)dv, with c∗(0) determined by the values of β

and L(x, 0), x ≥ 0. From this they are able to derive a number of qualitative

and quantitative properties of the expected quality of the mate chosen by a given

female.

Another sort of interaction arises if both sexes make choices. It is usually

assumed that mating only occurs if each member of the pair finds the other

acceptable. If there is a time cost associated with searching, then the best ac-

ceptance rule for one sex depends on the acceptance rule adopted by the other

sex, so even if mates are not removed from the population, game theory must
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be used to predict behaviour. McNamara and Collins (1990) establish that the

general form of the ESS in this case involves assortative mating by class. Specifi-

cally male quality can be partitioned into discrete classes M1, M2, . . ., and female

quality can be partitioned into discrete classes F1, F2, . . .. At evolutionary stabil-

ity males in class Mi mate only with females of class Fi. One example is given in

Figure 8.

Figure 8 about here

Variants of this model have been developed in economics, with the interpreta-

tion of a game between a population of employers and a population of candidates

seeking jobs (e.g. Burdett and Coles 1999, Mailath et al. 2000, see also Burdett

and Coles 1998). In a biological context Johnstone et al. (1996) analyze a model

in which, on mating, individuals spend a fixed time caring before searching for

the next mate. Each population member’s mate choice strategy maximises its

long-term rate of reproductive success (cf. the models of Section 4.2). Given that

male and female care times are different, which sex is predicted to be the more

choosy? If one sex cares and the other does not then the caring sex gets less from

mate choice because all that the mate provides is good genes. On the other hand

since members of the opposite sex are more common amongst single individuals,

the caring sex has lower mate choice costs. The numerical results obtained by

Johnstone et al. suggest that the latter effect is more important and the sex that

cares more should be more choosy. When both sexes care for the young it can

be optimal for each sex to be selective if quality of care is sufficiently variable.

This provides an explanation for species in which biparental care is associated

with bright plumage in both sexes. We note that in this model time devoted to
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the young is fixed. It would be interesting to look at the joint evolution of mate

choice and care times.

4.6 Models involving decisions about mating and care

We conclude this section with a discussion of models that consider both mating

behaviour and parental care. Houston et al. (1997b) assumed that a female can

control the matings that she has with two males. The matings that the males

obtain determine their paternity (i.e. the probability that they are the father

of the female’s offspring). Given the paternity of each male, the evolutionarily

stable level of effort for each male and the female can be found. Once these efforts

are known, it is possible to determine the mating behaviour of the female that

maximises the total parental effort. Houston et al. showed that whether a female

should mate with both males or with just one male depends on the function f

that specifies how future reproductive success depends on effort. In particular,

if f ′′ is strictly increasing, the female does best by mating with just one of the

males, whereas if f ′′ is strictly decreasing, then the female does better if she

shares matings equally between the two males.

In contrast to a situation in which a female might obtain help in raising her

young from two males, Kokko (1999) investigates the case in which only one male

(the ‘social partner’) will care. The female can cuckold this male by mating with

other males. This gives the female a benefit (perhaps an indirect genetic one). A

male may suspect that his female has mated with another male. Although a male

may mistakenly believe that he has been cuckolded when he has not, the male’s

perception is accurate enough for the probability of cuckoldry to be greater when

a male suspects that it has occurred. As a result, males that suspect cuckoldry

put less effort into caring for the young. If a male cares for the young, he reduces
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his opportunities for extra-pair matings. The magnitude of the cost of care thus

depends on the survival of young from these matings, which depends on the care

that they receive, which in turn depends on the behaviour (i.e. cuckoldry by

females, suspicion by males) of other paired animals.

As with the Houston and Davies model in Section 4.2, given that the social

partner contributes care x, the reward to the female for contributing care y is

B(x + y)− c(y)

and the optimal level of care y∗ depends only on the given x. Assume first

that the proportion of cuckolding females is fixed at zC and assume the current

(population) levels of care for suspicious and non-suspicious males are xS and

xS̄ respectively. Then the expected reward to an individual suspicious male who

provides care x is

WS(x; xS, xS̄) = HS(x, y∗(x))− c(x) + GS(x; xS, xS̄),

reflecting the reproductive success of the brood, the immediate cost of care and

the reward from extra-pair matings respectively. There is a similar expression for

WS̄(x; xS, xS̄) for non-suspicious males. For this fixed zC , the male equilibrium

care efforts x∗S and x∗
S̄

then satisfy

WS(x∗S; x∗S, x∗S̄) ≥ WS(x; x∗S, x∗S̄) for all x

WS̄(x∗S̄; x∗S, x∗S̄) ≥ WS̄(x; x∗S, x∗S̄) for all x

and can be found numerically by iterating the best response map. The overall

expected reward WC(zC) to a cuckolding female is then a weighted combination of

the two terms B(x∗S + y∗(x∗S))− c(y∗(x∗S)) and B(x∗
S̄

+ y∗(x∗
S̄
))− c(y∗(x∗

S̄
)), where

the weights reflect the probability that her social partner becomes suspicious
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given that she is cuckolding him. There is a similar expression for WC̄(zC) for

non-cuckolding females.

Finally, let zC (and hence xS and xS̄) vary. Then zC will increase whenever

WC(zC) > WC̄(zC) and a necessary condition for an overall equilibrium cuckold-

ing and care effort behaviour at z∗C is then WC(z∗C) > WC̄(z∗C).

Kokko found that in the non-degenerate case there were two evolutionarily

stable outcomes in this system: either animals form pairs in which there is a

limited amount of extra-pair mating and both parents feed the young, or all

females mate with more than one male and males do not provide care. In addition

to the light that it sheds on the possibility of a stable level of extra-pair mating,

Kokko’s analysis is also of interest in showing that only some possible patterns

of mating and care may be stable. This opens up the possibility of characterising

possible social systems.

5 Life history theory

5.1 Introduction

Organisms are not infinite in their capacity to produce young. There are trade-

offs so that current reproductive success can only be increased at the cost of

a decrease in future success. A trade-off can be environmental; for example

increased time spent feeding young may increase predation risk and hence reduce

the probability of being able to breed again. As discussed by McNamara and

Houston (1996), many trade-offs are physiological and are mediated through the

action of current behaviour on future state. For example, a tree can increase

current reproductive success by increasing the allocation of resources to seed

production, but this reduces growth rate and hence future reproductive success

since this success increases with size.
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Life history theory (see Lessells 1991, Roff 1992, Stearns 1992 for reviews) is

concerned with reproductive behaviour over the whole of an organism’s lifetime.

The aim of the theory is to identify strategies that maximise some suitable mea-

sure of total lifetime reproductive success. The measure of lifetime reproductive

success depends on the definition of fitness that is appropriate. The expected

lifetime number of surviving offspring may not be an adequate fitness measure

for a number of reasons including the following.

(i) How quickly the young are produced may be important. If the expected

number of offspring produced by a genotype exceeds 1 then the quicker

these are produced the greater the growth rate in genotype numbers.

(ii) Surviving offspring may be in different states. This is particularly impor-

tant when an individual can increase the quality of offspring produced by

reducing their number. It is also important when the state of an offspring

is correlated with maternal state (maternal effect).

(iii) An individual can increase the rate of increase of its genotype or specific

genes by helping related individuals (kin selection).

(iv) When there are large scale fluctuations of the environment that affects all

population members it is not appropriate to measure reproductive success

by simply taking an average over fluctuations.

In this section we concentrate on the complications (i) and (ii), with a brief

description of the effects of kin selection. Environmental fluctuations are dealt

with in Section 6.
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5.2 Fitness

Here we define fitness when there may be seasonal effects but the environment

as a whole is not subject to fluctuations from year to year. As will be seen, the

mathematics required to define fitness and to characterise optimal strategies in

this case is directly analogous to that of Section 2.3. In Section 2.3 individuals

are maximising the probability that they survive a long winter; here individuals

are maximising the number of descendants left far into the future. The two cases

differ in that the former is concerned with both time-dependent and stationary

strategies, whereas here we are concerned solely with stationary strategies.

Consider a large population of organisms of a given species. For simplicity

assume that the species is asexual. A census is made of population members at

times t = 0, 1, 2, . . . that are one year apart. At a census time the state of each

population member lies in the finite state space S. Consider a given genotype

within this population, and focus on a member of this genotype that is alive

at time t. Define a genotype member present at time t + 1 to be a one-year

descendant of the focal individual if either (i) it is the focal individual (having

survived for the one year period), (ii) it is an offspring of the focal individual that

was born between times t and t+1, or (iii) it is a direct descendant of an offspring

of the focal individual, where the offspring was born between times t and t + 1.

Let axy be the expected number of one-year descendants left in state y at time

t + 1 given that the focal individual is in state x at time t. Note that, since we

are assuming that there are no environmental fluctuations so that all years are

the same, axy does not depend on calendar time t. The matrix A = (axy) is called

the projection matrix for the genotype. We assume the matrix is primitive as

defined in Section 2.3. Let N(t) be the number of genotype members present at

time t. The analogue of N(t) in Section 2.3 is alive(t). Assume that numbers
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remain large so that we can average over the variation in numbers of descendants

left by different individuals of the genotype. Then by analogy with equation (5)

N(t + 1)

N(t)
→ λ as t →∞,

where λ is the Perron-Frobenius eigenvalue of A. Thus λ is the asymptotic annual

growth rate in genotype numbers. We define the fitness of the genotype to be

this growth rate.

The above analysis assumes that the projection matrix A does not change

over time. However, individuals of one genotype compete for resources with

other members of that genotype and with members of other genotypes. Thus

the projection matrix of a genotype depends on the numbers of all genotype

members present in the population. If numbers change or the composition of the

population changes the projection matrix will change and N(t + 1)/N(t) need

not tend to a limit. Nevertheless, if we analyse the evolutionary stability of a

population this is not a problem. Consider a population whose members are all

of the same genotype. Suppose that the population has reached a stable size with

numbers in each state stable. Then N(t+1)/N(t) = 1 and this resident genotype

has fitness λ∗ = 1. Now consider a mutation that gives rise to a new genotype.

While mutant numbers are small compared with the resident population size the

projection matrix for this mutant genotype can be taken to be constant. Let λ

be the Perron-Frobenius eigenvalue of this matrix. If λ < 1 then mutant numbers

will not grow. If this is true for all possible mutants then the resident genotype

is evolutionarily stable. Conversely suppose that λ > 1 for some mutant. If

there is just a single mutant individual, then the descendants of this individual

may die out due to stochastic effects. If the mutation is common, however,

then eventually the line of descent from one mutant individual will not die out,
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numbers will increase, and the per year growth rate in mutant numbers will be

greater than 1 provided mutant numbers are small compared with the size of the

whole population. Thus the resident genotype is not evolutionarily stable.

The above arguments show that the fitness of a genotype should be defined in

the context of a resident population and gives the rate of invasion of the genotype

into the population (Metz et al. 1992, see also Mylius and Diekmann 1995). At

evolutionary stability the resident genotype has maximal fitness. In this sense

natural selection leads to maximisation of fitness. The reasoning can be extended

to various other cases. If a population is not subject to density-dependent effects

fitness is again maximised at evolutionary stability but the maximum value λ∗

need not be one. For sexually reproducing populations, fitness is defined on

strategies rather than genotypes, and numbers of one-year descendants of a focal

individual are discounted to take into account the relatedness of descendants to

the focal individual. In this case, provided certain assumptions about the genetics

are made, at evolutionary stability the resident strategy maximises fitness.

5.3 The optimisation problem

We now assume that there is some background resident population in which the

numbers of population members in each state are constant over time. Given the

‘environment’ created by the physical environment and the resident population

we consider how to characterise and find the strategy that maximises fitness.

In order to put the problem of fitness maximisation into a decision-theoretic

framework suppose that an individual that is in state x at time t must choose

an action from a set Q(x) of available actions. If action u is chosen then the

individual leaves axy(u) expected one-year descendants in state y at time t + 1.

We suppose that the genotype of an individual codes for the rule determining the
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individual’s choice of actions. In other words the genotype specifies the strategy,

where by a strategy π we mean a function that, for each x in S, assigns an action

π(x) in Q(x). Note that strategies are defined to be time-stationary; it would not

be realistic to allow the action of an individual to depend explicitly on calendar

year. It is assumed that the underlying genetics are such that every possible such

function can arise in the population.

The projection matrix under strategy π is Aπ = (axy(π(x))). Let λπ be the

Perron-Frobenius eigenvalue of the matrix; i.e. the fitness of strategy π. Set

λ∗ = max
π

λπ.

Then a strategy π∗ is optimal if λπ∗ = λ∗. In what follows we assume that an

optimal strategy exists. This will certainly hold when the set of possible actions

is finite, and will hold under suitable regularity conditions when action sets are

compact. In what follows we will also assume that the projection matrix Aπ∗ for

some optimal strategy π∗ is primitive. If this is does not hold in any particular

biological scenario it can usually be made to hold by omitting redundant states

from the state space S.

Given a strategy π we can define the relative reproductive value V̂π under π

by equation (8). Then by equation (10), V̂π(x) measures the expected number

of descendants left far into the future by an individual in state x relative to an

individual in some reference state L, given both individuals follow strategy π.

Let V̂ ∗ be given by equation (13) and let strategy π∗ be given by

Tπ∗V̂ ∗ = T ∗V̂ ∗. (22)

Thus under π∗ the action chosen in every state maximises the expected value of

one-year descendants (cf. equation (16)). Here the “value” of a descendant in

state y is taken to be V̂ ∗(y). Then as in Section 2.3 we can deduce that π∗ is
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an optimal strategy. Furthermore, it can be shown that strategy π is optimal if

and only if TπV̂π = T ∗V̂π where V̂π is the reproductive value under π (McNamara

1991, 1993a). This condition is especially useful because it can be used to easily

determine whether a given strategy is optimal. The condition says that π is

optimal if and only if all actions taken under π maximise the expected value of

one-year descendants, where “value” is assigned by V̂π.

Finally, the argument leading up to equation (15) gives a robust method of

computing optimal strategies. Dynamic programming is used to determine how

maximum expected numbers of descendants left far into the future depends on

current state. Equations (15) and (22) then determine V̂ ∗ and π∗ respectively.

5.4 Lifetime reproductive success

The analysis of optimal life histories given above is based on projection matrices.

The elements of a projection matrix are defined in terms of one-year descendants.

But in counting descendants of an individual, no distinction is made between

the focal individual itself and its offspring. Thus the notation loses track of

what happens to an individual over its lifetime. Here we reformulate the above

optimality criteria in terms of the maximisation of a suitable measure of total

lifetime reproductive success.

Let the annual census times be as before. Since we wish to follow an individual

over its lifetime we now include an organism’s age as a component of its state at

a census time. For simplicity we assume that offspring born between times t and

t + 1 do not reproduce before time t + 1. We adopt the convention that offspring

that survive until time t + 1 are classified as age 1 at this time. The age of an

individual at a census time is then a positive integer.

Consider the offspring that are born to a parent between times t and t + 1.
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If an offspring fails to survive until time t + 1 it is given value 0. If an offspring

survives until t + 1 and is in state x at this time it is given value V̂ ∗(x), where

V̂ ∗ is the relative reproductive value under the optimal strategy. We define the

reproductive success at time t of the parent as the total expected value of all

such offspring. Let lk be the probability that an individual survives from age 1

to age k and let bk denote the reproductive success of an individual given that it

survives to this age. The total (discounted) lifetime reproductive success of an

individual is then defined to be

∞∑
k=1

(λ∗)−klkbk (23)

where the discount factor λ∗ is the growth rate under the optimal strategy. A

strategy is optimal if and only if it maximises this quantity (Taylor et al. 1974,

McNamara 1993b). A proof of this result in a special case is given below. The

discount factor λ∗ quantifies the value of producing offspring early in the lifetime

when expected lifetime number of offspring exceeds 1.

Formula (23) hides much complexity. The probability of survival until age k

depends on the state at age 1 and the strategy followed up until age k. The state

of an individual at age k also depends on these two factors. Thus reproductive

success bk at age k depends not only on the behaviour at this age but state at age

1 and behaviour up to age k. The formula is nevertheless conceptually useful.

5.5 Age-dependent life history theory

Historically, life history theory emphasised age as an organism’s state variable.

Early models focussed on the scheduling of reproduction over the lifetime of an

organism. Specifically, let the action u represent reproductive effort, and suppose

that age is the only state variable. Suppose that an organism of age k expends

reproductive effort u. Let bk(u) be the resultant expected number of offspring
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that survive until next year (when they are defined to be age 1). An increase

in u will increase bk(u) but will typically decrease the probability sk(u) that the

focal organism survives until next year (when it will be age k + 1). Suppose that

there is a maximum possible age K in this species. Then a life-history strategy

can be taken to be a vector π = (u1, . . . , uK) where uk is the reproductive effort

at age k. The projection matrix under this strategy is

A(π) =


b1(u1) s1(u1) 0 0 · · · 0 0
b2(u2) 0 s2(u2) 0 · · · 0 0

...
...

...
...

...
...

bK−1(uK−1) 0 0 0 0 sK−1(uK−1)
bK(uK) 0 0 0 0 0


To derive formula (23) in this case let π∗ be an optimal strategy. Let λ∗ be

the fitness and V̂ ∗(k) the relative reproductive value at age k under this strategy.

Then Tπ∗V̂ ∗ = λ∗V̂ ∗. Let π = (u1, u2, . . . , uK) be any strategy, then equation

(22) implies that

(TπV̂ ∗)(k) ≤ (Tπ∗V̂ ∗)(k) = λ∗V̂ ∗(k)

for all k, with equality at all k if and only if π is optimal. Thus

V̂ ∗(k) ≥ (λ∗)−1[bk(uk)V̂ ∗(1) + sk(uk)V̂ ∗(k + 1)] 1 ≤ k ≤ K − 1

with

V̂ ∗(K) ≥ (λ∗)−1bK(uK)V̂ ∗(1).

By repeated substitution and cancellation of V̂ ∗(1) this yields

K∑
k=1

(λ∗)−k`k(u1, . . . , uk−1)bk(uk) ≤ 1

where

`k(u1, . . . , uk−1) =
k−1∏
i=1

si(ui)
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is the probability of survival from age 1 to age k. Since there is equality here if

and only if π is optimal, we see that π is optimal if and only if expression (23) is

maximised.

One fundamental question addressed by this simplified theory is whether an

organism should put all its effort into one reproductive bout that kills it (semel-

parity) or should attempt to breed several times (iteroparity). A general con-

clusion is that high background mortality selects for semelparity. For further

discussion of this topic see Schaffer (1974), Bulmer (1985) and Orzack and Tul-

japurkar (1989).

Given an organism that is iteroparous, we can ask about how reproductive

effort should be scheduled over the organism’s life. When reproductive success

bk(u) does not depend on age k, we might expect a decrease in annual survival

sk(u) = `k+1/`k to select for increasing reproductive effort with age. When

reproductive success decreases, results are less clear.

5.6 Growth

The only state variable other than age that has frequently been used in life his-

tory theory is size. In models based on size, the energy that an organism obtains

typically depends on its size, and the organism decides whether to allocate this

energy to growth (thus increasing size) or to immediate reproduction. The cen-

tral problem in this context is whether the organism should initially allocate all

energy to growth until a critical size is reached and then allocate all energy to

reproduction. Mammals and birds adopt this strategy. The alternative is that,

for at least part of its life the organism allocates energy to both growth and re-

production. Fish and trees adopt this strategy, which is known as indeterminate

growth. Most of the models are deterministic and Pontryagin’s Maximum Prin-
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ciple is often used to find the optimal strategy (see Perrin and Sibly 1993 for a

review). Given the usual assumptions about the trade-off between growth and

reproduction, indeterminate growth can only be obtained in a constant environ-

ment when the control vector follows a singular arc (Perrin et al. 1993). Models of

intermediate growth are reviewed by Heino and Kaitala (1999). Optimal growth

in a seasonal environment is analyzed by Koz lowski and Teriokhin (1999).

5.7 Maternal effects

Within a hyena population females are grouped together into clans. The females

in a clan have a dominance hierarchy. High ranking females produce more off-

spring than low ranking females. Female offspring remain in the same clan as

their mother and because of the social structure, tend to have a similar domi-

nance rank to her. Such phenotypic inheritance of maternal state is referred to

as a maternal effect. Other examples include the inheritance of social status in

primates and the inheritance of territories in red squirrels.

If reproductive success depends on state, and state tends to be passed on to

descendants, as in hyenas, then it is clear that fitness cannot be measured in terms

of numbers of offspring; even numbers of grandchildren may be a poor measure.

In taking fitness to be the eigenvalue of the projection matrix, asymptotic effects

far into the future are automatically included.

To illustrate the long-term consequences of maternal effects consider whether

a female of high quality or high status should produce sons or daughters. The

theory of parental investment presented by Trivers and Willard (1973) is based

on maternal effects: females pass on their quality to both sons and daughters

but males do not pass on their quality. It is argued that high quality females

should produce sons since empirical evidence indicates that a high quality son
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can produce more offspring than a high quality daughter. This line of reasoning

is based on counting numbers of grandchildren and ignores the fact that these

grandchildren may vary in quality. As Leimar (1996) shows, using the correct

approach based on the eigenvalue as fitness measure can mean that high quality

females should produce daughters.

5.8 Kin selection

Natural selection acts on gene frequencies. In an asexual population, it tends to

produce genotypes that maximize their number of descendants left far into the

future. Similarly, for sexual populations natural selection tends to produce genes

that maximize their number of copies left far into the future. By its effect on an

organism’s behaviour, a gene can influence its own spread in two different ways.

One is the direct effect on the reproductive success of the organism that carries it.

The other is the effect of this organism’s behaviour on the reproductive success

of other organisms that carry the same gene. The topic of kin selection takes

account of both these effects.

The theory of kin selection was developed by Hamilton (1964a,b). Hamilton

characterised the extent to which an organism should sacrifice its own reproduc-

tion in order to enhance the reproductive success of relatives.

We make no attempt to summarize the vast literature on kin selection (see

Grafen 1984, Frank 1998 for an introduction). Our aim here is to illustrate

how kin selection can be understood in terms of life-history theory. As before,

consider an asexual organism which has a choice of actions in each of its possible

states. Suppose that the organism is in state x. In the absence of kin selection,

the organism’s choice of action affects the projection matrix only through its

effect on axy for all y. When the organism is interacting with another member
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of its genotype in state x′, the focal organism’s choice of action influences not

only axy but also ax′y. We still expect selection to maximize λ, but because of

the non-localised effect of an action, we can no longer characterise the optimal

strategy by the criteria given in Section 5.3. To model the non-linear effect of an

action we can suppose that the projection matrix elements are functions axy(α)

of a parameter (or vector of parameters) α. Let A(α) = (axy(α)) have Perron-

Frobenius eigenvalue λ(α). Then a necessary condition for optimality is that

λ′(α) = 0. Let the vectors ω(α) and V̂ (α) satisfy

ω(α)A(α) = λ(α)ω(α) (24)

and

A(α)V̂
T

(α) = λ(α)V̂
T

(α) (25)

respectively. Then differentiating equation (24) with respect to α gives

ω′(α)A(α) + ω(α)A′(α) = λ′(α)ω(α) + λω′(α).

Multiplying terms in this equation on the right by V̂
T

(α) then gives

ω′(α)[A(α)V̂
T

(α)] + ω(α)A′(α)V̂
T

(α) = λ′(α)ω(α)V̂
T

(α) + λ(α)ω′(α)V̂
T

(α).

Setting λ′(α) = 0 and using equation (25) gives ω(α)A′(α)V T (α) = 0. Thus, in

terms of the original life history problem, we see that a necessary condition for

π to be optimal is that

ωπAπ′V̂ π

has a local maximum at π′ = π (Taylor 1990, see also Taylor and Frank 1996)

where ωπ is the stable distribution of states under π and V̂ π is the vector of

reproductive values under π. In other words, when actions are not local in their

effect, optimal actions maximise average reproductive value next year.
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5.9 Annual routines

Life-history models have often been used to predict a single annual decision

such as the level of effort that is allocated to reproduction. There are, how-

ever, many circumstances in which the interesting biological question is how the

animal should organise a series of activities over the year. The problem with

predicting an annual routine is that the performance of one activity may pre-

clude another at the same time and, by affecting future state, affect the ability

to perform other activities in future. It is straightforward, however, to extend

the iterative technique used to find daily routines (Section 3.4) to this case. The

only minor complication is that the behaviour of young that are produced must

also be explicitly taken into account (Houston and McNamara 1999).

Bird migration exhibits a particularly rich spectrum of annual routines. Some

species migrate while others do not. Within a species some migrate while others

(e.g. juveniles) do not, and there may be differences between the sexes in their

wintering grounds and in the timing of migration. There is enormous variation

across species in the timing of breeding, moult and migration. A complete moult

immediately after breeding is the norm in non-migratory species, and in some

migratory species. Some long-distance migrants moult on the wintering ground

after the autumn migration, others start moult before the autumn migration

then interupt it and resume just before the spring migration, while a few species

moult twice a year. Finally, there are systematic changes in the morphology and

physiology of many birds over the annual cycle.

It is a challenge to see if the above diverse patterns can be understood in

adaptive terms. As a prelimiary exploration of this field McNamara et al. (1998)

present a simple model of a bird that can move between two habitats, an equato-

rial site at which food availability is constant throughout the year and a temperate
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site at which food varies with season, and is worse than the equatorial site in win-

ter and better than the equatorial site in summer. The optimal strategy typically

involves breeding in the temperate site in summer and spending the winter at

the equator. Figure 9 illustrates the effect of seasonality on breeding.

Figure 9 about here

Even this simple model can predict the qualitative features of known phenom-

ena, such as a difference in the timing of adult and juvenile migration and the

fact that the spring migration is less spread out than the autumn migration.

6 Fluctuating environments

6.1 Introduction

One common feature of all the models considered so far is that they only involve

demographic stochasticity, i.e. stochasticity due to random events that affect each

individual in a population largely independently of the other population mem-

bers. For example, the value of food items found by a forager during a given

foraging bout may be appropriately modelled as independent of the value of food

items found by other foragers. In contrast, this section will focus on models where

some random events may simultaneously affect all the individuals in a popula-

tion. Typical examples are large-scale fluctuations in the overall environmental

conditions (the time of the onset of winter, the general availability of food in a

given season etc.) where all population members are subject to identical envi-

ronmental conditions at a given time. We refer to this form of stochasticity as

environmental stochasticity. Models where the dominant form of stochasticity is
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environmental (or both environmental and demographic) rather than just demo-

graphic are distinguished by referring to the former as being set in a fluctuating

environment and to the latter as taking place in a constant environment. Refer-

ring back to the assumptions in Section 1.1, in a fluctuating environment it is the

probability distribution over environmental conditions which is stationary over

time.

The following simple example illustrates the comparative effects of demo-

graphic and environmental stochasticity on the rate of spread of a gene and the

need for an appropriate definition of fitness.

Example Consider an asexual species. Assume generations are non-overlapping

so individuals born in year t reach maturity and reproduce one year later and

then die. Focus on one particular genotype and let the number of individuals of

this genotype be N(t), t = 0, 1, 2, . . . .

First suppose there is demographic stochasticity, but no environmental stochas-

ticity. Assume each individual of the genotype produces 0 offspring with probabil-

ity 0.5 and 4 offspring with probability 0.5, independently of the other individuals

of the genotype. Thus the mean number of offspring per individual is 2. If N(0)

is large the independence of different lines means that

N(t) ' E[N(t)] = 2tN(0)

so N(t) roughly doubles at each generation and the genotype certainly has high

fitness.

Now suppose there is environmental stochasticity but not demographic stochas-

ticity. Each year is ‘good’ with probability 0.5 and ‘bad’ with probability 0.5,

independently of previous years. Each individual produces exactly 4 offspring in

a good year and 0 offspring in a bad year. Now numbers quadruple in size each
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year until the first bad year, when all members of the genotype die:

P (N(t) = 4tN(0)) = 2−t P (N(t) = 0) = 1− 2−t.

Averaging over environmental stochasticity we again have E[N(t)] = 2tN(0) but

now N(t) → 0 with probability 1 as t → ∞. Even though mean numbers are

increasing rapidly, the fitness of this genotype is, by any reasonable measure, very

low. Thus, in a fluctuating environment, the mean number of offspring is not a

good indicator of genotype numbers.

As with life history theory, much of the analysis in fluctuating environments

is motivated by models in which there is a trade-off, either for the individual

or for the genotype, between current and future reproductive success, but now

future conditions are uncertain. A simple illustration of the way uncertainty

affects this trade-off for the genotype is provided by Cohen’s (1966) model of

seed germination (with later variants considered by Bulmer (1984) and Ellner

(1985a,b)). In the basic model a seed can either germinate immediately (i.e. in

the current season) or remain dormant until next year. If all seeds each year follow

the strategy of germinating immediately, then the entire genotype is susceptible

to the potentially devastating effect of a bad season; however, if they all follow

the strategy of remaining dormant, then growth of genotype numbers is delayed

indefinitely. Thus an optimal strategy involves some proportion, p∗, of seeds

germinating immediately and the remainder staying dormant. Again, a precise

definition and characterisation of fitness in a fluctuating environment is required

before we can calculate the appropriate value of p∗.

The general framework of assumptions for models in this section is as follows:

1. We have a large asexual population.

2. At each relevant time point individuals in the focal genotype can be classified
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as falling into one of L states (1 ≤ L < ∞). As before, state can be age, size,

territory quality etc., or, more generally, some combination of any or all of these.

For each x, we let ρx denote the proportion of members of the genotype in state

x and we call ρ (i.e. the vector with components ρx) the structure vector for the

genotype.

3. The growth of the population is described by its size at census times t = 0, 1, 2, . . .

(say one year apart).

4. Between annual census times t and t+ 1 each individual in the population makes

a sequence of one or more possibly state- and time-dependent choices.

5. The state of the environment between annual census times t and t + 1 can be

represented by a (possibly vector-valued) random variable St (for simplicity we

assume S0, S1, S2, . . . are independent random variables each with the same dis-

tribution as a random variable S, though this assumption can be considerably

relaxed (Haccou and Iwasa, 1995)).

This framework is applicable to many of the biological scenarios considered in

previous sections, except that the definition of fitness and hence the optimisation

problems are now different. In this section we will focus on the implication of

this on the mathematical techniques required.

6.2 Single-decision model with no after-effects

We start by considering a simple basic model in which the simplifying assumptions

are (i) each individual in the population is required to make only one relevant

decision each year and (ii) all members of the population are in the same fixed

state at each census time (e.g. all eggs).
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Definition of fitness

Consider members of a particular genotype in a population and let N(t) de-

note the numbers of this genotype at census time t. We assume throughout that

N(t) is large. Let r(s) denote the expected number of descendants left by an

individual member of this genotype which are still alive at t + 1, when the envi-

ronmental state following time t is St = s. We refer to r(s) as the profile of this

genotype. Because the population is assumed to be large, we ignore demographic

stochasticity and take N(t + 1) = r(St)N(t).

The mean number of offspring per individual (averaged over S) is called the

arithmetic mean fitness and denoted by E[r(S)]. We have seen above that this

is not the appropriate measure of fitness in a fluctuating environment. Instead,

following Lewontin and Cohen (1969), we note that

N(t) = r(St−1)r(St−2) . . . r(S0)N(0)

so by the law of large numbers

1

t
log[N(t)] =

1

t
log[N(0)] +

1

t

t−1∑
n=0

log[r(Sn)] → g as n →∞

where

g = E[log(r(S)].

In Section 5.2 we saw that the value of the Perron-Frobenius eigenvalue λ

formed a criterion for invasibility, that fitness could be defined in terms of inva-

sibility, and that natural selection could be taken as leading to maximisation of

fitness. Similar comments apply here, except that now the value of g forms the

appropriate criterion for invasibility (Metz et al, 1992) in that, at stability, g is

maximised. Thus, in a fluctuating environment, the standard measure of fitness

of a genotype is taken to be the corresponding value of g, or equivalently the

value of the geometric mean fitness G, where G = eg = exp{E[log(r(S))]}.
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Characterisation of an optimal strategy

Now assume that at each census time point t each individual in the population

must choose an action from a given set of possible alternatives (e.g. clutch size)

without knowing the future environmental states. Let d(u, s) denote the expected

number of descendants left at the census time one year hence by an individual,

when that individual chooses action u and the subsequent environmental state is

s. We will see later that it is necessary to allow for randomised strategies. Thus

a strategy π is taken to specify a probability distribution Pπ(u) over actions

u. Each (distinct) genotype specifies a (distinct) strategy, which is followed by

all members of that genotype. We equate the genotype with the corresponding

strategy and henceforth refer to them interchangeably.

The profile rπ of a strategy π specifies the expected number of descendants

left under π as a function of the environmental state, so for a genotype using π

rπ(s) =

∫
d(u, s)dPπ(u)

and the fitness of the genotype is

g(π) = E[log(rπ(S))].

We call π∗ an optimal strategy if it satisfies

g(π∗) = g∗ = sup
π

g(π).

The nonlinear nature of the objective function means that one cannot in gen-

eral find an explicit expression for the optimal strategy and its corresponding

profile and fitness. The following equivalent implicit characterisations were de-

veloped by Haccou and Iwasa (1995) and Sasaki and Ellner (1995) and, in a more

general context, by McNamara (1995).
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Theorem 6.1 Let π∗ be a strategy with profile rπ∗. Then

(i) π∗ is optimal if and only if E[rπ(S)/rπ∗(S)] ≤ 1 for all strategies π,

(ii) π∗ is optimal if and only if E[d(u, S)/rπ∗(S)] ≤ 1 for all pure actions u.

Note that there must be equality in (ii) above for almost all actions u chosen

under π∗. Furthermore although an optimal strategy need not always exist, the

profile of an optimal strategy (when it exists) is unique in the sense that all

optimal strategies must have the same profile (McNamara 1995).

In some cases it may be easy to find the best strategy in the class of pure

strategies, say u∗. The above theorem then provides a means of checking if this

pure strategy is optimal in the class of all strategies, since u∗ will be optimal if

and only if

E[d(u, S)/d(u∗, S)] ≤ 1 for all pure actions u

(see Haccou and Iwasa 1995).

Explicit optimal strategies have been found by Haccou and Iwasa (1995) and

Sasaki and Ellner (1995) for particular cases, where the distribution of S and

the form of d(u, s) are essentially conjugate. A more general iterative method

of finding solutions was developed in McNamara (1998). Models with partial

information were studied by Cohen (1967) and Haccou and Iwasa (1995).

Game-Theoretic Interpretation

Theorem ?? has the following game-theoretic interpretation. Given any strat-

egy π, and an environment S which is a continuous random variable with density

f , we can define a modified density fπ for S by setting fπ(s) = f(s)/(Kπrπ(s)),

where Kπ is chosen so that
∫

fπ(s)ds = 1. Similar definitions, with appropriate

modifications, hold in the discrete case.
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Now let π1 and π2 be strategies with profiles r1 and r2 respectively. Set

W (π1, π2) = E[r1(S)/r2(S)]. (26)

Following McNamara (1995), W (π1, π2) can be interpreted as the payoff to a

single individual playing strategy π1 in a particular constant-environment game

in which the resident population plays strategy π2 and in which S is treated as a

demographic variable with the modified distribution fπ2 . Our previous criterion

for a strategy π∗ to be optimal can now be interpreted as saying that π∗ is optimal

if and only if it is a Nash equilibrium strategy for this constant-environment game,

i.e.

W (π∗, π∗) ≥ W (π, π∗) for all strategies π.

Moreover, if there is a unique optimal strategy then π∗ is the optimal strategy if

and only if it is an ESS for the corresponding constant-environment game.

Thus, even for fluctuating environments, we can recover the concept of indi-

vidual maximisation in the following sense: given the optimal profile rπ∗ we can

define a ‘modified’ distribution fπ∗ for the environmental state giving rise to a

modified random variable S∗ such that a strategy maximising geometric mean

fitness maximises arithmetic mean fitness with respect to this modified distribu-

tion.

In general, the optimal strategy π∗ may well be a mixed strategy. One inter-

pretation of this is that the fitness of the genotype is determined by the, perhaps

complementary, actions of all members of the genotype present in the popula-

tion and that it may be optimal for different individuals of the same genotype

to take different actions, thereby using diversity to maintain a balance between

expected growth and risk in much the same way that optimal portfolio selection

does in economics (for a general review of the mean variance approach to bal-
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ancing growth and risk see Steinbach 2001). For example, we saw in the seed

germination example that the best action for one member of the genotype de-

pends on the actions of the others. The above game-theoretic interpretation of

the strategy maximising geometric mean fitness precisely quantifies this depen-

dence on kin. Note also that such risk spreading means some individuals of the

genotype may lower their own chances of producing descendants for the good of

the genotype as a whole (Cooper and Kaplan 1982, Ellner 1986).

State-dependent structured populations

The results for the previous model have a straightforward extension to the

case where, at each census time point t, the members of the population are

allowed to differ in terms of a state variable x, but where the distribution over

these states is described by a probability density or mass function which remains

fixed from census point to census point irrespective of the action of individuals

or the environmental conditions in the previous years. See McNamara (1998)

and Haccou and McNamara (1998) for details and applications to optimal state-

dependent clutch size decisions.

Variance reduction

It can be shown (Lewontin and Cohen 1969) that, when two strategies have

the same arithmetic mean fitness E[r(S)] (as in the example above), the one

with the smaller variance Var[r(S)] generally has greater geometric mean fitness

g = E[log(r(S)]. A number of authors have used this as an alternative approach

to comparing strategies in a fluctuating environment (see Seger and Brockmann

1987 for a review).
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6.3 Dynamic optimisation within each year

Consider now the case where each individual in the population makes a sequence

of T (> 1) state- and time-dependent choices between each annual census point t

and t + 1, say at decision-times n = 0, 1, 2, . . . , T − 1. We assume the strategy

followed affects the state of each individual during the year, and that this, to-

gether with the ensuing environmental state, affects the number of members of

the genotype present at the next census point. However, we assume the strat-

egy followed within each year and sequence of the environmental states does not

affect the distribution of genotype members into the various possible states at

each annual census point. Thus the strategy followed may affect annual and long

term growth in numbers, and may also affect how the structure vector ρ evolves

within each year, but it will not have any long-term consequence on the value of

the structure vector since its value is assumed to be reset to some fixed value at

each census point.

McNamara (2000) discusses the three generic cases possible within this frame-

work, and the various solution techniques required: (A) demographic stochastic-

ity alone, (B) environmental stochasticity but no demographic stochasticity, and

(C) both environmental and demographic stochasticity. In case A, the opti-

mal strategy for the genotype is one under which each individual maximises the

expected number of descendants left next year, and the strategy that achieves

this maximum can be found simply by working backward using dynamic pro-

gramming. In case B, a simple solution is possible if we further assume: (i) all

members of a genotype are in the same state at decision-time 0 in each season,

(ii) genotype members follow a deterministic strategy. Under these assumptions

all individuals will be in the same state as one another at each subsequent time in

the season. Thus, what happens to one individual in a given year represents what
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happens to all genotype members within that year. Provided these assumptions

hold at least for the optimal genotype, each member of this genotype behaves to

maximise the expected logarithm of the number of descendant that it leaves next

year and this behavioural strategy can again be found by dynamic programming.

Finally, in case C, we may suppose that one of the two assumptions above fails.

Thus there will be a time n in the season when members of the genotype will be

in a range of states. In this case, the best action of an individual at this time

implicitly depends on this distribution of states of relatives. But this distribution

depends on the behavioural strategy followed by genotype members before time

n. Thus it is not possible to specify optimal behaviour at time n until optimal

behaviour has been specified at all previous times as well as future times, since

the states of relatives can only be reconstructed from knowledge of their previ-

ous behaviour. The optimal strategy cannot now be found by simple dynamic

programming (Collins and McNamara 1998).

The above discussion has several immediate implications.

1. The genotypic fitness under the best population-based strategy will generally be

greater than under the best individual-based strategy — where we call a strategy

π an individual-based strategy if the probability distribution of possible actions

at a given time employed by an individual in a given state x depends only on x,

and call π a population-based strategy if this distribution may depend on both x

and the current value of ρ.

2. In case C above, the computation of the best population-based strategy, even

when straightforward in principle, will always be computationally complex, since

the space Ω of possible ρ values is a L−1 dimensional simplex. Moreover, even the

formal characterisation of the best individual-based strategy can be problematic
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since it cannot be characterised explicitly in the standard way as the optimal

solution to a dynamic programming problem.

3. Issues of biological interpretation arise if the best population-based strategy dif-

fers from the best individual-based strategy, since it will generally be unrealistic

to assume each individual member of a genotype will have available to them

enough information about all the fellow members of their genotype to compute

ρ and follow a population based strategy.

6.3.1 Diapause: a population-based approach

The direct calculation of an optimal population-based strategy is exemplified in

McNamara (1994), where a complete analytic solution is obtained to the prob-

lem of finding the optimal proportion of a population entering diapause (i.e. a

dormant state which allows for overwinter survival) at any given time in an unpre-

dictable environment. The original model was first introduced by Cohen (1970).

Others have since considered this question (see Hanski 1988 for a review) and

the related question of optimal allocation to growth and reproduction in annual

plants (Cohen 1971,1976, King and Roughgarden 1982, and Amir and Cohen

1990).

In the model of McNamara (1994), the variable length of the time till the

weather turns bad plays the rôle of the environmental state variable S and the

start of each season marks successive census points. Within each season, time

is scaled so that the time points n = 0, 1, 2, . . . (up to a maximum of T ) mark

the start of successive non overlapping generations of an organism. At each time

(n − 1), the nth generation is composed entirely of eggs. Some of these enter

diapause; the remainder die if the season ends before time n, otherwise they
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grow to maturity at time n, lay on average α(> 1) new eggs and die. All eggs

entering diapause survive till the start of the next season with a probability that is

independent of the time of entering diapause and the season length. The trade-off

is between a strategy of growth, which risks the genotype being wiped out if the

season ends before there are any eggs in diapause, and the conservative strategy

of all eggs entering diapause, under which genotype numbers will dwindle over

successive seasons.

Let r(S) denote the number of eggs in diapause when the season ends and let

p(n) denote the proportion of new eggs at time n which enter diapause. The prob-

lem then is to choose a strategy π = (p(0), . . . , p(T−1)) to maximise E[log(r(S))].

What makes the model particularly tractable is that the structure vector ρ(n) is

essentially a scalar; its two components are ρD(n), corresponding to the propor-

tion of the genotype currently in diapause, and ρN(n) = 1−ρD(n), corresponding

to the proportion in the form of new eggs.

The measure of fitness can be reformulated so that maximising E[log(r(S))]

is shown to be equivalent to maximising an expected total reward over time of

the form

E

[
log r̃(1, ρD(1)) +

S−1∑
n=1

r̃(ρD(n), ρD(n + 1))

]
where

r̃(x, y) = log{αy/[x(1 + (α− 1)y)]}.

Let H(n) = P (S = n | S > n − 1) denote the probability that bad weather

first occurs during the growth of generation n, given that it has not previously

occurred. Assume H(1) ≤ H(2) ≤ . . . ≤ H(T ) = 1 and set

c∗(n) = min

{
1,

(
1

α− 1

) [
H(n)

1−H(n)

]}
.
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Then the optimal strategy is to control the process in such a way that ρD(n) is

as close to c∗(n) as possible.

An explicit solution for the optimal strategy π∗ in terms of H(·) is found using

dynamic programming arguments. Set ñ as the first time at which c∗(n) = 1.

The optimal strategy maximising E[log(r(S))] is

p∗(n) =
αP (S = n + 1)− P (S = n)

αP (S ≥ n + 1)− P (S ≥ n)

for n ≤ ñ and p∗(ñ) = 1.

Note that the optimal population-based strategy specifies a graded optimal re-

sponse, with various non-zero proportions entering diapause up to a given time ñ,

when all the surviving eggs enter diapause. In contrast, the ‘bang-bang’ strategy

optimal for the corresponding constant-environment formulation specifies that

no eggs enter diapause before ñ and all eggs enter diapause at ñ. Note also that

the optimal population-based strategy has a particularly simple form: each egg

in generation n should independently enter diapause with the same probability

p∗(n− 1). This optimal strategy can be applied by each individual ignoring the

actions of related individuals. Nevertheless, in a large population of individuals

all carrying a control gene coding for this individual-based rule, the proportion

of individuals in diapause at time n will attain the optimal value c∗(n), and any

one individual will be behaving as if it were responding optimally to this value of

the population structure vector ρ. Thus the optimal population-based strategy

π∗ can be achieved by an individual-based rule (see above).

6.3.2 Dynamic optimisation: an individual-based approach

McNamara et al. (1995) and Collins and McNamara (1998) use an individual-

based strategy formulation to analyse a general class of problems for which the
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annual reward to the genotype depends only on its state (i.e. the structure vector)

at the end of each season. The approach is illustrated by an application to optimal

parasitoid foraging and subsequent egg laying over a season.

In their model each season is composed of decision points n = 0, 1, 2, . . . , T−1

at which each individual makes general state- and time-dependent transitions ac-

cording to an individual-based strategy. Let d(x, s) be the expected number of

descendants left by an individual whose final state at time T is x when the state

of the environment is S = s. The distribution of the state of these descendants

is taken to be independent of both x and s. Let ρπ
x denote the probability that

a randomly chosen individual will be in state x at time T when all individuals

in the population use the same individually-based strategy π, and let ρπ be the

corresponding end of season structure vector with components ρπ
x. The popula-

tion size is assumed to be sufficiently large that the profile of a given strategy π

can be taken to be rπ(s) = Σxρ
π
xd(x, s) and its fitness is then gπ = E[log rπ(S)].

Using a Markov decision process formulation, Collins and McNamara (1998)

show that an optimal individual-based strategy will, in general, be in the form

of a mixed strategy, i.e. one in which each individual choses a pure deterministic

strategy from a given set π1, π2, π3, . . . with respective probabilities θ1, θ2, θ3, . . .

and then uses that strategy throughout the season, so that ρπ
x = Σiθiρ

πi
x . They

demonstrate that a direct dynammic programming approach cannot be used to

find an optimal individual-based strategy. Instead, analysis is based on extending

the characterisation above of π∗ as a Nash equilibrium strategy in a constant-

environment game.

For any two strategies π1 and π2 again set

W (π1, π2) = E[rπ1(S)/rπ2(S)] = Σx ρπ1
x E[d(x, S)/Σy{d(y, S)ρπ2

x }]
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and call π1 a best response to π2 if

W (π1, π2) ≥ W (π, π2) for all mixed strategies π.

Then a strategy π∗ is an optimal strategy if and only if it is a best response to it-

self. Moreover, the form of W (π1, π2) shows that best response to a given strategy

π1 can now be found by direct dynamic programming. This motivates an iterative

procedure in which each iteration corresponds to (i) computing the end of season

structure vector ρπk corresponding to a given strategy πk (by projecting forward

using the known initial structure vector ρ0 and the known individual transition

probabilities under πk), (ii) using standard dynamic programming methods to

find the best response π̂k, and (iii) the construction of an updated strategy πk+1

based on π̂k and previous strategies. In practice a simple updating in which

πk+1 = λπ̂k + (1− λ)πk for given fixed λ is often sufficient to ensure convergence

(McNamara et al. 1995), but convergence can always be guaranteed by use of an

appropriately rigorous algorithm (Collins and McNamara 1998).

Finally Collins and McNamara (1998) show that the optimal individual-based

strategy is also an optimal strategy within the wider class of population-based

strategies.

6.4 Optimal life histories for structured populations

The case of structured populations with effects persisting into the future is treated

in McNamara (1997), illustrated by applications to optimal state-dependent off-

spring number decisions. Again the population is censused at time t = 0, 1, 2, . . . .

At a census time each individual can be classified by state and must choose a

single (possibly randomised) action from a set of actions, with the choice being

made before the environmental state St between t and t + 1 is known. The indi-

vidual’s state x, the action chosen u and the environmental condition s determine
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the expected number of descendants axy(u, s) left by this individual in state y

at time t + 1. Thus in this formulation the structure vector ρ(t + 1) depends

explicitly on ρ(t) and St as well as the strategy employed between times t and

t + 1, whereas in the previous formulations discussed ρ(t) was assumed to revert

to some fixed constant value at the start of each year.

Let r(ρ, S) be the expected number of descendants left by a randomly selected

genotype member when the structure vector is ρ and the ensuing environmental

state is s, and let

m(ρ) = E[log(r(ρ, S))].

Then the fitness of a given population-based strategy is taken to be

log λ =

∫
Ω

m(ρ)h(ρ)dρ = lim
T→∞

1

T
E

{
T∑

t=0

m(ρ(t))

}

where h(·) is the long-term stationary distribution of ρ under the given strat-

egy and Ω is the standard L − 1 dimensional simplex. This extends results of

Tuljapurkar (1989) for individual-based strategies.

This leads to an interpretation of log λ as the ‘average reward’ each year and

motivates the use of standard Markov decision process theory to provide the

following characterisation of the fitness of a given strategy π.

Theorem 6.2 There is a real valued function vπ such that

vπ(ρ) + log λπ = mπ(ρ) + Eπ{vπ(ρ(1)) | ρ(0) = ρ} (27)

holds for all structure vectors ρ.

Note that equation (27) gives the basis for a method of iteratively calculating the

dominant Lyapunov exponent of a random matrix without recourse to calculating

the stationary measure.
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Equation (??) determines log λπ uniquely and determines vπ up to an additive

constant. Furthermore, vπ(ρ) can be interpreted as the reproductive value of

a state ρ, in that the difference vπ(ρ1) − vπ(ρ2) gives the relative advantage

for a population starting with structure vector ρ1 rather than ρ2, when both

populations use the same strategy π.

Based on Theorem ??, policy iteration and value iteration methods can be

used to characterise and (at least formally) compute an optimal population-based

strategy π∗.

Although optimal individual-based strategies are much harder to characterise,

McNamara (1997) obtains the following:

Theorem 6.3 Let π∗ be an optimal individual-based strategy. Let vπ∗
be the re-

productive value function under π∗ and let hπ∗
be the equilibrium density function

for the process {ρ(t) : t = 0, 1, 2, . . .} under π∗. Then the expression∫
Ω

hπ∗
(ρ)[mπ(ρ) + Eπ{vπ∗

(ρ(1)) | ρ(0) = ρ}]dρ

is maximised when π = π∗, i.e. π∗ maximises in the mean the quantity mπ(ρ) +

Eπ{vπ∗
(ρ(1)) | ρ(0) = ρ}.

7 Further topics

The topic of optimality models in behavioural biology is vast. It has been impos-

sible for us to cover all of it. Important topics omitted include the following.

(i) The conflict of interest between offspring and their parents and between

siblings (Mock and Parker, 1997).

(ii) The distribution of animals across habitats. The central concept here is

that of an ideal feee distribution – a distribution such that no animal can
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do better by moving to another location (see Milinski and Parker 1991,

Tregenza, 1995 for reviews).

(iii) Building up from optimal individual behaviour to population level processes

(Abrams 1992, 1997, Matsuda and Abrams 1994, Sutherland 1996, Abrams

and Matsuda 1997, Houston and McNamara 1997, Brown 1998).

(iv) Social behaviour, including co-operation (Axelrod and Hamilton 1981; see

Dugatkin 1997 for a review) and social foraging (Giraldeau and Caraco

2000).
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J.M. McNAMARA, T. SZÉKELY, J.N. WEBB AND A.I. HOUSTON (2000),

A dynamic game theoretic model of parental care, J. Theor. Biol., 205, pp.

605-623.

J.M. McNAMARA, J.N. WEBB AND E.J. COLLINS (1995), Dynamic optimi-

sation in fluctuating environments, Proc. Roy. Soc. B, 261, pp. 279-284.

J.M. McNAMARA, J.N. WEBB, E.J. COLLINS, T. SZÉKELY AND A.I. HOUS-
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Multiple patterns of parental care, Anim. Behav., 58, pp. 983-993.

F. WEISSING (1991), Evolutionary stability and dynamic stability in a class

of evolutionary normal form games, in Game Equilibrium Models. I. Evo-

lution and Game Dynamics, R. Selten, ed., Springer-Verlag, Berlin, pp.

29-97.

104



F.J. WEISSING (1996), Genetic versus phenotypic models of selection: can

genetics be neglected in a long-term perspective? J. Math. Biol., 34, pp.

533-555.

P. WHITTLE (1983), Optimization over Time, Volume 2, Wiley, Chichester.

M.S. WITTER AMD I.C. CUTHILL (1993), The ecological costs of avian fat

storage, Phil. Trans. Roy. Soc., B, 340, pp. 73-92.

N. YAMAMURA AND N. TSUJI (1993), Parental care as a game, J. Evol.

Biol., 6, pp. 103-127.

A. ZAHAVI (1975), Mate selection – a selection for a handicap, J. Theor. Biol.,

53, pp. 205-214.

105



Figure Captions

Figure 1. Male southern elephant seals (Mirounga leonina) fighting for access to

females during the breeding season. (Photograph by courtesy of Ian Boyd.)

Figure 2. An illustration of the constructive computation of the optimal net

rate of energetic gain γ∗.

Figure 3. An illustration of the difference between the time at the surface

S(d(t∗(τ), τ)) as a function of time underwater t∗(τ) + τ when the diver

chooses the optimal time foraging t∗ and the relationship when S(d(t, τ))

is plotted against t + τ for a fixed value of τ . The figure shows τ = 2 and

τ = 6; d(t, τ) = t + 4τ , S(d(t, τ)) = 2 ln[K/(K − d(t, τ))], K = 20.

Figure 4. The marginal rate of substitution of predation risk for energy, θ, as

a function of energy reserves in four cases. (i) Deterministic foraging with

reproduction at a critical level L. (ii) Stochastic foraging with reproduction

at the critical level L. (iii) Stochastic foraging with no reproduction; food

that would take reserves above L is lost. (iv) Stochastic foraging with

no reproduction; food that would take reserves above L is consumed in a

safe refuge. L = 15, γ = 0.5, rate of mortality = 0.5. See Houston and

McNamara (1999) for details.

Figure 5. (a) The optimal foraging strategy together with the distribution of

reserves. It is optimal to forage if reserves are below the bold line and to

rest if reserves are above it. The broken line gives the mean level of reserves.

(b) The resulting proportion of birds that are foraging. See Houston and

McNamara (1999) for details.
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Figure 6. Pattern of care over the breeding season together with various aspects

of the rewards in the model of McNamara et al. (2000). (a) The pattern of

care together with the remating probabilities for each sex; (C, C) = care by

both the male and female, (D, C) = desertion by the male and care by the

female. (b) The advantage to the female of deserting as opposed to caring

(future reproductive success if the female deserts minus future reproductive

success if the female cares) for each of the possible male behaviors. (c) The

payoff to the male at the ESS, minus the payoff if both parents desert. See

McNamara et al. (2000) or Houston and McNamara (1999) for details.

Figure 7. A pair of red-necked phalaropes (Phalaropus lobatus). In the phalarope,

the males care for the young and have a lower potential rate of reproduction

than females. Sex rôles are reversed: the females are brightly coloured and

compete for access to males. (Photograph by courtesy of John Reynolds.)

Figure 8. An illustration of the partition of male and female qualities into

discrete classes M1, M2, . . . and F1, F2, . . . respectively. Females in each

class accept males above the corresponding female acceptance threshold.

Similarly, males in each class accept females above the corresponding male

acceptance threshold.

Figure 9. Effect on breeding of the amplitude ε of the seasonal variation in the

food supply at the temperate site. When ε = 0.4, there is one breeding

attempt per year, whereas when ε = 0.8 there are two attempts. See

McNamara et al. (1998) for details.
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