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We introduce a class of models for multidimensional control problems that we call skip-free Markov decision
processes on trees. We describe and analyse an algorithm applicable to Markov decision processes of this type that
are skip-free in the negative direction. Starting with the finite average cost case, we show that the algorithm
combines the advantages of both value iteration and policy iteration—it is guaranteed to converge to an optimal
policy and optimal value function after a finite number of iterations but the computational effort required for each
iteration step is comparable with that for value iteration. We show that the algorithm can also be used to
solve discounted cost models and continuous-time models, and that a suitably modified algorithm can be used
to solve communicating models.
Journal of the Operational Research Society (2015) 66(10), 1595–1604. doi:10.1057/jors.2014.63
Published online 11 June 2014

Keywords: multidimensional Markov decision processes; dynamic programming; queueing; inventory; maintenance;
reliability

1. Introduction

Markov decision processes (MDPs) provide a class of stochas-
tic optimisation models that have found wide applicability to
problems in Operational Research (OR). The standard methods
for computing an optimal policy are based on value iteration,
policy iteration and linear programming algorithms (White,
1993). Each approach has its advantages and disadvantages. In
particular, each step in value iteration is relatively computation-
ally inexpensive but the value function may take some time to
converge and the algorithm provides no direct check that it has
computed the optimal value function and an optimal policy.
Conversely, each step in policy iteration may be computation-
ally expensive but the algorithm can be proved to converge
in a finite number of steps, confirms when it has converged
and automatically identifies the optimal value function and an
optimal policy on exit.
Here we focus on models with special structure, in that they

are skip-free in the negative direction (Keilson, 1965, p 10) or
skip-free to the left (Stidham and Weber, 1989); that is,
whatever the action taken, the process cannot pass from one
state to a ‘lower’ state without passing through all the interven-
ing states. Such skip-free models arise naturally in many areas
where OR is applied. The most obvious examples are the
control of discrete-time random walks and continuous-time
birth-and-death processes (Serfozo, 1981) such as queueing
control problems with single-unit arrivals and departures (see,
eg, Stidham and Weber (1989) and references therein). In these

basic one-dimensional models, the state space S is (a subset of)
the integer lattice, and transitions are only possible to the next
higher or lower integer state. However, there are several other
standard OR models that fall within the wider one-dimensional
skip-free framework, including examples from the areas of
queueing control with batch arrivals (Stidham and Weber,
1989), inventory control (Miller, 1981) and reliability and
maintenance (Derman, 1970; Thomas, 1982).
Previous treatments of controlled skip-free processes have

considered only the one-dimensional formulation. For pro-
cesses with the ‘skip-free to the left’ property, work has focused
on qualitative properties, in particular the existence of mono-
tone optimal policies for models with appropriately structured
cost functions (Stidham and Weber, 1989; Stidham and Weber,
1999). Conversely, work on processes with the corresponding
‘skip-free to the right’ property has concentrated on analysis of
an approximating bisection method for countable state
space models (Wijngaard and Stidham, 1986; Wijngaard and
Stidham, 2000). We note that skip-free type ideas have also
been exploited in a different direction by (White, 2005) and
citing authors, where the emphasis has been on reducing the
computational complexity associated with policy iteration for
quasi birth–death processes.
An intuitive way of characterising the essential features of

our finite skip-free recurrent model is that the model is skip-free
if and only if the state space can be identified with the graph of a
finite tree, rooted at 0, with each state i corresponding to a
unique node in the tree, and such that for every action a∈A, the
only possible transitions from state i under action a are either to
its ‘parent’ state or to a state in the sub-tree rooted at i,
with appropriate modifications for state 0 which has no
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parent and for terminal nodes which have only a parent and no
descendants.
In this setting, the one-dimensional skip-free model above,

with state space S= {0, 1,…,M}, corresponds to the simplest
case where the tree reduces to a single linearly ordered branch
connecting the root node 0 through states 1, 2,…,M− 1 to the
terminal nodeM, and transitions from state i are possible only to
states j∈ {i− 1, i,…,M}. However, the analysis extends easily
to cases with a richer, possibly multidimensional, state space,
where the appropriate model is in terms of transitions on a finite
tree. Examples of genuinely skip-free models with multidimen-
sional state spaces arise in simple multi-class queueing systems
with batch arrivals (Yeung and Sengupta, 1994; He, 2000;
and references therein), but such treatments have focused
mainly on describing the behaviour of the process for a fixed
set of parameters (actions) rather than comparing actions in an
optimality framework.
The rest of the paper is organised as follows. We start by

describing models for average cost finite state recurrent MDPs
that are skip-free in the negative direction, illustrating our
approach with a motivating example. We then propose a skip-
free algorithm that combines the advantages of values iteration
and policy iteration: the computational effort required for each
iteration step is comparable with that for value iteration, but the
algorithm is guaranteed to converge after a finite number of
iterations and automatically identifies the optimal value func-
tion and an optimal policy on exit. We go on to show that the
algorithm can also be used to solve discounted cost models and
continuous-time models, and that a suitably modified algorithm
can be used to solve communicating models. Finally, we build
on the relationship between the average cost problem and a
corresponding x-revised first passage problem to provide a
proof of the main theorem and identify other possible variants
of the algorithm.

2. The skip-free Markov decision process (MDP) model

Consider a discrete-time MDP with finite state space S over an
infinite time horizon t∈ {0, 1, 2,…}. Associated with each state
i∈ S is a non-empty finite set of possible actions; since S is
finite, we assume without loss of generality that the set of
actions A is the same for each i. If action a∈A is chosen when
the process is in state Xt= i at time t, then the process incurs an
immediate cost ci(a) and the next state is Xt+1= j with
probability pij(a).
A policy π is a sequence of (possibly history-dependent and

randomised) rules for choosing the action at each given time
point t. A deterministic decision rule corresponds to a function
d:S→A and specifies taking action a= d(i) when the process is
in state i. A stationary deterministic policy is one which always
uses the same deterministic decision rule at each time point t.
Where the meaning is clear from the context, we use the same
notation d for both the decision rule and the corresponding
stationary deterministic policy.

The expected average cost incurred by a policy π with initial
state i is given by gπðiÞ ¼ lim supn!1ð1=nÞ Eπ

Pn - 1
t¼0 cXt ðatÞ

�
j X0 ¼ iÞ; where Xt is the state at time t and at is the action
chosen at time t under π. Similarly, for a given discount factor
0< β< 1, the total expected discounted cost incurred by a
policy π with initial state i is given by Vβ

π ðiÞ ¼ Eπ
P1

t¼0

�
βncXt ðatÞ j X0 ¼ iÞ:
We say an MDP model is recurrent if the transition

matrix corresponding to every stationary deterministic policy
consists of a single recurrent class. We say an MDP model is
communicating if, for every pair of states i and j in S, j is
reachable from i under some (stationary deterministic) policy
d; that is, there exists a policy d, with corresponding transi-
tion matrix Pd, and an integer n⩾ 0, such that Pd(Xn= j|
X0= i)> 0.
When S= {0, 1, 2,…,M} is a subset of the integer lattice, we

say the MDP model is skip-free in the negative direction
(Keilson, 1965; Stidham and Weber, 1989) if pij(a)= 0 for all
j< i− 1 and a∈A, that is, the process cannot move from state i
to a state with index j< i without passing through all the
intermediate states. We will often find it easier to work in
terms of the upper tail probabilities pijðaÞ � PðXt + 1⩾j j
Xt ¼ i;At ¼ aÞ ¼

PM
s¼j pisðaÞ: To avoid degeneracy, we

assume that p00(a)< 1 for a∈A and that for each i∈ {1,…,M},
pii− 1(a)> 0 for at least one a∈A. In this setting, a recurrent
model requires that, for all a∈A, pii− 1(a)> 0 for i= 1,…,M
and pii(a)< 1 for all i∈ S. In contrast, a communicating model
allows there to be i and a with pii− 1(a)= 0 and/or pii(a)= 1.
To apply this idea in a wider context, we note that the essence

of a skip-free model is that: (i) there is a single distinguished
state, say 0; (ii) for any other state i there is a unique shortest
path from i to 0; (iii) from each state i≠0 the process can only
make transitions to either the adjacent state in the unique path
from i to 0, or to some state j for which i lies in the unique
shortest path from j to 0.
In the finite one-dimensional case, for each k there is exactly

one state for which the shortest path to state 0 has length k.
Thus, there is a 1− 1 mapping of the states to the integers {0,
1,…,M} such that the distinguished state maps to 0 and the
state for which the shortest path had length k maps to k. In a
more general setting, for each k there may be more than one
state for which the shortest path has length k. In this case, rather
than S mapping to the integer lattice, there is a fixed tree T (in
the graph theoretic sense) such that each state corresponds to a
unique node of the tree, with the distinguished state mapping to
the root node. It may help to visualise movement between states
in terms of the corresponding movement between nodes on
the tree.
To formalise this general model, we start by considering a

finite rooted tree T with N+1 nodes labelled 0, 1, 2,…,N, with
root node 0, and with a given edge set. The tree structure
implies that for each pair of nodes i and j there is a unique
minimal path (set of edges) in the tree that connects i and j.
Thus the nodes in the tree can be partitioned into level sets
L0= {0}, L1,…, LM such that, for m= 0,…,M− 1, i∈Lm+1 if
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and only if the minimal path from i to 0 passes through exactly
m intermediate nodes.
For adjacent nodes i∈Lm and j∈Lm+1, we say i is the parent

of j and j is a child of i if the minimal path from j to 0 passes
through i. More generally, for i∈Lm and j∈Lr, r>m, we say j
is a descendant of i if the minimal path from j to 0 passes
through i. Each node j≠0 has a unique parent. We write ρ(j) for
the parent of j, we write DðjÞ for the set of descendants of j,
and we write T ðjÞ � T for the (nodes of the) sub-tree rooted
at j, so T ðjÞ ¼ fjg∪D jð Þ: A state with no descendants is
said to be a terminal state, so all states in the highest level LM
are terminal states. For simplicity of presentation we will
assume that these are the only terminal states; the analysis
easily extends to cases where intermediate levels Lm can also
contain some terminal states. For each j 2 DðiÞ; we write Δ(i, j)
for the set of states following i in the unique minimal path in the
tree connecting i to j, so if the path passes through s− 1
intermediate states and takes the form i= r0→ r1→⋯→ rs= j,
then Δ(i, j)= {r1,…, rs}.
Now consider a finite MDP with state space S and action

space A. Assume we can construct a rooted tree T such that (i)
the states in S correspond to the nodes of T , and (ii) for every
state i∈ S and action a∈A, the only possible transitions from
state i under action a are either to its parent state ρ(i) or to a state
in the sub-tree T ðiÞ rooted at i, with appropriate modifications
for state 0, which has no parent, and for terminal nodes, which
have only a parent and no descendants. We will say that such an
MDP is skip-free (in the negative direction) on the tree T : As
with the integer lattice model above, it is often convenient work
in terms of the the upper tail probabilities pijðaÞ ¼ PðXt + 1 2
T ðjÞ j Xt ¼ i;At ¼ aÞ; corresponding to the probability that
the next transition from state i under action a is to a state in the
sub-tree rooted at j.
To illustrate and motivate the general case, where a multi-

dimensional model is required, consider (Yeung and Sengupta,
1994; He, 2000) a single-server multi-class queueing system
with K> 1 customer classes and finite capacityM (including the
job, if any, in service). Assume the service discipline is
pre-emptive but otherwise takes no account of class. A job that
arrives when the system is not full enters service immediately
and the job currently in service at that point returns to the head
of the buffer. When a job completes service, the server next
serves the job at the head of the buffer. Any job that arrives
when the system is full is lost.
The model is most naturally formulated in continuous time,

with exponential inter-arrival and service time distributions,
though it can easily be translated to a discrete-time setting using
the methods of Section 4.2. Assume class k jobs arrive at rate λk
and complete service at class and action-dependent rate μk(a),
where different actions a∈A correspond to different service
levels. Since the model needs to keep track of the class of each
job as it enters service, we take the state to be the multi-
dimensional vector i= (i1,…, iM) where i1 denotes the class of
the job currently in service, im denotes the class of the job
waiting for service in the buffer in place m,m= 2,…,M, and

im= 0 if the mth place is empty. Assume costs are incurred at
rate c(i, a) reflecting both holding costs and action costs.
The possible transitions under the model are the completion

of the job currently in service, corresponding to the transition
i= (i1,…, iM)→ (i2,…, iM, 0), or the arrival of a class k job
(k= 1,…,K) to a partially full system, corresponding to the
transition i= (i1,…, iM)→ j= (k, i1,…, iM− 1).
For M⩾ 2, this model cannot be represented as a skip-free

MDP with linear structure, that is with each state i having
exactly one child j with i= ρ(j). To see this, let a denote the
state (a, i2,…, iM) with iM≠0, let b denote the state (b, i2,…,-
iM), differing from a in only the first component, and let c
denote the state (i2,…, iM, 0). The only possible direct transi-
tions to and from a are from c and to c. Similarly for b. If c is
restricted to having just one child, then the only possibilities are
either (i) a has no parent (so a is the root state), a= ρ(c) and
c= ρ(b), or (ii) b has no parent (so b is the root state), b= ρ(c)
and c= ρ(a). In case (i), b can have no children so none of the
other states can reach the root state as they cannot reach b in a
skip-free manner under any policy; in case (ii) a can have no
children and a similar argument applies.
However we can represent the model as a skip-free MDP on

a tree T as follows. We take L0= {(0,…, 0)} to contain the
state corresponding to the empty queue and take the level sets
Lm, m= 1,…,M to each contain the Km states of the form
i= (i1,…, im, 0,…, 0). Given a state i= (i1,…, iM)∈Lm, we
assign it parent ρ(i)= (i2,…, iM, 0) and assign it K children of
the form j= (k, i1,…, iM− 1), k= 1,…,K (with appropriate
modifications for L0 and LM). The set of descendants D(i) is
the set of all states of the form (k1,…, kr, i1,…, im, 0,…, 0) for
r= 1,…,M−m (where there are M−m− r trailing 0s). The
possible transitions under the model correspond exactly to
transitions from i to its parent ρ(i) or to one of its K children,
so the MDP satisfies the conditions required for it to be skip-
free in the negative direction on the tree T : Figure 1 illustrates
the tree corresponding to the state space for a system with K= 2
job classes and capacity M= 3. Extensions with direct transi-
tions to more general descendants, of form (k,…, k, i1,…, im,
0,…, 0) are possible if batch arrivals are allowed, subject to
appropriate capacity constraints.

3. The skip-free algorithm

For finite recurrent MDP models, the solution to the expected
average cost problem can be characterised by the corresponding
average cost optimality equations (Puterman, 1994, §8.4)

hi ¼ mina2A ciðaÞ - g +
X
j2S

pijðaÞhj

( )
; i 2 S (1)

in that (i) there exist real numbers g* and h*i, i∈ S satisfying the
optimality equations; (ii) the optimal average cost is the same
for each initial state and is given by g*; (iii) the optimality
equations uniquely determine g* and determine the h*i up to an
arbitrary additive constant; (iv) the stationary deterministic
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policy d* is an average cost optimal policy, where, for each
i∈ S, d*(i) is an action achieving minaf ciðaÞ +

P
j2S pijðaÞh*j g:

It follows from (iv) above that there is an optimal policy in
the class of stationary deterministic policies. We therefore
restrict attention from now on to stationary deterministic
policies, writing ‘policy’ as a shorthand for ‘stationary determi-
nistic policy’ and writing g(d) for the average cost under a given
stationary deterministic policy d.
For each i, j∈ S, we can interpret h*i− h*j as the asymptotic

relative difference in the total cost that results from starting the
process in state i rather than state j, under the stationary
deterministic policy d*. Thus the quantities h*i− h*j are uniquely
defined, but the quantities h*i, i∈ S are defined only up to an
arbitrary additive constant. We focus on the particular solution
normalised by setting h*0= 0 and refer to the corresponding h*i
as the normalised relative costs under an optimal policy.
In general, the optimality equations (1) cannot be solved

directly. Instead, an optimal policy in the class of stationary
deterministic policies is usually found by methods based on
value iteration, policy iteration or linear programming, or
combinations of these approaches (Puterman, 1994). For skip-
free models, however, we have the following simplification.

Lemma 1 For finite recurrent skip-free average cost MDPs,
the optimality equations (1) are equivalent to the equations

yi ¼ min
a

ci að Þ - xð Þ
piρðiÞ að Þ

� �
; i 2 LM (2)

yi ¼min
a

ci að Þ - x +
P

k2DðiÞ
pik að Þyk

 !

piρðiÞ að Þ

8>>>><
>>>>:

9>>>>=
>>>>;
;

i 2 LM - 1; ¼ ; L1 ð3Þ

0 ¼ min
a

c0 að Þ - x +
X

k2D 0ð Þ
p0k að Þyk

8<
:

9=
; (4)

(0,0,0)

(1,0,0) (2,0,0)

(1,1,0) (2,1,0) (1,2,0) (2,2,0)

(1,1,1) (2,1,1) (1,2,1) (2,2,1) (1,1,2) (2,1,2) (1,2,2) (2,2,2)

Figure 1 The tree T corresponding to the state space for the pre-emptive multi-class queueing system of with K= 2 job classes and
capacityM= 3.

in that (i) these equations also have unique solutions x and
yi, i 2 Dð0Þ; (ii) the optimal average cost is g*= x and the
normalised relative costs under an optimal policy satisfy
h*i− h*ρ(i)= yi, i 2 Dð0Þ; (iii) an optimal stationary deter-
ministic policy is given by d*, where d*(i) is any action
minimising the rhs of the corresponding equation for yi
and a0 is an action minimising the rhs in (4).

Proof For skip-free models, the only possible transitions from
state i 2 Dð0Þ are to state ρ(i), to state i itself, or to a state
j 2 DðiÞ: Thus Equations (1) take the form

hi ¼mina2A

(
ci að Þ - g +

X
j2D ið Þ

pij að Þhj + pii að Þhi

+ piρ ið Þ að Þhρ ið Þ

)
; i 2 S ð5Þ

with appropriate modification to give the normalised
solution with h0= 0. Values hi and g satisfy (5) if and only
if in each equation hi⩽ the rhs for all a, with equality for at
least one a. With appropriate modifications for the root
node 0 and for terminal nodes, simple rearrangement shows
that hi⩽ ci(a)− g+∑j∈D(i)pij(a)hj+ pii(a)hi+ piρ(i)(a)hρ(i) if
and only if piρ(i)(a)(hi−hρ(i))⩽ci(a)−g+∑j∈D(i)pij(a)(hj−hi),
and that equality in one expression implies equality in
the other.

Now write x for g and for each i 2 Dð0Þ write yi for hi−
hρ(i). For each j≠ i 2 DðiÞ; write Δ(i, j)= {r1,…, rs} for
the states following i in the unique minimal path from
j to i. For each k= 1,…, s, rk− 1 is the parent of rk
so that rk− 1= ρ(rk). Hence hj - hi ¼ hrs - hr0 ¼

Ps
k¼1

ðhrk - hrk - 1Þ=
Ps

k¼1 ðhrk - hρðrkÞÞ ¼
Ps

k¼1 yrk ¼
P

r2Δði;jÞ yr:
Now if j is a descendant of i and r≠j is in the path
connecting i and j, then r is a descendant of i and j is in the
sub-tree rooted at r, and vice versa. Thus for fixed i and a
we have that

P
j2D ið Þ pij að Þðhj - hiÞ ¼

P
j2D ið Þ

P
r2Δ i;jð Þ

pijðaÞyr =
P

r2D ið Þ
P

j2T rð Þ pijðaÞyr ¼
P

r2D ið Þ pir
ðaÞyr .

Taking account of the modifications for the root state
i= 0 and the terminal states i∈LM, and the fact that
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i 2 Lm ) D ið Þ � Lm + 1 ∪ � � � ∪ LM ; it follows that there
are g and hi satisfying (5) if and only if there are values x
and yi satisfying (2)–(4). □

In the optimality equations (2)–(4), the value of yi, i∈LM
depends only on x, and in each subsequent equation the value of
yi depends only on x and the values of yk for k 2 D ið Þ: Thus, if
the value of x was known, it would be easy to compute the yi in
turn for yi∈LM,…, L1 and to determine the corresponding
policy that takes the optimal action in each state i∈ S.
This observation motivates an iterative approach to finding

an average cost optimal policy: (i) choose an initial policy d0
and compute its expected average cost g0= g(d0); (ii) given a
current policy dn with expected average cost gn, compute an
updated policy dn+1 by setting x= gn and solving (2) and (3),
and compute its expected average cost gn+1; (iii) iterate until
convergence. This approach forms the basis for the following
skip-free algorithm. Its properties are set out in the subsequent
theorem.

Skip-free algorithm

Step 1. Initialisation
Choose an arbitrary initial policy d0. Perform a single iteration
of step 2 below, with x= 0 and with ai restricted to the single
value d0(i), i∈ S. Set g0= u0.

Step 2. Iteration
Set x= gn.
• For i∈LM compute:
ai= argmina{(ci(a)-x)/piρ(i)(a)}
yi= (ci(ai)-x)/piρ(i)(ai)
ti= 1/piρ(i)(ai)
• For i∈Lr,r=M− 1,…, 1 compute:

ai ¼ argmina
n

ciðaÞ - x +
P

k2DðiÞ pik að Þyk
� �

=piρðiÞ að Þ
o

yi ¼ ciðaiÞ - x +
P

k2DðiÞ pikðaiÞyk
� �

=piρðiÞðaiÞ

ti ¼ 1 +
P

k2DðiÞ pik aið Þ
� �

=piρðiÞ aið Þ

• For j= 0 compute:

a0 ¼ argmina
n�

c0ðaÞ - x +
X

k2Dð0Þ

p0k að Þyk
�
= 1 +

X
k2Dð0Þ p0kða0Þtk

� �o

u0 ¼ c0ða0Þ - x +
P

k2Dð0Þ p0kða0Þyk
� �

=
�
1 +
P

k2Dð0Þ p0k a0ð Þtk
�

t0 ¼
�
1 +
P

k2Dð0Þ p0k a0ð Þtk
�
=
�
1 - p00 a0ð Þ

�

Set dn+1(i)= ai for i∈ S and set gn+1= gn+ u0.

Step 3. Termination
If u0< 0 then return to step 2.

If u0= 0 then stop. Return dn+1 as an optimal policy, return
gn+1 as the optimal average cost, and for each i 2 D 0ð Þ return
hi=∑ j∈Δ(0, i)yj as the corresponding normalised relative cost.

Theorem 2 Consider the skip-free algorithm above applied
to a finite recurrent skip-free average cost MDP model.
Then:

(i) At each iteration, either gn+ 1< gn, so dn+ 1 is a strict
improvement on dn, or gn+ 1= gn. In the latter case,
gn+ 1= g*, dn+ 1 is an optimal average cost policy,
and the corresponding normalised relative costs are
given by h*0 ¼ 0; h*j ¼

P
i2Δð0;jÞ

yi; j 2 Dð0Þ:
(ii) The algorithm converges after a finite number of

iterations.

Remarks (i) The motivation for the particular choice of
action in state 0 is given in the remarks following the proof
of the theorem. (ii) The updates are particularly simple in
the one dimensional case where S= {0, 1,…,M}. Here
Σk2DðiÞ simplifies to ∑k= i+1

M and ρ(i) simplifies to i− 1.
(iii) The computational requirement for each iteration in
step 2 of the algorithm is clearly similar to that of the
corresponding step in value iteration, in that it only requires
simple evaluations rather than the solution of a set of
equations. While the algorithm is also similar to policy
evaluation in that it returns the average cost of policy dn at
the end on the nth iteration, it differs from standard policy
iteration in that the values of yi returned do not correspond
to the relative costs under dn. Only at convergence do the
relative costs and average cost correspond to the same
(optimal) policy. (iv) The basic principle underlying this
iterative approach appears to be similar to that used in Low
(1974), but the results there were restricted to a very
specific model with simple birth-and-death structure. Other
treatments of skip-free models (Wijngaard and Stidham,
1986; Stidham and Weber, 1989; Stidham and Weber,
1999; Wijngaard and Stidham, 2000) have used iterative
methods to search for a good approximation for the
average cost x, based on the value of current and previous
approximations, or used the form of the optimality equa-
tions to derive qualitative properties of the solution, in
particular monotonicity of optimal policies, but neither
approach explicitly identified the simple skip-free improve-
ment algorithm described here.

4. Discounted, continuous and communicating models

The skip-free algorithm can also be used to solve discounted
cost and continuous-time problems, in each case by transform-
ing the problem into an equivalent average cost problem.
Moreover, a suitably modified algorithm can be used to solve
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communicating models. For ease of presentation, we focus on
the one-dimensional case, indicating how the argument can be
extended to the general model as required.

4.1. Discounted cost models

Consider a recurrent MDP model that is skip-free in the
negative direction, with state space S= {0, 1,…,M}, finite
action space A, transition probabilities pij(a), immediate costs
ci(a) and discount factor β. Following Derman (1970, p 31),
we construct an average cost MDP with modified state space
{0, 1,…,M,M+ 1} and modified transition probabilities and
immediate costs given by:

p0ijðaÞ ¼βpijðaÞ; c0iðaÞ ¼ ciðaÞ;

i; j ¼0; 1; ¼ ; M; a 2 A

p0M + 1M að Þ ¼ β; cM + 1ðaÞ ¼ 0; a 2 A

p0iM + 1ðaÞ ¼ 1 - β; i ¼ 0; 1; ¼ ; M + 1; a 2 A

In the spirit of similar models (Low 1974; Wijngaard and
Stidham 1986), we note that this new average cost MDP
inherits from the original model the property of being skip-free
in the negative direction.
Let g′ and h′i, i= 0,…,M+1 be the optimal average cost and

the corresponding relative costs for the new average cost
problem, normalised by setting h′0= 0. From above, g′ and
h′i, i= 1,…,M+1, are the unique solutions to the optimality
equations (1), and any set of actions achieving the minimum on
the rhs defines an optimal policy. In terms of the original
parameters, these equations take the form

h0M + 1 ¼ - g0 + βh0M + 1 - βð Þh0M + 1

h0i ¼min
a

ci að Þ - g0 + β
XM
j¼0

pij að Þh0j + 1 - βð Þh0M + 1

( )
;

i ¼ 0; ¼ ;M

Now set vj= h′j− h′M+1 + g′/(1− β), j= 0,…,M. Then rewrit-
ing the equations for h0,…, hM in terms of v0,…, vM, we see
that the vi satisfy the equations

vi ¼ min
a

ci að Þ + β
XM
j¼0

pij að Þvj

( )
; i ¼ 0; ¼ ; M

Thus the vj satisfy the optimality equations for the discounted
cost problem, and so represent the unique optimal β discounted
cost function (Puterman, 1994, p 148).
Finally, let x′ and y′0,…, y′M+1 be solutions to the policy

iteration algorithm applied to the new skip-free average cost
problem. Then g′= x′ and h′j= y′j+⋯+ y′1, j= 1,…,M+1. Thus
the optimal value function for the discounted problem is given

explicitly in terms of the output of the policy iteration algorithm
by:

vj ¼
x0

1 - βð Þ - y0j + 1 + � � � + y0M + 1

� �
; j ¼ 0; ¼ ; M

and a policy which is optimal for the modified average
cost problem is also optimal for the original discounted cost
problem.
The extension to the general skip-free MDP tree model is

straightforward, requiring just the addition of an extra state for
each terminal state (node) to preserve the skip-free property. This
extra state now becomes the terminal node in that branch.
Transitions from this extra state are to the corresponding previous
terminal node, with probability β, or back to itself, with
probability 1−β. Transition probabilities from non-terminal
states are modified as above, by setting p′ij(a)=βpij(a) if j is a
non-terminal node of the modified tree and by assigning the
remaining transition probability 1− β to the newly added terminal
nodes of the modified sub-tree T ðiÞ rooted at i. The precise
assignment may be chosen arbitrarily—for example, each new
terminal node in the modified sub-tree may be chosen with equal
probability—as long as the total probability sums to 1− β.

4.2. Continuous-time models

Consider a continuous-time Markov decision process
(CTMDP) with finite state space S and finite action space A.
Assume that when the current action is a and the process is in
state Xt= i, the process incurs costs at rate ci(a) and makes
transitions to state j∈ S at rate qij(a) (where transitions back to
the same state are allowed). For infinite horizon problems,
under either an average cost or a discounted cost criterion, we
can restrict attention to stationary policies and to models in
which decisions are made only at transition epochs (Puterman,
1994, p 560). For simplicity of presentation, we again restrict
attention to recurrent models and defer treatment of unichain
and communicating models to Section 4.3. As for MDPs, we
say a CTMDP is skip-free in the negative direction if the
process cannot move from each state i to a state j< i without
passing through all the intermediate states, that is, qij(a)= 0 for
all j< i− 1 and a∈A.
To apply the skip-free algorithm, we first convert the model

to an equivalent uniformised model (Lippman, 1975) with rate
Λ=maxi∈ S a∈A∑ j∈S qij(a) In this model, when the current
action is a and the process is in state i, transitions back to state i
occur at rate Λ −∑ j≠i qij(a) while transitions to state j≠i
occur at rate qij(a), so that overall transitions occur at
uniform rate Λ. Next, we construct a discrete-time problem
with the same state and action space, where for i, j∈ S and
a∈ A the transition probabilities and immediate costs are
given by p′ij(a)= qij(a)/Λ, i≠j; p′ii(a)= 1 −∑ j≠i qij(a)/Λ;
c′i(a)=Λci(a). If the original CTMDP is recurrent and skip-
free, then the discretised model is recurrent and skip-free
and can be solved using the algorithm.

1600 Journal of the Operational Research Society Vol. 66, No. 10



Finally, let d′ and g′ be the optimal policy and the optimal
average cost identified by the algorithm for the discrete-time
problem. Then the optimal policy d* and the optimal
average cost g* for the uniformised continuous-time problem
are the same as d′ and g′, and the normalised relative costs
for the uniformised problem are given in terms of those
for the discrete problem by hi*= h′i /Λ, i∈ S (Puterman, 1994,
§11.5).

4.3. Communicating models

Thus far we have assumed the MDP model is recurrent. There
are natural applications for which this assumption excludes
sensible policies, such as policies that are recurrent only on a
strict subset of S. Simple examples include: maintenance/
replacement problems where a policy might specify replacing
an item when the state reached some lower level K> 0 with an
item of level L<M; inventory problems where a policy might
reorder when the stock reached some lower level K> 0 and/or
reorder up to level L<M; queueing control problems where a
policy might turn the server off when the queue size reached
some lower level K> 0 and/or might refuse to admit new
entrants when the queue size reached level L<M. In each case,
determining optimal values for K and L might be part of the
problem. In this section, we extend our result to the wider class
of communicating MDP models, to enable us to address
examples like these.
We say an MDP model is communicating if, for every pair of

states i and j in S, j is reachable from i under some (stationary
deterministic) policy d; that is, there exists a policy d, with
corresponding transition matrix Pd, and an integer n⩾ 0, such
that Pd(Xn= j|X0= i)> 0. We say that d is unichain if it
decomposes S into a single recurrent class plus a (possibly
empty) set of transient states; if there is more than one recurrent
class we say d is multichain. Let d be a multichain policy and,
for each k, let gk denote the average cost under d starting in a
state in Ek, and let Em be a recurrent set with smallest average
cost, say gm. Because the model is skip-free, Em must consist of
a sequence of consecutive states Km,…, Lm; again, because the
model is skip-free, the action in each each state j greater than Lm
can be changed if necessary so that Em is reachable from j;
finally, because the model is communicating, the action in each
state j less than Km can be changed if necessary so that Em is
reachable from j. Denote by d′ the new policy created by
changing actions in this way, if necessary, but leaving the
actions in Em unchanged. Then d′ is unichain by construction,
and the average cost starting in each state j∈ S is gm, which is
no greater than the average cost starting in j under d. Thus, for
average cost skip-free communicating models, nothing is lost
by restricting attention to unichain policies.
In contrast to recurrent models, communicating models allow

there to be i and a with pii(a)= 1 and/or pii− 1(a)= 0. For each
r= 0, 1,…,M, let Ur be the (possibly empty) set of unichain
policies d for which prr− 1(d(r))= 0 but pii− 1(d(i))> 0 for
i= r+1,…,M (where we take pii− 1(a)≡0 for all a for i= 0).

Every unichain policy must be inUr for some r. Partition the pos-
sible actions for each state i∈S into Bi={a∈A: pii−1(a)>0}
and its complement Bi ¼ fa 2 A : pii - 1 að Þ ¼ 0g; where Bi

may be empty but Bi is non-empty by the assumptions of the
skip-free model in Section 2. Then for a unichain policy d∈Ur,
we have that d(i)∈Bi, i= r+ 1,…,M; that state r is recurrent
and d rð Þ 2 Br by definition; and that states i< r are transient.
Thus the minimum average cost over policies in Ur is the

same as the minimum average cost for a modified skip-free
MDP model Πr with the same transition probabilities and
immediate costs but with reduced state space Sr={r,…,M} and
with state-dependent action spaces Ai=Bi for i= r+1,…,M
and Ar ¼ Br: In this notation, the model of Section 2 corre-
sponds to Π0 and state r plays the same role as the recurrent
distinguished state in Πr that state 0 plays in Π0. If we compare
the result of applying the skip-free algorithm to Πr with the
result of applying it to Π0, we see that, for the same current
value of x, the algorithm computes the same values of yi, ti and
ai in states i=M,M− 1,…, r+1. However, in state r, the skip-
free algorithm applied to Πr computes quantities appropriate to
the distinguished state, say ar and ur, where

ar ¼argmina2Br

cr að Þ - x +
PM

k¼r + 1 prkðaÞyk
� �

1 +
PM

k¼r + 1 prkðaÞtk
� �

( )

ur ¼
cr arð Þ - x +

PM
k¼r + 1 prkðarÞyk

� �
1 +
PM

k¼r + 1 prkðarÞtk
� �

and computes an updated ‘minimising’ policy dn+1
r with

average cost gn+1
r , where

drn + 1ðrÞ ¼ ar; drn + 1ðiÞ ¼ ai; i ¼ r + 1; ¼ ; M

and

grn + 1 ¼ x + ur

This motivates the following modified skip-free algorithm.
First, it includes these extra computations for each state r, so
that, in a single iteration, it simultaneously computes the
optimal policy dn+1

r and its average cost gn+1
r for each Sr.

Second, at the end of the n− 1th iteration it sets x= gn=minrgn
r ,

and sets dn to be the corresponding policy, where ties are
broken by choosing the dn

r with the smallest index r. Say the
minimum average cost at this stage is achieved by a policy with
index r=K. Then, by the properties of the skip-free algorithm
applied to ΠK, at the end of the next iteration, either
(i) gn+1

K < gn
K= x, in which case gn+1=minr gn+1

r < x= gn, or
(ii) un+1

K = 0 and gn+1
K = gn

K= x=minr gn+1
r , so gn+1= gn and

dn+1= dn+ 1
K is an optimal average cost policy for starting states

i=K,…,M. In this case, because the model is communicating,
it is possible (Puterman, 1994, p 351) to modify the actions
chosen by the policy in the, now transient, states 0,…,K− 1 so
that the modified dn+1 satisfies the optimality equations for all
states 0,…,M and is an average cost optimal policy. We
summarise this discussion in the following theorem.
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Theorem 3 Consider the skip-free algorithm modified as
above applied to a finite communicating discrete-time
average cost skip-free MDP model with state space
S= {0, 1, 2,…,M}. Then:
(i) At each iteration of the skip-free algorithm, either

gn+ 1< gn and dn+ 1 is a strict improvement on dn, or
gn+ 1= gn and for some K the policy satisfies the
optimality equations for states K,…, M.

(ii) The modified skip-free algorithm converges after a
finite number of iterations.

Finally, note that it is easy to check if a skip-free model
is communicating. An assumption of the (non-degenerate)
skip-free model was that each state i<M was reachable
from i+ 1. It follows that a skip-free MDP with state space
S= {0, 1,…,M} is communicating if and only ifM is reachable
from 0 under at least one stationary deterministic policy d.
Let N0= 0, let N1 be the index of the maximum state j for
which p0j(a)> 0 for some a∈A, and for m= 1, 2,… let Nm+1

be the index of the maximum state j for which pij(a)> 0
for some 0⩽ i⩽Nm and a∈A. As the state space is finite,
the sequence {Nm} terminates, say with state N. Since the
model is skip-free, N is the largest state that is reachable by
all states below it, and the model is communicating if and only
if N=M.
The extension to a general skip-free communicating models

is straightforward. Again, the idea is that for each state i the
skip-free algorithm is modified so that in passing it solves the
corresponding sub-problem Πi with state space T ðiÞ and with
state i as the distinguished state, and then computes the optimal
updated average cost and policy by minimising over the costs
and policies for each of the sub-problems.

5. Proof of Theorem 2

We start our analysis of the average cost MDP model by
defining a related problem (or class of problems) that we will
call the x-revised first return problem. The model for this
problem has the same state space S, the same action space A
and the same transition probabilities {pij(a)} as the average cost
model. However, for each fixed x, the immediate costs in the
corresponding x-revised problem are revised downward by x, so
ci(a) is revised to ci(a)− x. Whereas the original problem was to
find a policy d that minimised the expected average cost g(d),
the objective for this new problem is to find a policy that
minimises the expected x-revised cost until first return to state 0,
where, for a process starting with X0= 0, we define the first
return epoch to state 0 to be the smallest value τ> 0 such that
Xτ− 1≠0 and Xτ= 0. The MDP is assumed recurrent under any
stationary deterministic policy, so τ is well defined and almost
surely finite.
For a fixed policy d, starting in state 0, write τ(d) for the

expected first return epoch under d, C(d) for the expected first
return cost under d, and H(d, x) for the expected x-revised first
return cost under d. The average costs and the x-revised costs

under d are related by the equations

g dð Þ ¼C dð Þ
τ dð Þ ;

H d; xð Þ ¼C dð Þ - xτ dð Þ;

g dð Þ ¼x +
H d; xð Þ
τ dð Þ ð6Þ

where the first equation follows from viewing the average cost
problem from a renewal-reward perspective (Ross, 1970, p 160)
and noting that state 0 is recurrent under any stationary
deterministic policy d, and the second follows from noting that
the expected x-revised cost under d until first return to state 0 is
just the original expected cost C(d) adjusted downwards by an
amount x for an expected time period τ(d).

Lemma 4 For fixed x, let ai; i 2 Dð0Þ be actions minimising
the rhs in Equations (2) and (3) and let yi; i 2 Dð0Þ be the
corresponding y values. Set

a0 ¼ argmina

c0 að Þ - x +
P

k2Dð0Þ
p0k að Þyk

 !

1 - p00 að Þð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

(7)

and let d be the policy that takes action ai in state i, i∈ S. Then d
minimises the expected x-revised cost until first return to state 0,
and the expected x-revised first return cost under d is

H d; xð Þ ¼
c0 a0ð Þ - x +

P
k2Dð0Þ

p0k a0ð Þyk

 !

1 - p00 a0ð Þð Þ : (8)

Proof Since the process is Markov and skip-free in the
negative direction, it follows that a policy minimises the
expected x-revised cost until first return to state 0 if and
only if it also minimises the expected x-revised total cost
until first passage to state 0 for each starting state i≠0 ,
that is i 2 Dð0Þ; and hence minimises the expected cost
until first passage from i to ρ(i) for each i 2 Dð0Þ: For the
one-dimensional case where S= {0, 1,…,M}, this pro-
blem has been called the x-revised first passage problem
(Stidham andWeber, 1989). For fixed x and i∈ {1,…,M},
let ai be actions minimising the rhs in Equations (2) and (3)
and let yi be the corresponding y values. Then they show
that the policy d that takes action d(i)= ai in state i is
optimal for the x-revised first passage problem and the
minimal expected cost until first passage from i to i− 1 is
given by yi. With only minor notational changes, their
results extend directly to the general case where S corre-
sponds to the nodes of a tree, {1,…,M} is replaced by
Dð0Þ and i− 1 is replaced by ρ(i). It follows that the policy
that uses actions ai in i 2 Dð0Þ has the property that for
each state i it also minimises the expected total x-revised
cost until first passage to state 0 and that the minimum
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expected x-revised total cost until first passage to state 0,
starting in state i≠0, is given by the sum of the yi values
along the path from i to 0, that is,∑k∈Δ(0, i)yk.
Now consider a process that starts in state 0. Under a

policy that specifies action a in state 0, the expected time
until the process first leaves state 0 is 1/(1− p00(a)) and
during that time it incurs x-revised costs at rate c0(a)− x per
unit time. Conditional on leaving state 0, the first transition
is to state jwith probability p0j(a)/(1− p00(a)). From above,
the minimum additional expected total cost until the
process next re-enters state 0 is ∑k∈Δ(0, j)yk, and this
minimum expected cost is achieved by the policy that
takes actions ai in states i 2 Dð0Þ: Thus, if a policy d takes
action a in state 0, the minimum expected x-revised cost
from leaving state 0 until first return to state 0 is H d; xð Þ ¼P

j2D 0ð Þ p0jðaÞ
P

k2Δ 0;jð Þ yk=ð1 - p00ðaÞÞ=
P

k2D 0ð Þ
P

j2T kð Þ
p0jðaÞyk=ð1 - p00ðaÞÞ=

P
k2D 0ð Þ p0kðaÞyk=ð1 - p00ðaÞÞ: It

follows that the optimal action in state 0 is one that
minimises the quantity ðc0ðaÞ - x +

P
k2Dð0Þ p0k

ðaÞykÞ
=ð1 - p00ðaÞÞ and the expected x-revised first return cost
H(d, x) is as shown. □

Lemma 5 Let d be a fixed policy with expected average cost
g(d) and let d1 be the optimal x-revised policy specified in
Lemma 4 for the case x= g(d). Then:

(i) the average cost under d1 is no greater than the
average cost under d,

(ii) if the average cost under d1 is the same as the average
cost under d then d1 is an optimal policy for the
average cost problem.

Proof (i) For the fixed x, we know from Lemma 4 that d1

is an optimal policy for the x-revised first return problem.
Thus H(d1, x)⩽H(d, x), and from (6) this implies C(d1)−
xτ(d1)⩽C(d)− xτ(d). Because x corresponds to the average
cost under d, then, from (6), x= g(d)=C(d)/τ(d) so
C(d)− xτ(d)= 0. Thus, H(d1)=C(d1)− xτ(d1)⩽ 0 and
g(d1)=C(d1)/τ(d1)⩽ x= g(d).
(ii) If g(d1)= g(d), then from above H(d1, x)=H(d)= 0.
But, from Lemma 4, Hðd1; xÞ ¼ ðc0ða0Þ - x +

PM
k¼1

p0kða0ÞykÞ=ð1 - p00ða0ÞÞ; where p00(a0)< 1. It follows that
Hðd1; xÞ ¼ 0 ) ðc0ða0Þ - x +

PM
k¼1 p0kða0ÞykÞ ¼ 0: Thus,

when g(d1)= g(d), the values x= g(d1) and the correspond-
ing values of yi; i 2 Dð0Þ satisfy the optimality equations
(2)–(4) and d1 is a decision rule corresponding to the
actions minimising the rhs of each equation. It follows that
d1 is an optimal average cost policy, the optimal average
cost is g*= g(d1)= g(d) and the normalised relative costs
under the optimal policy are h*j=∑k∈Δ(0, j)yk. □

Lemma 6 Let ai, i∈ S be fixed actions and let d be the fixed
policy for which d(i)= ai, i∈ S. Perform a single iteration
of step 2 of the skip-free algorithm with starting value x
and with the action in each state i restricted to the single
value ai. If the algorithm output values are u0, yi; i 2 Dð0Þ

and ti, i∈ S, then H(d, x) and τ(d) are given by Equations
(8) and (9). Further, if the starting value is x= 0, then
g(d)= u0.

Proof The expression for H(d, x) follows from Lemma 4 by
considering the possible actions in state i to be restricted to
just the given ai.
For the expected first return epoch under d, write t0=
τ(d)> 0 and write ti> 0 for the expected first passage time
ti from i to i− 1. Interpret t0 as the expected 0-revised first
return cost under d for a model with immediate costs
ci(a)= 1 for all states and actions (and with x= 0), with
a similar interpretation for the ti. Then, as with the yi,
the ti can be computed recursively using the equations
ti ¼ 1=piρðiÞðaiÞ; i 2 LM ; ti ¼ ð1 +

P
k2DðiÞ pikðaiÞtkÞ=

piρðiÞðaiÞ; i 2 LM - 1; ¼ ; L1; and

τ dð Þ ¼ t0 ¼
1 +

P
k2Dð0Þ

p0k a0ð Þtk

 !

1 - p00 a0ð Þð Þ : (9)

Finally set x= 0. Then g(d)=H(d, 0)/τ(d) from (6),
so from (8) and (9) gðdÞ ¼ ðc0ða0Þ +

P
k2D 0ð Þ p0kða0ÞykÞ /

ð1 +
P

k2D 0ð Þ p0k ða0ÞtkÞ ¼ u0: □

Given a current policy d with average cost x=g(d), both the
original optimality equations (2)–(4) and the x-revised approach
suggest updating d with a policy that for i 2 Dð0Þ uses the
actions ai identified by Equations (2) and (3). However they
differ in their suggested action a0 in state 0—the former suggests
using the action minimising the rhs in Equation (4) while the
latter suggests using the action identified in (7). However, the
above lemma suggests another possible choice would be

a0 ¼ argmina

c0 að Þ - x +
P

k2Dð0Þ
p0k að Þyk

 !

1 +
P

k2Dð0Þ
p0k a0ð Þtk

 !
8>>>><
>>>>:

9>>>>=
>>>>;

(10)

This results in a policy that minimises the average cost over
all policies that take the given actions ai in states i 2 Dð0Þ: The
next lemma shows all three variations either strictly improve on
d or identify an optimal policy.

Lemma 7 Let d be a fixed policy and let x= g(d). For this x,
let ai; i 2 Dð0Þ be actions minimising the rhs in Equations
(2) and (3) and let yi; i 2 Dð0Þ be the corresponding y
values. Let a0

1 be the action specified by Equation (7), let a0
2

be the action minimising the rhs of Equation (4) and let a0
3

be the action specified by Equation (10). For k= 1, 2, 3,
let dk be the policy that takes action ai in state i 2 Dð0Þ
and takes action a0

k in state 0. Then either (i) all three
policies dk satisfy g(dk)< g(d), or (ii) all three policies
satisfy g(dk)= g(d) and each of the three (and d itself)
provides an optimal average cost policy.

Proof For fixed x and any policy d, g(d)− x=H(d, x)/τ(d)
from (6) and τ(d) is positive, so g(d)− x has the same sign
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as H(d, x). Since all three policies take actions ai in states
i 2 Dð0Þ; expression (8) gives their respective expected
x-revised first return costs as Hðdk; xÞ ¼ ðc0ðak0Þ - x
+
P

k2D 0ð Þ p0k
ðak0ÞykÞ=ð1 - p00ðak0ÞÞ; where each p00(a0

k)<
1 by the assumptions of the skip-free model.
Now Hðd2; xÞ<0 ) ðc0ða20Þ - x +

P
k2D 0ð Þ p0k

ða20ÞykÞ=
ð1 - p00ða20ÞÞ<0 ) ðc0ða10Þ - x +

P
k2D 0ð Þ p0kða10ÞykÞ=

ð1 - p00ða10ÞÞ<0 (as a0
1 minimises this quantity over

choice of a) ) Hðd1; xÞ<0: Conversely, Hðd1; xÞ<0 )
ðc0ða10Þ - x +

P
k2D 0ð Þ p0k

ða10ÞykÞ=ð1 - p00ða10ÞÞ<0 )
ðc0ða10Þ - x +

P
k2D 0ð Þ p0kða10ÞykÞ<0 ) ðc0ða20Þ - x +

P
k2D 0ð Þ

p0kða20ÞykÞ<0 (as a0
2 minimises this quantity over choice

of a)) Hðd2; xÞ< 0. A similar argument utilising the defi-
nition of a0

3 and the positivity of 1 +
P

k2D 0ð Þ p0kða0Þtk
� �

shows that H(d2, x)< 0⇔H(d3, x)< 0. Exactly similar
arguments then show that H(d1, x)= 0⇔H(d2, x)= 0⇔
H(d3, x)= 0, and that H(d1, x)> 0⇔H(d2, x)> 0⇔
H(d3, x)> 0. The second part of the lemma then follows
from Lemma 5. □

Proof of Theorem 2 (i) It follows from Lemma 6 that the
initialisation step outputs g0= g(d0). Now, let x= gn and
assume gn= g(dn). Then iteration n+1 outputs gn+1=
gn+ u0, where u0 ¼ ðc0ða0Þ - x +

P
k2D 0ð Þ p0kða0ÞykÞ=

ð1 +
P

k2D 0ð Þ p0kða0ÞtkÞ ¼ Hðdn + 1; xÞ=τðdn + 1Þ from (8)
and (9). Thus gn+1= x+H(dn+1,x)/τ(dn+1)= g(dn+1) from
Equation (6). Since g0= g(d0), it follows by induction that
gn= g(dn) for n= 0, 1, 2,….
By construction at iteration n+1, the skip-free algorithm

specifies dn+1(i)= ai, i∈ S, where ai; i 2 Dð0Þ are the
actions minimising the rhs in Equations (2) and (3) for this
value of x (and yi; i 2 Dð0Þ and ti; i 2 Dð0Þ are the
corresponding y and t values), and a0 is the action
minimising the rhs in Equation (10). It follows from
Lemma 7 that either g(dn+1)< g(dn), or g(dn+1)= g(dn)
and both dn+1 and dn provide optimal average cost
policies. Finally, the expression for h*j follows from
considering the case i= 0 in the representation hj− hi=
∑k∈Δ(i, j)yk in Lemma 1 with the normalisation h0= 0.
(ii) Since the set of possible stationary deterministic
decision rules is finite, and each iteration prior to conver-
gence leads to a strict improvement and hence a strictly
different decision rule, the process must converge after a
finite number of steps. □

Remark The update proposed in the skip-free algorithm uses
a0 satisfying (10). It has the property that, for each current
policy d, it generates an improved policy with average cost
at least as small as the other two variants considered in
Lemma 7. This does not guarantee that improvements
using this update converge faster than improvements using
either of the other two variants. After one iteration, each

policy may generate a different starting point for the next
iteration, and our results do not allow us to compare the
policies from these different starting points—indeed it
might be that the larger the improvement from the first
iteration, the smaller the improvement resulting from the
second iteration, as the average cost is now closer to the
optimal value. Our experience has been that the number of
iterations taken by all three methods was often the same.
Where one was fastest, it was always the one using (10),
but the relative ranking of the other two depended on the
model parameters.
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