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Abstract

We describe and analyse a new simplified policy iteration type algorithm for finite average
cost Markov decision processes that are skip-free in the negative direction. We show that the
algorithm is guaranteed to converge after a finite number of iterations, but the computational
effort required for each iteration step is comparable with that for value iteration. We show
that the analysis can be easily extended to solve continuous time models, discounted cost
models and communicating models, and provides new insights into the formulation of the
constraints in the linear programming approach to skip-free models. We also introduce and
motivate a new class of models for multidimensional control problems which we callskip-
free Markov decision processes on treesand show that the algorithm naturally extends to this
wider class of models.
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1 Introduction

Markov decision processes (MDPs) provide a class of stochastic optimisation models that have

found wide applicability to problems in Operation Research. The standard methods for comput-

ing optimal policy are based on value iteration, policy iteration and linear programming algo-

rithms. Each approach has its advantages and disadvantages. In particular, each step in value

iteration is relatively computationally inexpensive but the value function may take some time

to converge and the algorithm provides no direct check that it has computed the optimal value

function and an optimal policy. Conversely, each step in policy iteration may be computationally

expensive but the algorithm can be proved to converge in a finite number of steps, confirms when

it has converged and automatically identifies the optimal value function and an optimal policy on

exit.

Here we focus on models with special structure, in that they areskip-free in the negative

direction(Keilson 1965, p.10) orskip-free to the left(Stidham & Weber 1989); i.e. whatever the

action taken, the process cannot pass from one state to a ‘lower’ state without passing through

all the intervening states. Such skip-free models arise naturally in many areas of OR. The most

obvious examples are the control of discrete time random walks and continuous time birth and

death processes (Serfozo 1981) such as queueing control problems with single unit arrivals and

departures (see, for example, Stidham & Weber (1989) and references therein). In these basic

one-dimensional models, the state spaceS is (a subset of) the integer lattice and transitions are

only possible to the next higher or lower integer state. However there are several other standard

OR models that fall within the wider one-dimensional skip-free framework including examples

from the areas of inventory control (Miller 1981) and reliability and maintenance (Derman 1970,

Thomas 1982).

Previous treatments of controlled skip-free processes have considered only the one-dimentional

formulation. For processes with the ‘skip-free to the left’ property, work has focussed on quali-

tative properties, in particular the existence of monotone optimal policies for models with appro-

priately structured cost functions (Stidham & Weber 1989, Stidham & Weber 1999). Conversely,

work on processes with the corresponding ‘skip-free to the right’ property has concentrated on

analysis of an approximating bisection method for countable state space models (Wijngaard &

Stidham 1986, Wijngaard & Stidham 2000).

One way of characterising the essential features of a finite skip-free model is in terms of the

following properties: (i) there is a single distinguished state, say0; (ii) for any other statei

there is a unique shortest path fromi to 0; (iii) from each statei 6= 0 the process can only make

transitions to either the adjacent state in the unique path from0 to i, or to some statej for which

i lies in the unique shortest path from0 to j. Thus the model is skip-free if and only if the state
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space can be identified with the graph of a finite tree, rooted at0, with each state corresponding

to a unique node in the tree.

In this setting, the one-dimensional skip-free model above, with state spaceS = {0, 1, . . . , M},
corresponds to the simplest case where each interior node is connected to just two adjacent nodes

and the tree reduces to a single linearly ordered branch connecting the root node0 to the ter-

minal (or leaf) nodeM . However, the analysis extends easily to cases where the state space

has a richer, possibly multidimensional, structure. Here, the analogue of the simple birth and

death process is atree process(Keilson 1979), in which transitions are only possible to states

corresponding to adjacent nodes in the tree. Examples of genuinely skip-free models with multi-

dimensional state spaces arise in simple multi-class queueing systems with batch arrivals (Yeung

& Sengupta 1994, He 2000, and references therein), but such treatments have focussed mainly

on describing the behaviour of the process for fixed parameter settings.

In this paper we consider finite state MDPs that are skip-free in the negative direction. For the

standard recurrent average cost skip-free model, our main contribution is a new simplified policy

iteration algorithm in which the computational effort required for each iteration step is compa-

rable with that for value iteration, but which is guaranteed to converge after a finite number of

iterations and which automatically identifies the optimal value function and an optimal policy on

exit. In the more general setting, our contribution is what appears to be the first development and

analysis of multidimensional MDP models on trees, the extension of the simplified policy itera-

tion algorithm to skip-free MDP models on trees, and a corresponding proof of the convergence

properties of the extended algorithm. In both cases, the analysis can be extended to continuous

time models, discounted cost models and communicating models, and provides new insights into

the formulation of the constraints in the linear programming approach to skip-free models.

The remaining sections are organized as follows. In Section 2, we describe the standard dis-

crete time skip-free model with finite state spaceS = {0, 1, . . . , M}. We identify the appropriate

average cost optimality equations for recurrent models, develop an interpretation in terms of a

corresponding ‘x-revised’ problem, and present and prove convergence for the new policy itera-

tion algorithm. In Section 3, we show that, with simple modifications, results for the new policy

iteration algorithm can be extended to continuous time average cost models, discounted cost

models and communicating models onS, and that they lead to an alternative set of constraints in

LP formulations of the average cost problem. Finally, in Section 4, we introduce and illustrate

a new class of multidimensional MDP models, and show how the optimality equations, the new

policy iteration algorithm and the convergence results can all be extended to the skip-free average

cost multidimensional setting, together with its continuous-time, discounted, communicating and

LP variations.
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2 The skip-free MDP model

Consider a discrete time Markov decision process (MDP) with finite state spaceS = {0, 1, 2, . . . , M}
over an infinite time horizont ∈ {0, 1, 2, . . .}. Associated with each statei ∈ S is a non-empty

finite set of possible actions; sinceS is finite, we assume without loss of generality that the set of

actionsA is the same for eachi. If actiona ∈ A is chosen when the process is in stateXt = i

at timet, then the process incurs an immediate costci(a) and the next state isXt+1 = j with

probabilitypij(a).

WhenS is a subset of the integer lattice, we say the MDP model isskip-free in the negative

direction (Keilson 1965, Stidham & Weber 1989) ifpij(a) = 0 for all j < i − 1 anda ∈ A, i.e.

the process cannot move from each statei to a state with indexj < i without passing through all

the intermediate states. To avoid degeneracy, we assume thatp00(a) < 1 for a ∈ A and that for

eachi ∈ {1, . . . , M}, pii−1(a) > 0 for at least onea ∈ A. A similar definition applies to MDP

models that areskip-free in the positive directionor skip-free to the right(Wijngaard & Stidham

1986, Wijngaard & Stidham 2000); on the finite integer lattice the models are interchangeable, in

that each can be converted to the other by an appropriate relabelling of the states.

Obvious examples include the many applications where the process can be modelled as a

controlled random walk or (in continuous time) a controlled birth and death process (Serfozo

1981), such as arrival and service rate control forM/M/1 queues with finite buffers. Simple

discrete time examples with non-degenerate skip-free transitions include (i) inventory control

with single-item demands, where the statei is the stock level, the actiona is the amount ordered,

and transitions are only possible to statesj = i − 1 (demand and no re-order),j = i + a

(demand plus re-order), orj = i + a; (ii) maintenance/replacement problems where the statei

is the performance level of a machine (0 = broken and must be replaced,M = newly replaced),

where the state deteriorates by at most one level each time period, and where the maintenance

actiona determines the probability the state will improve to, say,j = i + k, and may include

deterministic transitions to stateM under a replacement action. Simple continuous time examples

with non-degenerate skip-free transitions include control of finiteM/M/1 queues with batch

arrivals (Stidham & Weber 1989), and perhaps less obvious examples such as control ofM/EK/1

queues (Stidham & Weber 1989). In the latter case, each service is composed ofK exponential

stages, and a statei = rK + s denotes a situation where there arer jobs currently waiting in

the buffer and the job currently in service hass stages left to complete. Thus transitions are

only possible to statesj = i − 1 (the next service stage is completed) orj = (r + 1)K + s (a

new job arrives to the buffer). More generally, the model applies to control of thoseM/PH/1

queues, for which the phase-type (PH) service distribution is itself skip-free, in that transitions

from stage/phases are only possible to stages/phaseK,K − 1, . . . , s, s− 1.
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For finite skip-free MDP models on the integer lattice, it is often more convenient to define

the upper tail probabilities

p̄ij(a) ≡ P (Xt+1 ≥ j |Xt = i, At = a) =
M∑

s=j

pis(a)

and to assume that the model is specified in terms of the parameters

pii−1(a), 1 ≤ i ≤ M, a ∈ A p̄ij(a), 0 ≤ i < j ≤ M,a ∈ A.

We will see that it is easier to represent quantities and perform calculations in terms of thep̄ij(a),

rather than use the standard (and equivalent) representation in terms of the transition probabilities

pij(a), i, j ∈ S, a ∈ A.

A policy π is a sequence of (possibly history dependent and randomised) rules for choosing

the action at each given time pointt. A deterministicdecision rule corresponds to a function

d : S → A and specifies taking actiona = d(i) when the process is in statei. A stationary

deterministicpolicy is one which always uses same the deterministic decision rule at each time

point t. Where the meaning is clear from the context, we use the same notationd for both the

decision rule and the corresponding stationary deterministic policy.

We say an MDP model isrecurrentif the transition matrix corresponding to every stationary

deterministic policy consists of a single recurrent class. In particular, this implies that, for all

a ∈ A, pii−1(a) > 0 for i = 1, . . . , M andpii(a) < 1 for all i ∈ S. We say an MDP model

is communicatingif, for every pair of statesi andj in S, j is reachable fromi under some (sta-

tionary deterministic) policyd; i.e. there exists a policyd, with corresponding transition matrix

Pd, and an integern ≥ 0, such thatPd(Xn = j|X0 = i) > 0. In contrast to recurrent models,

communicating models allow there to bei anda with pii−1(a) = 0 and /orpii(a) = 1.

The expected average cost incurred by a policyπ with initial statei is given bygπ(i) =

lim supn→∞
1
n

Eπ

(∑n−1
t=0 CXt(at)|X0 = i

)
, whereXt is the state at timet and at is the ac-

tion chosen at timet underπ. Similarly, for a given discount factor0 < β < 1, the to-

tal expected discounted cost incurred by a policyπ with initial state i is given byV β
π (i) =

Eπ (
∑∞

t=0 βn CXt(at)|X0 = i) .

For simplicity of presentation, we restrict attention in the remainder of this section to deter-

mining a policy which, for each initial state, minimises the expected average cost in a given finite

recurrent discrete time average cost skip-free MDP model. We defer to Section 3 the extension

of these results to continuous time, discounted cost and communicating models.

2.1 Skip-free average cost optimality equations

For finite recurrent models, the solution to the expected average cost problem can be characterised

by the correspondingaverage cost optimality equations(Puterman 1994,§8.4)
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hi = min
a∈A

{ ci(a)− g +
M∑

j=0

pij(a)hj } i ∈ S (1)

in that: (i) there exist real numbersg∗ andh∗i , i ∈ S satisfying the optimality equations; (ii)

the optimal average cost is the same for each initial state and is given byg∗; (iii) the optimality

equations uniquely determineg∗ and determine theh∗i up to an arbitrary additive constant; (iv)

the stationary deterministic policyd∗ is an average cost optimal policy, where, for eachi ∈ S,

d∗(i) is an action achievingmina{ ci(a) +
∑M

j=0 pij(a)h∗j }.
For simplicity of presentation, we now assume throughout that the actions have been labelled

in some strictly ordered fashion and that, when a minimum over actions is required, the corre-

sponding action is uniquely defined by taking the minimising action to be the one with the lowest

valued label in the case of ties.

It follows from (iv) above that there is an optimal policy in the class of stationary deterministic

policies. We therefore restrict attention from now on to stationary deterministic policies, writing

‘policy’ as a shorthand for ‘stationary deterministic policy’.

For eachi, j ∈ S, we can interpreth∗i − h∗j as the asymptotic relative difference in the

total cost that results from starting the process in statei rather than statej, under the stationary

deterministic policyd∗. Thus the quantitiesh∗i − h∗j are uniquely defined, but the quantities

h∗i , i ∈ S are defined only up to an arbitrary additive constant. We focus on the particular solution

normalised by settingh∗0 = 0 and refer to the correspondingh∗i as the normalised relative costs

under an optimal policy.

In general, the optimality equations (1) cannot be solved directly. Instead an optimal policy in

the class of stationary deterministic policies is usually found by methods based on value iteration,

policy iteration or linear programming, or combinations of these approaches (Puterman 1994).

For skip-free models, however,pij(a) = 0 for j < i− 1 and equations (1) take the simpler form

hi = min
a
{ ci(a)− g +

M∑
j=i−1

pij(a)hj } i = M, . . . , 0. (2)

Now ci(a)−g+
∑M

j=i−1 pij(a)hj ≥ hi if and only if ci(a)−g+
∑M

j=i+1 pij(a)(hj−hi) ≥ (hi−
hi−1)pii−1(a), with appropriate modifications fori = 0 andM , and equality in one expression

implies equality in the other. Also
∑M

j=i+1 pij(a)(hj−hi) =
∑M

j=i+1 pij(a)
∑j

k=i+1(hk−hk−1) =∑M
k=i+1(hk−hk−1)

∑M
j=k pij(a) =

∑M
k=i+1(hk−hk−1)p̄ik(a). Thus, writingyi for h∗i −h∗i−1, i =

1, . . . , M , and using the normalisationh∗0 = 0, we see that for skip-free models the optimality
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equations are equivalent to the set of equations

yM = min
a
{ (cM(a)− x)/pMM−1(a) } (3a)

yi = min
a
{ (ci(a)− x +

M∑

k=i+1

p̄ik(a)yk)/pii−1(a) } i = M − 1, . . . , 1 (3b)

0 = min
a
{ c0(a)− x +

M∑

k=1

p̄ik(a)yk } (3c)

in that (i) these equations also have unique solutionsx andy1, . . . , yM ; (ii) the optimal average

cost isg∗ = x and the normalised relative costs under an optimal policy areh∗i = y1+· · ·+yi, i =

1, . . . , M ; (iii) an optimal policy is given byd∗, whered∗(i) is any action minimising the rhs of

theith equation.

In the optimality equations (3), the value ofyM depends only onx, and in each subsequent

equation the value ofyi depends only on the values ofyk for k > i. Thus, if the value of

x was known, it would be easy to compute theyi in turn for yM , . . . , y1 and to determine the

corresponding policy, defined below, which takes the optimal action in each statei = 0, . . . , M .

Definition 1 For fixedx, let a0, a1, . . . , aM be the actions minimising the rhs in equations (3)

and lety1, . . . , yM be the correspondingy values. Define the ‘optimality equation’ policydoe to

be the policy for whichdoe(i) = ai, i = 0, 1, . . . , M . For ease of reference writeaoe for doe(0),

so

aoe ≡ argmina{ c0(a)− x +
M∑

k=1

p̄ik(a)yk }

This observation motivates an iterative approach to finding an average cost optimal policy –

choose an initial value for the average costx, compute the updated ‘optimality equation’ policy

doe for thatx and compute its average cost, setx equal to this new value and iterate until con-

vergence. The principle underlying this iterative approach idea is not new. Low (1974) used a

similar solution method but his results were restricted to a specific birth and death model. Other

treatments of skip-free models (Wijngaard & Stidham 1986, Stidham & Weber 1989, Stidham

& Weber 1999, Wijngaard & Stidham 2000) have used iterative methods to search for a good

approximation for the average costx, based on the value of current and previous approximations,

or used the form of the optimality equations to derive qualitative properties of the solution, in

particular monotonicity of optimal policies, but neither approach explicitly identified the simple

policy improvement algorithm described here.

In contrast, we prove directly that that the policy computed at each stage, using iterations

based ondoe, either provides a strict improvement in the average cost or has converged to an

optimal policy. Moreover, we develop in the next section an alternative viewpoint that offers
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more insight into the problem and that helps identify other, possibly better, ways of performing

the policy updating process.

2.2 Policy improvement

In this section we will identify and compare three slightly different ways of improving a current

policy, and use insights from the correspondingx-revised problem and renewal-reward theory to

show that, in each case, the updated policy either provides a strict improvement in the average

cost or the process has converged to an optimal policy.

We start our analysis of the average cost model by defining a related problem that we will call

thex-revised first return problem. The model for this problem has the same state spaceS, the

same action spaceA and the same transition probabilities{pij(a)} as the average cost model, but

the immediate costs are revised downward by the fixed amountx, soci(a) is revised toci(a)−x.

The objective for this new problem is to find a policy that minimises the expectedx-revised cost

until first return to state0, where, for a process starting withX0 = 0, we define the first return

epoch to state0 to be the smallest valueτ > 0 such thatXτ−1 6= 0 andXτ = 0. The MDP

is assumed recurrent under any stationary deterministic policy, soτ is well defined and almost

surely finite.

Since the process is Markov and skip-free in the negative direction, it follows that a policy

minimises the expectedx-revised cost until first return to state0 if and only if it also minimises the

expectedx-revised total cost until first passage to state0 for each starting statei 6= 0 and hence,

for each statei = 1, . . . , M , minimises the expected cost until first passage fromi to to i − 1.

This latter problem has been called thex-revised first passage problem (Stidham & Weber 1989).

For each fixedx, let a1, . . . , aM be actions minimising the rhs in equations (3a) and (3b) above

andy1, . . . , yM be the correspondingy values. Then the policyd that takes actiond(i) = ai in

statei is optimal for thex-revised first passage problem and the minimal expected cost until first

passage fromi to i − 1 is given byyi (Stidham & Weber 1989). It follows that the policy that

uses actionsai in statei = 1, . . . , M has the property that for each statei = 1, . . . , M it also

minimises the expected totalx-revised cost until first passage to state0 and that the minimum

expectedx-revised total cost until first passage to state0, starting in statei > 0, is given by

yi + yi−1 + · · ·+ y1.

Now consider a process that starts in state0. Under a policy that specifies actiona in state

0, the expected time until the process first leaves state0 is 1/(1 − p00(a)) and during that time

it incursx-revised costs at ratec0(a) − x per unit time. Conditional on leaving state0, the first

transition is to statej with probabilityp0j(a)/(1− p00(a)). From above, the minimum additional

expected total cost until the process next re-enters state0 is yj +yj−1+· · ·+y1, and this minimum

expected cost is achieved by the policy that takes actionsai in statesi = 1, . . . , M . Thus, if a pol-
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icy takes actiona in state0, the minimum expectedx-revised cost from leaving state0 until first

return to state0 is
∑M

j=1 p0j(a)(yj +yj−1 + · · ·+y1)/(1−p00(a)) =
∑M

j=1 p0j(a)(
∑j

k=1 yk)/(1−
p00(a)) =

∑M
k=1 yk(

∑M
j=k p0j(a))/(1− p00(a)) =

∑M
k=1 ykp̄0k(a)/(1− p00(a)). It follows that the

optimal action in state0 is one that minimises the quantity(c0(a) − x +
∑M

k=1 p̄0k(a)yk)/(1 −
p00(a)). We summarise this analysis in the following definition and lemma.

Definition 2 For fixedx, leta1, . . . , aM be actions minimising the rhs in equations (3a) and (3b)

and lety1, . . . , yM be the correspondingy values. We define the ‘first return’ policydfr to be the

policy for whichdfr(i) = ai, i = 1, . . . , M, anddfr(0) = afr, where

afr ≡ argmina{ (c0(a)− x +
M∑

k=1

p̄0k(a)yk)/(1− p00(a)) }.

Lemma 3 For givenx, dfr is an optimal policy for thex-revised first return problem and the

expectedx-revised first return cost underdfr is

(c0(afr)− x +
M∑

k=1

p̄0k(afr)yk)/(1− p00(afr)).

We now show that, ifx corresponds to the average cost under some policyd, then the average

cost underdfr is no greater thanx = g(d). For each fixed policyd on S = {0, 1, . . . , M}, write

τ(d) for the expected first return epoch for a process that starts in0, C(d) for the expected first

return cost underd, H(d) for the expectedx-revised first return cost underd, andg(d) for the

expected average cost underd. To relate these quantities, we view the average cost problem from

a renewal-reward perspective. Since state0 is recurrent under any stationary deterministic policy

d, it follows (Ross 1970, p.160) that

g(d) = C(d)/τ(d). (4)

In terms ofτ(d) andC(d), the expectedx-revised cost underd until first return to state0 is

given by

H(d) = C(d)− xτ(d) (5)

since costs are adjusted downwards by an amountx for a time period with expected lengthτ(d).

Moreover, from this and (4), we have

g(d) = x + H(d)/τ(d). (6)

This enables us to comparedfr to a current policyd through the following lemma.
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Lemma 4 Let x correspond to the average cost under some given policyd and letdfr be an

optimal policy for thex-revised first return problem. Then:

(i) the average cost underdfr is no greater than the average cost underd,

(ii) if the average cost underdfr is the same as the average cost underd thendfr is an optimal

policy for the average cost problem.

Proof (i) For the fixedx, dfr is by definition an optimal policy for thex-revised first return

problem. ThusH(dfr) ≤ H(d), and from (5) this impliesC(dfr) − xτ(dfr) ≤ C(d) − xτ(d).

Becausex corresponds to the average cost underd, then, from (4),x = g(d) = C(d)/τ(d) so

C(d)−xτ(d) = 0. Thus,H(dfr) = C(dfr)−xτ(dfr) ≤ 0 andg(dfr) = C(dfr)/τ(dfr) ≤ x = g(d).

(ii) If g(dfr) = g(d), then from aboveH(dfr) = H(d) = 0. But, from Lemma 3,H(dfr) =

(c0(afr) − x +
∑M

k=1 p̄0k(afr)yk)/(1 − p00(afr)), wherep00(afr) < 1. It follows thatH(dfr) =

0 =⇒ (c0(afr) − x +
∑M

k=1 p̄0k(afr)yk) = 0. Thus, wheng(dfr) = g(d), the valuesx = g(dfr)

andy1, . . . , yM satisfy the optimality equations (3a-3c) anddfr is a decision rule corresponding

to the actions minmising the rhs of each equation. It follows thatdfr is an optimal average cost

policy, the optimal average cost isg∗ = g(dfr) = g(d) and the normalised relative costs under the

optimal policy areh∗j = yj + · · ·+ y1, j = 1, . . . , M . ¤

For any fixed policyd, a similar argument to that preceding Definition 2 can be used to derive

the expectedx-revised first return costH(d), the expected first return costC(d) and the expected

first return epochτ(d). Sayd specifies actionbj in statesj = 0, . . . , M . For these fixedbj, let

wM = (cM(bM)− x)/pMM−1(bM) and letwj = (cj(bj)− x +
∑M

k=j+1 p̄jk(bj)wk)/pjj−1(bj) for

j = M − 1, . . . , 1. Then, by considering the possible actions in statej to be restricted to just

bj, it follows thatwj + wj−1 + · · · + w1 can be interpreted as the expectedx-revised total cost

underd until first passage back to state0 following the transition to statej. Hence the expected

x-revised first return cost is

H(d) = (c0(b0)− x +
M∑

k=1

p̄0k(b0)wk)/(1− p00(b0)). (7)

Moreover, from (5),C(d) corresponds to the expectedx-revised first return cost for the special

casex = 0, soC(d) can be computed in exactly the same way, but takingx = 0 and making

appropriate adjustments in the equations forw1, . . . , wM .

For the expected first return epoch underd, write t0 = τ(d) > 0 and writeti > 0 for the

expected first passage timeti from i to i − 1. Interprett0 as the expected0-revised first return

cost underd for a model with immediate costsci(a) = 1 for all states and actions (and with

x = 0), with a similar interpretation for theti. Then, as with thewi, theti can be computed as
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recursively using the following equations:

tM = 1/pMM−1(bM)

ti = (1 +
M∑

k=i+1

p̄ik(bi)tk)/pii−1(bi) i = M − 1, . . . , 1

t0 = (1 +
M∑

k=1

p̄0k(b0)tk)/(1− p00(b0)) (8)

If the policy d specifies actionsbj and has expectedx-revised first passage costswj and

timestj, then, from (7) and (8),H(d) = (c0(b0) − x +
∑M

k=1 p̄0k(b0)wk)/(1 − p00(b0)) and and

τ(d) = (1+
∑M

k=1 p̄0k(b0)tk)/(1−p00(b0)), soH(d)/τ(d) = (c0(b0)−x+
∑M

k=1 p̄0k(b0)wk)/(1+∑M
k=1 p̄0k(b0)tk). However,g(d) = x + H(d)/τ(d) from (6). Sincex is fixed, this motivates

updating a current policy with the policydmi defined below and characterised in the following

lemma.

Definition 5 For fixedx, leta1, . . . , aM be actions minimising the rhs in equations (3a) and (3b)

and lety1, . . . , yM be the correspondingy values. We define the ‘minimising’ policydmi to be the

policy for whichdmi(i) = ai, i = 1, . . . , M, anddmi(0) = ami, where

ami ≡ argmina{ (c0(a)− x +
M∑

k=1

p̄0k(a)yk)/(1 +
M∑

k=1

p̄0k(a0)tk) }.

Lemma 6 For givenx, dmi minimises the average costg(d) over all policiesd that take action

ai in states1, . . . ,M .

For fixedx, the policiesdoe, dfr anddmi specify the same actions in statesi = 1, . . . , M , but

in general they may all specify different actions in state0. Nevertheless, the following lemma

establishes that all three policies exhibit the same qualitative behaviour relative to the fixed value

x.

Lemma 7 For fixedx, the values ofg(doe)− x, g(dfr)− x andg(dmi)− x are either all positive,

all negative or all zero. Ifx corresponds to the average cost under a given policyd then either all

three policies strictly improve ond or all three policies provide an optimal average cost policy.

Proof For fixed x and any policyd, g(d) − x = H(d)/τ(d) from (6) andτ(d) is positive,

so g(d) − x has the same sign asH(d). Since all three policies take actionsai in statesi =

1, . . . , M , expression (7) gives their expectedx-revised first return costs asH(d) = (c0(a0) −
x +

∑M
k=1 p̄0k(a0)yk)/(1 − p00(a0)), wherea0 is the action they specify in state0 and where

p00(a0) < 1 by the assumptions of the skip-free model.
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Now H(doe) < 0 =⇒ (c0(aoe)−x+
∑M

k=1 p̄0k(aoe)yk)/(1− p00(aoe)) < 0 =⇒ (c0(afr)−
x +

∑M
k=1 p̄0k(afr)yk)/(1 − p00(afr)) < 0 (asafr minimises this quantity over choice ofa) =⇒

H(dfr) < 0. ConverselyH(dfr) < 0 =⇒ (c0(afr)−x+
∑M

k=1 p̄0k(afr)yk)/(1−p00(afr)) < 0 =⇒
(c0(afr)−x+

∑M
k=1 p̄0k(afr)yk) < 0 =⇒ (c0(aoe)−x+

∑M
k=1 p̄0k(aoe)yk) < 0 (asaoe minimises

this quantity over choice ofa) =⇒ H(doe) < 0. A similar argument utilising the definition of

ami and the positivity of(1+
∑M

k=1 p̄0k(a0)tk) shows thatH(doe) < 0 ⇐⇒ H(dmi) < 0. Exactly

similar arguments then show thatH(doe) = 0 ⇐⇒ H(dfr) = 0 ⇐⇒ H(dmi) = 0, and that

H(doe) > 0 ⇐⇒ H(dfr) > 0 ⇐⇒ H(dmi) > 0. The second part of the lemma then follows from

Lemma 4. ¤

2.3 Policy iteration algorithm

We now return to where we left off at the end of Section 2.1. For a given current policyd with

average costx, we know from Lemma 7 that updating the policy using any of the three policies

doe, dfr anddmi will in each case result in either an improved policy with strictly smaller average

cost, or will confirm bothd and the updated policy as being average cost optimal.

The update usingdmi has the property that, for each current policyd, it generates an improved

policy with average cost at least as small as the other two policies. This does not immediately

guarantee that improvements usingdmi converge faster than improvements using eitherdoe or dfr.

After one iteration, each policy may take us to a different starting point for the next iteration, and

our results do not allow us to compare the policies from these different starting points – indeed

it might be that the larger the improvement from the first iteration, the smaller the improvement

resulting from the second iteration, as the average cost is now closer to the optimal value. Our

experience has been that the number of iterations taken by all three methods was often the same.

Where one was fastest, it was alwaysdmi, but there were some parameter settings wheredoe was

observed to be faster thandfr and others for which the order was reversed.

Informed by this discussion, we define the following PIA (policy iteration algorithm) based

on dmi and summarise its properties in the accompanying theorem. Note that other ways of

initialising the algorithm are possible – one alternative being to setg0 = maxi,a ci(a).

PIA (Policy iteration algorithm)

1. Initialisation:

Choose an arbitrary initial policyd0. Perform a single iteration of step 2 below, withx = 0 and

with ai restricted to the single valued0(i), i = 0, 1, . . . , M . Compute the average costg0 under

this policy by settingg0 = u0.

2. Iteration:

Setx = gn.

12



• For i = M compute:
aM = argmina{ (cM(a)− x)/pMM−1(a) }
yM = (cM(aM)− x)/pMM−1(aM)
tM = 1/pMM−1(aM)

• For i = M − 1, . . . , 1 compute:
ai = argmina{ (ci(a)− x +

∑M
k=i+1 p̄ik(a)yk)/pii−1(a) }

yi = (ci(ai)− x +
∑M

k=i+1 p̄ik(ai)yk)/pii−1(ai)

ti = (1 +
∑M

k=i+1 p̄ik(ai)tk)/pii−1(ai)

• For i = 0 compute:
a0 = argmina{ (c0(a)− x +

∑M
k=1 p̄0k(a)yk)/(1 +

∑M
k=1 p̄0k(a)tk) }

u0 = (c0(a0)− x +
∑M

k=1 p̄0k(a0)yk)/(1 +
∑M

k=1 p̄0k(a0)tk)

Setdn+1(i) = ai for i = 0, . . . ,M and setgn+1 = gn + u0.

3. Termination:

If u0 < 0 then return to step 2.

If u0 = 0 then stop and returndn+1 as an optimal policy,gn+1 as the optimal average cost, and

hi = y1 + · · ·+ yi, i = 1, . . . M as the corresponding normalised relative costs. ¤

Theorem 8 Consider the PIA above applied to a finite recurrent discrete time average cost skip-

free MDP model with state spaceS = {0, 1, 2, . . . , M}. Then:

(i) At each iteration of the PIA eithergn+1 < gn and dn+1 is a strict improvement ondn, or

gn+1 = gn anddn+1 is an optimal average cost policy.

(ii) The PIA converges after a finite number of iterations.

Proof (i) Let dn be be the policy identified at iterationn, with expected average costg(dn).

At iteration n + 1 the PIA computesgn+1 and dn+1, wheredn+1 = dmi for the fixed value

x = gn = g(dn). Initially g0 = g(d0) by construction, andgn = g(dn) implies gn+1 ≡ gn +

H(dn+1)/τ(dn+1) = g(dn+1) from (6). Thus, by induction,gn+1 = g(dn+1). Finally, from

Lemma 7, eitherg(dn+1) = g(dmi) < x = g(dn) or g(dn+1) = g(dmi) = x = g(dn) anddn+1 is

an optimal average cost policy.

(ii) Since the set of possible stationary deterministic decision rules is finite, and each iteration

prior to convergence leads to a strict improvement and hence a strictly different decision rule, the

process must converge after a finite number of steps. ¤

The computational requirement for each iteration in step 2 of the PIA is similar to that of the

corresponding step in value iteration. The comparison depends on the relative density of non-

zero elements inP andP̄ where, for a fixed policyd with transition probabilitiespij ≡ pij(d(i)),

we writeP for the matrix with elementspij and writeP̄ for the same matrix but with the values

p̄ij replacingpij for elements above the diagonal. Iterations for the PIA and for value iteration
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will require roughly the same effort for a random walk model, whereP is at its sparsest and

P = P̄ , and in the most dense case when all the elements above the diagonal inP are positive

andP and P̄ have zeros in the same positions. For cases in between,P̄ will always be more

densely filled thanP , an extreme example being when all states have positive probability of

making transitions to the largest state (c.f. Section 3.2), in which caseP may be quite sparse but

P̄ will be fully dense above the diagonal. Moreover, the algorithm differs from standard policy

iteration, in that it computes relative costs under a policy (dn+1) that does not correspond to the

average cost (g(dn)) under consideration; only at convergence do the relative costs and average

cost correspond to the same (optimal) policy.

3 Variations on the standard model

In this section, we show that, with simple modifications, the results in Section 2 for the new

policy iteration algorithm can be extended to continuous time models, discounted cost models

and communicating models, and that they lead to an alternative formulation for the constraints in

LP treatments of the average cost problem.

3.1 Continuous time models

Consider a continuous time Markov decision process (CTMDP) with finite state spaceS =

{0, 1, 2, . . . , M} and finite action spaceA. The analysis in Section 2 easily extends to this contin-

uous time setting. We assume that when the current action isa and the process is in stateXt = i,

the process incurs costs at rateci(a) and makes transitions to statej ∈ S at rateqij(a) (where

transitions back to the same state are allowed). For infinite horizon problems, under either an

average cost or a discounted cost criterion, we can restrict attention to stationary policies and

to models in which decisions are made only at transition epochs (Puterman 1994, p.560). For

simplicity of presentation we again restrict attention to recurrent models and defer treatment of

unichain and communicating models to Section 3.3. As for MDPs, we say a CTMDP is skip-free

in the negative direction if the process cannot move from each statei to a statej < i without

passing through all the intermediate states, i.e.qij(a) = 0 for all j < i− 1 anda ∈ A.

To apply the PIA, we first convert the model to an equivalent uniformised model (Lippman

1975) with rateΛ = maxi∈S a∈A

∑
j∈S qij(a). In this model, when the current action isa and

the process is in statei, transitions back to statei occur at rateΛ−∑
j 6=i qij(a) while transitions

to statej 6= i occur at rateqij(a), so that overall transitions occur at uniform rateΛ. Next

we construct a discrete time problem with the same state and action space, and with transition
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probabilities and immediate costs given by:

p′ij(a) = qij(a)/Λ, c′i(a) = Λci(a), i 6= j = 0, 1, . . . ,M, a ∈ A

p′ii(a) = 1−
∑

j 6=i

qij(a)/Λ, i = 0, 1, . . . , M. a ∈ A

If the original CTMDP is recurrent and skip-free, then the discretised model is recurrent and

skip-free and can be solved using the PIA.

Finally, the optimal policyd∗ and the optimal average costg∗ for the uniformised continuous

time problem are the same as the corresponding quantitiesd′ andg′ for the discrete time problem,

and the normalised relative costs for the uniformised problem are given in terms of those for the

discrete problem byh∗i = h′i/Λ, i = 0, 1, . . . ,M (Puterman 1994,§11.5).

3.2 Discounted cost models

Although our treatment has concentrated on average cost problems, the new policy iteration algo-

rithm can also be applied to find an optimal stationary deterministic policy and the corresponding

optimal value function for skip-free discounted cost models. Consider an MDP model that is

skip-free in the negative direction, with state spaceS = {0, 1, . . . , M}, finite action spaceA,

transition probabilitiespij(a), immediate costsci(a) and discount factorβ.

Following Derman (1970, p.31), we construct an average cost MDP with modified state space

{0, 1, . . . , M, M + 1} and modified transition probabilities and immediate costs given by:

p′ij(a) = βpij(a), c′i(a) = ci(a), i, j = 0, 1, . . . ,M, a ∈ A

p′M+1 M(a) = β, cM+1(a) = 0, a ∈ A

p′i M+1(a) = 1− β, i = 0, 1, . . . , M + 1, a ∈ A

In the spirit of similar models (Low 1974, Wijngaard & Stidham 1986), we note that this new

average cost MDP inherits from the original model the property of being skip-free in the negative

direction.

Let g′ andh′i, i = 0, . . . , M + 1 be the optimal average cost and the corresponding relative

costs for the new average cost problem, normalised by settingh′0 = 0. From above,g′ and

h′i, i = 1, . . . ,M + 1, are the unique solutions to the optimality equations (1), and any set of

actions achieving the minimum on the rhs defines an optimal policy. In terms of the original

parameters, these equations take the form

h′M+1 = −g′ + βh′M + (1− β)h′M+1

h′i = min
a
{ ci(a)− g′ + β

M∑
j=0

pij(a)h′j + (1− β)h′M+1 } i = 0, . . . , M
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Now setvj = h′j−h′M+1+g′/(1−β), j = 0, . . . , M . Then rewriting the equations forh0, . . . , hM

in terms ofv0, . . . , vM , we see that thevi satisfy the equations

vi = min
a
{ ci(a) + β

M∑
j=0

pij(a)vj } i = 0, . . . , M.

Thus thevj satisfy the optimality equations for the discounted cost problem, and so represent the

unique optimalβ discounted cost function (Puterman 1994, p.148).

Finally, let x′ andy′0, . . . , y
′
M+1 be solutions to the policy iteration algorithm applied to the

new skip-free average cost problem. Theng′ = x′ andh′j = y′j + · · · + y′1, j = 1, . . . ,M + 1.

Thus the optimal value function for the discounted problem is given explicitly in terms of the

output of the policy iteration algorithm by

vj = x′/(1− β)− (y′j+1 + · · ·+ y′M+1) j = 0, . . . , M

and a policy which is optimal for the modified average cost problem is also optimal for the

original discounted cost problem.

3.3 Communicating models

So far we have assumed the MDP model is recurrent. There are natural applications for which

this assumption excludes sensible policies, such as policies that are recurrent only on a strict

subset ofS. Simple examples include: maintenance/replacement problems where a policy might

specify replacing an item when the state reached some lower levelK > 0 with a item of level

L < M ; inventory problems where a policy might reorder when the stock reached some lower

levelK > 0 and/or reorder up to levelL < M ; queueing control problems where a policy might

turn the server off when the queue size reached some lower levelK > 0 and/or might refuse to

admit new entrants when the queue size reached levelL < M . In each case, determining optimal

values forK andL might be part of the problem. In this section we extend our result to the wider

class of communicating MDP models, to enable us to address examples like these.

We say an MDP model is communicating if, for every pair of statesi andj in S, j is reachable

from i under some (stationary deterministic) policyd; i.e. there exists a policyd, with correspond-

ing transition matrixPd, and an integern ≥ 0, such thatPd(Xn = j|X0 = i) > 0. We say thatd

is unichain if it decomposesS into a single recurrent class plus a (possibly empty) set of transient

states; if there is more than one recurrent class we sayd is multichain. Letd be a multichain

policy and, for eachk, let gk denote the average cost underd starting in a state inEk, and letEm

be a recurrent set with smallest average cost, saygm. Because the model is skip-free,Em must

consist of a sequence of consecutive statesKm, . . . , Lm; again, because the model is skip-free,
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the action in each each statej greater thanLm can be changed if necessary so thatEm is reach-

able fromj; finally, because the model is communicating, the action in each statej less than

Km can be changed if necessary so thatEm is reachable fromj. Denote byd′ the new policy

created by changing actions in this way, if necessary, but leaving the actions inEm unchanged.

Thend′ is unichain by construction, and the average cost starting in each statej ∈ S is gm,

which is no greater than the average cost starting inj underd. Thus, for average cost skip-free

communicating models, nothing is lost by restricting attention to unichain policies.

In contrast to recurrent models, communicating models allow there to bei anda with pii(a) =

1 and/orpii−1(a) = 0. For eachr = 0, 1, . . . , M , let Ur be the (possibly empty) set of unichain

policiesd for which prr−1(d(r)) = 0 but pii−1(d(i)) > 0 for i = r + 1, . . . , M (where we take

pii−1(a) ≡ 0 for all a for i = 0). Every unichain policy must be inUr for somer. Partition the

possible actions for each statei ∈ S into Bi = {a ∈ A : pii−1(a) > 0} and its complement

B̄i = {a ∈ A : pii−1(a) = 0}, whereB̄i may be empty butBi is non-empty by the assumptions

of the skip free model in Section 2. Then for a unichain policyd ∈ Ur, we have thatd(i) ∈
Bi, i = r + 1, . . . , M ; that stater is recurrent andd(r) ∈ B̄r by definition; and that statesi < r

are transient.

Thus the minimum average cost over policies inUr is the same as the minimum average

cost for a modified skip-free MDP modelΠr with the same transition probabilities and immedi-

ate costs but with reduced state spaceSr = {r, . . . ,M} and with state-dependent action spaces

Ai = Bi for i = r + 1, . . . , M andAr = B̄r. In this notation, the model of Section 2 corresponds

to Π0 and stater plays the same role as the recurrent distinguished state inΠr that state0 plays

in Π0. If we compare the result of applying the PIA toΠr with the result of applying it toΠ0, we

see that, for the same current value ofx, the algorithm computes the same values ofyi, ti, andai

in statesi = M,M−1, . . . , r+1. However, in stater, the PIA applied toΠr computes quantities

appropriate to the distinguished state, sayar andur, where

ar = argmina∈B̄r
{ (cr(a)− x +

∑M
k=r+1 p̄rk(a)yk)/(1 +

∑M
k=r+1 p̄rk(a)tk) }

ur = (cr(a
r)− x +

∑M
k=r+1 p̄rk(a

r)yk)/(1 +
∑M

k=r+1 p̄rk(a
r)tk)

and computes an updated ‘minimising’ policydr
n+1 with average costgr

n+1,where

dr
n+1(r) = ar; dr

n+1(i) = ai, i = r + 1, . . . ,M, and
gr

n+1 = x + ur.

This motivates the following modified PIA. First, it includes these extra computations for

each stater, so that, in a single iteration, it simultaneously computes the optimal policydr
n+1 and

its average costgr
n+1 for eachSr. Secondly, at the end of then − 1th iteration it setsx = gn =

minr gr
n, and setsdn to be the corresponding policy, where ties are broken by choosing thedr

n with
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the smallest indexr. Say the minimum average cost at this stage is achieved by a policy with

indexr = K Then, by the properties of the PIA applied toΠK , at the end of the next iteration

either (i) gK
n+1 < gK

n = x, in which casegn+1 = minr gr
n+1 < x = gn; or (ii) uK

n+1 = 0 and

gK
n+1 = gK

n = x = minr gr
n+1, sogn+1 = gn anddn+1 = dK

n+1 is an optimal average cost policy

for starting statesi = K, . . . , M . In this case, because the model is communicating, it is possible

(Puterman 1994, p.351) to modify the actions chosen by the policy in the, now transient, states

0, . . . , K − 1 so that the modifieddn+1 satisfies the optimality equations for all states0, . . . , M

and is an average cost optimal policy. We summarise this discussion in the following theorem.

Theorem 9 Consider the PIA modified as above applied to a finite communicating discrete time

average cost skip-free MDP model with state spaceS = {0, 1, 2, . . . , M}. Then:

(i) At each iteration of the PIA eithergn+1 < gn and dn+1 is a strict improvement ondn, or

gn+1 = gn and for someK the policy satisfies the optimality equations for statesK, . . . , M .

(ii) The modified PIA converges after a finite number of iterations.

Finally, note that it is easy to check if a skip-free model is communicating. An assumption

of the (non-degenerate) skip-free model was that each statei < M was reachable fromi + 1. It

follows that a skip-free MDP with state spaceS = {0, 1, . . . , M} is communicating if and only

if M is reachable from0 under at least one stationary deterministic policyd. Let N0 = 0, let N1

be the index of the maximum statej for whichp0j(a) > 0 for somea ∈ A, and form = 1, 2, . . .

let Nm+1 be the index of the maximum statej for which pij(a) > 0 for some0 ≤ i ≤ Nm and

a ∈ A. As the state space is finite, the sequence{Nm} terminates, say with stateN . Since the

model is skip-free,N is the largest state that is reachable by all states below it, and the model is

communicating if and only ifN = M .

3.4 Linear programming formulation

Finite recurrent average cost MDP models can also be solved using a standard linear program-

ming approach (Puterman 1994,§8.8) in which the form of the primal LP given below follows

directly from the standard optimality equations (1).

Standard primal : Maximize g subject to

g + hi −
∑
j∈S

pij(a)hj ≤ ci(a), i ∈ S, a ∈ A

In a similar way, the new skip-free optimality equations (3) give rise to the following refor-

mulated primal LP for recurrent average cost skip-free models, where the form of the constraints
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genuinely differs from those of the standard primal applied to a model withpij(a) = 0 for

j < i− 1.

Skip-free primal : Maximize x subject to

x + pMM−1(a)yM ≤ cM(a) a ∈ A

x + pii−1(a)yi −
M∑

k=i+1

p̄ik(a)yk ≤ ci(a) i = 1, . . . , M − 1, a ∈ A

x−
M∑

k=1

p̄ik(a)yk ≤ c0(a) a ∈ A

Corresponding to the standard primal LP is a standard dual LP, given as follows:

Standard dual: Minimize
∑

i∈S

∑
a∈A ziaci(a) subject to

∑
a∈A

zia −
∑

j

∑
a∈A

zjapji(a) = 0, i ∈ S

∑
i∈S

∑
a∈A

zia = 1

zia ≥ 0, i ∈ S, a ∈ A

Although the dual LP can be derived directly by duality arguments from the primal, it also has

the following intuitive explanation. Interpretzia as the stationary probability of being in statei

and taking actiona under a given policy. Then
∑

a∈A zia represents the stationary probability of

being in statei under the policy and
∑

i∈S

∑
a∈A ziaci(a) represents the corresponding average

cost. The stationary probabilities{ξi} for an irreducible finite Markov chain with transition

probabilities{pij} are the unique positive number that satisfy the full balance equationsξi =∑
j ξjpji and the normalisation equation

∑
i ξi = 1. Thus the standard dual LP for an average

cost MDP can be interpreted as the minimisation of the average cost
∑

i∈S

∑
a∈A ziaci(a) subject

to the constraints that the{zia} correspond to probabilities satisfying the appropriate full balance

and normalisation equations.

As in the standard case, the following skip-free dual LP can be derived from the skip-free

primal LP by direct duality arguments.

Skip-free dual: Minimize
∑

i∈S

∑
a∈A ziaci(a) subject to

∑
a∈A

ziapii−1(a)−
i−1∑
j=0

∑
a∈A

zjap̄ji(a) = 0, i = 1, . . . , M (9)

∑
i∈S

∑
a∈A

zia = 1

zia ≥ 0, i = 0, . . . , M ; a ∈ A
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Even though the constraints (9) do not immediately appear to be in a suitable form, even

allowing for the skip-free nature of the process, this skip-free dual LP is capable of the same

simple intuitive interpretation as the standard dual. To see this, consider a skip-free process with

state spaceS = {0, 1, . . . ,M} and transition probabilities{pij}. Let E be any subset ofS and

setEc = S \ E. In equilibrium the flow betweenE andEc must balance, so any solution{ξi}
to the full balance equations satisfies the equations

∑
j∈E

∑
k∈Ec ξjpjk =

∑
k∈Ec

∑
j∈E ξkpkj.

TakingE = {i, . . . , M} in turn for i = 1, . . . , M , using the skip-free nature of the process and

writing p̄ij for
∑M

s=j pis, these set balance equations reduce to

ξipii−1 =
i−1∑
j=0

ξj p̄ji i = 1, . . . ,M. (10)

Since eachξi can be solved for recursively in terms ofξ0, equations (10), together with the

normalisation equation, uniquely determine the stationary distribution and it is precisely these

modified balance equations that generate the constraints (9). Although outside the focus of our

results, we note that the upper Hessenberg form of the constraint matrix corresponding to (9) may

lead to simplifications in the linear program (Reid 1982).

4 Multidimensional skip-free models

In this section we show how the skip-free MDP model and the PIA introduced in Section 2

can be generalised from the integer lattice to models with a richer, possibly multidimensional,

state space structure, illustrating our approach with examples that arise naturally in the control

of some multi-class queueing systems. Recall from Section 1 that a finite skip-free model has

the following properties: (i) there is a single distinguished state, say0; (ii) for any other statei

there is a unique shortest path fromi to 0; (iii) from each statei 6= 0 the process can only make

transitions to either the adjacent state in the unique path from0 to i, or to some statej for which

i lies in the unique shortest path from0 to j. Thus the state space of a finite skip-free model can

be identified with the graph of a finite tree, rooted at0, with each state corresponding to a unique

node in the tree.

So far we have dealt only with the case where, for eachk, there was exactly one state for

which the shortest path to state0 had lengthk. Thus there was a1–1 mapping of the states to

the integers{0, 1, . . . , M} such that the distinguished state mapped to0 and the state for which

the shortest path had lengthk mapped tok. We now extend consideration to models that satisfy

the same essential features, but where, for eachk, there may be more than one state for which

the shortest path has lengthk. In this case, rather than mapping to the integer lattice, there is a

fixed treeT (in the graph theoretic sense) such that each state corresponds to a unique node of
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the tree, with the distinguished state mapping to the root node. It may help to visualise movement

between states in terms of the corresponding movement between nodes on the tree.

We start by describing two continuous time examples that exemplify the type of model we

have in mind. After going on to develop a more formal treatment of the model and deriving

the corresponding optimality equations, we set out the modified form of the PIA appropriate for

these multi-dimensional tree-form models. We show that the algorithm has the same convergence

properties as the simpler PIA derived earlier, and that the approach can be extended from the

recurrent discrete time average cost model to continuous time models, discounted models and

communicating models in a similar way to the extensions described in Section 3.

4.1 Example: Pre-emptive multi-class queueing system

Consider (He 2000, Yeung & Sengupta 1994) a single server multi-class queueing system with

exponential interarrival and service time distributions. Assume there areK customer classes and

that the system has finite capacityJ , including the job (if any) in service, and that jobs that arrive

when the system is full are lost. Assume the service discipline is pre-emptive, so that a job that

arrives when the system is not full enters service immediately and the job currently in service at

that point return to the head of the buffer. When a job completes service, the server next serves

the job at the head of the buffer. The memoryless property of the exponential distribution implies

that the remaining service time of a job that resumes service has the same distribution as the

original service time, independent of the any service received up to the point of resumption.

The state of the system can be fully described by the multidimensional state vectorκ =

(κ1, . . . , κJ) whereκ1 denotes the class of the job currently in service,κj denotes the class of the

job waiting for service in placej, j = 2, . . . , J , andκj = 0 if there are less thanj jobs in the

queue so thejth place is empty.

A simple service-rate control model might be that that classk jobs arrive singly according to

class dependent arrival rateλk, and complete service at class and action dependent service rate

µk(a). The possible transitions under this model are:

(i) the arrival of a classk job (k = 1, . . . , K) to a partially full system (withκJ = 0); this

corresponds to the transitionκ = (κ1, . . . , κJ) → κ′ = (κ′1, . . . , κ
′
J) whereκ′1 = k and

κ′j = κj−1, j = 2, . . . , J , and occurs at rateλk(κ, a) = λk,

(ii) the completion of the job currently in service; this corresponds to the transitionκ = (κ1, . . . , κJ) →
κ′ = (κ′1, . . . , κ

′
J) whereκ′j = κj+1, j = 1, . . . , J − 1 and κJ = 0, and occurs at rate

µ(κ, a) = µκ1(a).

Figure 1 illustrates the tree corresponding to the state space for a system withK = 2 job

classes and with capacityJ = 3. From the figure, we see that at any given node a service

completion moves the state to the adjacent ‘lower’ node and an arrival moves the state to one of
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the two adjacent ‘higher’ nodes, depending on the class of the arriving job.

(0,0,0)

(1,0,0) (2,0,0)

(1,1,0) (2,1,0) (1,2,0) (2,2,0)

(1,1,1) (2,1,1) (1,2,1) (2,2,1) (1,1,2) (2,1,2) (1,2,2) (2,2,2)

Figure 1: The tree corresponding to the state space for a pre-emptive multi-class queueing system
with K = 2 job classes and capacityJ = 3. The head of the queue (the job in service) is on the
left.

The model can be easily extended to allow for more general forms of class, state and action

dependent arrival and service rates. It can also be generalised to allow for batch arrivals with

given (state and action dependent) batch size, type and order distributions. For example, one

model might be that, if a batch of sizer with job typesω1, . . . , ωr in that order arrived at a system

with s ≤ r free places, then the lastr − s jobs in the batch would be lost and the remaining

jobs would pre-emptively join the system, so the arrival would correspond to the transitionκ =

(κ1, . . . , κJ) → κ′ = (κ′1, . . . , κ
′
J) whereκ′1 = ω1, . . . , κ

′
s = ωs, andκ′j = κj−s, j = s +

1, . . . , J .

In terms of the tree representation, such batch arrivals move the system from a given node to

one of the ‘higher’ nodes in the sub-tree rooted at that given node. For example, the arrival of a

batch of size2 with classes(2, 1) in that order to a system with a single job of class1 in figure 1

would move the state from node(1, 0, 0) to the node(2, 1, 1) in the sub-tree rooted at(1, 0, 0).

4.2 Example: Pre-emptive multi-class priority queueing system

As a second example, consider again a single server multi-class queueing system with exponential

interarrival and service time distributions, withK customer classes and with finite capacity (total

buffer size)J , where jobs that arrive when the system is full are lost.

Now, however, assume that classes served pre-emptively in order of priority, with higher

numbered classes having higher priority; that within each class jobs are served in order of arrival;

and that an arriving job of classk is lost if the job already in service has classr > k. More

precisely, if a classk job arrives and the job in service also has classk, then the arriving job
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joins the buffer at the tail of the classk jobs but ahead of any jobs of lower class, whereas if the

job in service has classr < k, the arriving job pre-empts the job in service and enters service

immediately while the pre-empted job returns to the head of the buffer. When a job completes

service, the server next serves the job at the head of the buffer. The priority discipline described

above implies that the jobs in the buffer are ordered in non-increasing order of class, and that the

job at the head of the buffer has class no higher than the job currently in service.

(0,0,0)

(2,0,0) (1,0,0)

(2,2,0) (2,1,0) (1,1,0)

(2,2,2) (2,2,1) (2,1,1) (1,1,1)

Figure 2: The tree corresponding to the state space for a pre-emptive multi-class priority queueing
system withK = 2 job classes and capacityJ = 3. The head of the queue (the job in service) is
on the left.

Again, the state of the system can be fully described by a multidimensional state vectorκ =

(κ1, . . . , κJ) whereκ1 denotes the class of job currently in service andκj denotes the class of

the job waiting for service in placej, j = 2, . . . , J , and the model can allow for possibly

general forms of class, state and action dependent arrival and service ratesλk(κ, a) andµ(κ, a).

Extensions are possible which allow batch arrivals with given batch size and type distribution.

Figure 2 illustrates the tree corresponding to the state space for such a system, again with

K = 2 job classes and with capacityJ = 3. Jobs of class1 can only enter the system if there

are no class2 jobs already present. From the figure, we see that at any given node a service

completion again moves the state to the adjacent ‘lower’ node and an arrival again moves the

state to one of the two adjacent ‘higher’ nodes, depending on the class of the arriving job. For

example, if a class1 job arrives to a system with a single class1 job present, it joins the buffer

and the state moves from from node(1, 0, 0) to node(1, 1, 0); if a class2 job arrives in the same

situation, it enters service and the pre-empted class1 job goes to the head of the buffer, so the

state moves from from node(1, 0, 0) to node(2, 1, 0);
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4.3 Skip-free MDP models on trees

To formalise the examples above, we start by considering a finite rooted treeT with N +1 nodes

labelled0, 1, 2, . . . , N , with root node0, and with a given edge set. The tree structure implies that

for each pair of nodesi andj there is a unique minimal path (set of edges) in the tree that connects

i andj. Thus the nodes in the tree can be partitioned into level setsL0 = {0}, L1, . . . , LM such

that, form = 0, . . . , M − 1, i ∈ Lm+1 if and only if the minimal path from0 to i passes through

exactlym intermediate nodes. For adjacent nodesi ∈ Lm andj ∈ Lm+1, we sayi is the parent

of j andj is a child ofi if the minimal path from0 to j passes throughi. More generally, for

i ∈ Lm andj ∈ Lr, r > m, we sayj is a descendant ofi if the minimal path from0 to j passes

throughi. Each nodej 6= 0 has a unique parent. We writeρ(j) for the parent ofj, we writeD(j)

for the set of descendants ofj, and we writeT (j) ⊂ T for (the nodes of the) sub-tree rooted at

j, soT (j) = {j} ∪ D(j). A state with no descendants is said to be a terminal state, so all states

in the highest levelLM are terminal states. For simplicity of presentation we will assume that

these are the only terminal states; the analysis easily extends to cases where intermediate levels

Lm can also contain some terminal states.

Now consider a finite MDP with state spaceS and action spaceA. Assume we can construct

a rooted treeT such that (i) the states inS correspond to the nodes ofT , and (ii) for every state

i ∈ S and actiona ∈ A, the only possible transitions from statei under actiona are either to its

parent stateρ(i) or to a state in the subtreeT (i) rooted ati, with appropriate modifications for

state0 which has no parent and for terminal nodes which have only a parent and no descendants.

We will say that such an MDP isskip-free (in the negative direction) on the treeT .

Generalising the idea of a simple random walk (or simple birth and death process), Keilson

(1979, p.28) defined atree processto be a Markov process for which the states inS correspond

to the nodes of a treeT in which statesi andj were adjacent nodes if and only ifpij > 0. These

models have many applications; in particular, any reversible process for which there is a unique

path between any two states is a tree process. We focus on models where the same tree structure is

assumed to hold under all stationary deterministic policies; the skip-free formulation then extends

the range of application by relaxing the restriction that ‘upward’ transitions to descendants are

always to adjacent nodes.

As with the simpler models in Section 2, it is convenient define the upper tail probabilities

p̄ij(a) = P (Xt+1 ∈ T (j)|Xt = i, At = a),

corresponding to the probability that the next transition from statei under actiona is to a state in

the subtree rooted atj, and to assume that the model is specified in terms of the parameters

piρ(i)(a), i ∈ S, a ∈ A; p̄ij(a), i ∈ S, j ∈ D(i), a ∈ A
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rather than the standard (and equivalent) representation in terms of the transition probabilities

pij(a), i, j ∈ S, a ∈ A.

4.4 Optimality equations

As in Section 2.1, the optimal average costg∗ for finite recurrent models, and the corresponding

normalised relative costsh∗i , i ∈ S, are the unique solutions to the optimality equations (1) which

in this setting become

hi = min
a∈A

{ ci(a)− g +
∑

j∈D(i)

pij(a)hj + pii(a)hi + piρ(i)(a)hρ(i) } i ∈ S (11)

and an optimal stationary deterministic policy is given byd∗, whered∗(i) is any action minimising

the rhs of the equation corresponding to statei.

As in the integer lattice case, with appropriate modifications for the root node0 and for

terminal nodes, simple rearrangement shows thatci(a) − g +
∑

j∈D(i) pij(a)hj + pii(a)hi +

piρ(i)(a)hρ(i) ≥ hi if and only if ci(a) − g +
∑

j∈D(i) pij(a)(hj − hi) ≥ piρ(i)(a)(hi − hρ(i)),

and that equality in one expression implies equality in the other.

Now for eachi 6= 0 ∈ S let yi = hi−hρ(i). Then for eachj ∈ D(i), there is a unique minimal

path in the tree connectingi andj. Say the path passes throughs−1 intermediate states and takes

the formi = r0 → r1 → · · · → rs = j. Let ∆(i, j) denote the states followingi in the path toj,

so∆(i, j) = {r1, . . . , rs}. For eachk = 1, . . . , s, rk−1 is the parent ofrk so thatrk−1 = ρ(rk), and

hencehj−hi = hrs −hr0 =
∑s

k=1 hrk
−hrk−1

=
∑s

k=1 hrk
−hρ(rk) =

∑s
k=1 yrk

=
∑

r∈∆(i,j) yr.

However, if j is a descendant ofi and r 6= j is in the path connectingi and j, then r is a

descendant ofi andj is in the subtree rooted atr, and vice versa. Thus for fixedi anda we

have that
∑

j∈D(i) pij(a)(hj − hi) =
∑

j∈D(i)

∑
r∈∆(i,j) pij(a)yr =

∑
r∈D(i)

∑
j∈T (r) pij(a)yr =∑

r∈D(i) p̄ir(a)yr.

Taking account of the modifications for the root statei = 0 and the terminal statesi ∈ LM ,

and the fact thati ∈ Lm =⇒ D(i) ⊂ Lm+1 ∪ · · · ∪ LM , it follows that the optimality equations

are equivalent to the equations

yi = min
a
{ (ci(a)− x)/piρ(i)(a) } i ∈ LM (12a)

yi = min
a
{ (ci(a)− x +

∑

k∈D(i)

p̄ik(a)yk)/piρ(i)(a) } i ∈ LM−1, . . . , L1 (12b)

0 = min
a
{ c0(a)− x +

∑

k∈S0

p̄0k(a)yk } (12c)

in that these equations also have unique solutionsx and yi, i ∈ S, with x = g∗ and yi =

h∗i − h∗ρ(i), i ∈ S, and an optimal stationary deterministic policy is given byd∗, whered∗(i) is

any action minimising the rhs of the corresponding equation foryi.
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4.5 General algorithm

The results in Section2.2 translate directly into this multidimensional setting, giving the following

generalised form of the PIA and a corresponding characterisation of its convergence properties.

The proof of Theorem 10 below then exactly mirrors that of Theorem 8.

Policy Iteration Algorithm

1. Initialisation:

Choose an arbitrary initial policyd0. Perform a single iteration of step 2 below, withx = 0 and

with ai restricted to the single valued0(i), i ∈ S. Compute the average costg0 under this policy

by settingg0 = u0.

2. Iteration:

Setx = gn.

• For i ∈ LM compute:
ai = argmina{ (ci(a)− x)/piρ(i)(a) }
yi = (ci(ai)− x)/piρ(i)(ai)
ti = 1/piρ(i)(ai)

• For i ∈ Lr, r = M − 1, . . . , 1 compute:
ai = argmina{ (ci(a)− x +

∑
k∈D(i) p̄ik(a)yk)/piρ(i)(a) }

yi = (ci(ai)− x +
∑

k∈D(i) p̄ik(ai)yk)/piρ(i)(ai)

ti = (1 +
∑

k∈D(i) p̄ik(ai))/piρ(i)(ai)

• For j = 0 compute:
a0 = argmina mina{ (c0(a)− x +

∑
k∈D(0) p̄0k(a)yk)/(1 +

∑
k∈D(0) p̄0k(a0)tk) }

u0 = (c0(a0)− x +
∑

k∈D(0) p̄0k(a0)yk)/(1− p00(a0))

t0 = (1 +
∑

k∈D(0) p̄0k(a0)tk)/(1− p00(a0))

Setdn+1(i) = ai for i = 0, . . . ,M and setgn+1 = gn + u0.

3. Termination:

If u0 < 0 then return to step 2.

If u0 = 0 then stop and returndn+1 as an optimal policy,gn+1 as the optimal average cost, and

hi = y1 + · · ·+ yi, i = 1, . . . M as the corresponding normalised relative costs. ¤

Theorem 10 Consider the PIA above applied to a finite recurrent skip-free average cost MDP

model on a tree. Then:

(i) At each iteration of the PIA eithergn+1 < gn and dn+1 is a strict improvement ondn, or

gn+1 = gn anddn+1 is an optimal average cost policy.

(ii) The PIA converges after a finite number of iterations.
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Remarks

The PIA and the convergence results can be extended in the obvious way to models where inter-

mediate levelsLm can also contain some terminal statei; in step 2 the PIA computesai using an

equation of the form corresponding to a state inLM (derived from (12a) rather than (12b). They

also extend to continuous time, discounted cost and communicating average cost skip-free MDP

models on trees, in a similar way to the extensions for the standard model in Section 3.

The extension to continuous time models is straightforward. For discounted cost models, the

changes in Section 3.2 required the addition of a single extra state and appropriate changes to

the transition probabilities. Since the state space there corresponded to a single linear branch,

the extra state could be added to the previous terminal node without violating the requirements

of the skip-free model. Skip-free MDP models on trees require the addition of an extra state for

each terminal state (node) to preserve the skip-free property. This extra state now becomes the

terminal node in that branch. Transitions from this extra state are to the corresponding previous

terminal node, with probabilityβ, or back to itself, with probability1−β. Transition probabilities

from non-terminal states are modified as in Section 3.2, by settingp′ij(a) = βpij(a) if j is a non-

terminal node of the modified tree and by assigning the remaining transition probability1− β to

the newly added terminal nodes of the modified sub-treeT (i) rooted ati. The precise assignment

may be chosen arbitrarily – for example, each new terminal node in the modified sub-tree may

be chosen with equal probability – as long as the total probability sums to1− β.

For communicating models, the idea again is that for each statei the PIA is modified so

that in passing it solves the corresponding sub-problemΠi with state spaceT (i) and with state

i as the distinguished state, and then computes the optimal updated average cost and policy by

minimising over the costs and policies for each of the sub-problems.

The algorithm also leads to a similar alternative formulation for the constraints in the LP

method of solution. The constraints for the primal LP follows directly from the optimality equa-

tions (12). For the dual LP, for eachi let Γ(i) denote the set of statesj 6= i in the unique minimal

path in the tree connecting0 andi, so if the path takes the form0 = r0 → r1 → · · · → rs−2 →
rs−1 = ρ(i) → rs = i, thenΓ(i) = {0, r1, r2, . . . , rs−2, ρ(i)}. Then the constraints for the

dual LP follow from a similar intuitive argument to that in Section 3.4 but with the set balance

equations (10) now taking the form

ξipiρ(i) =
∑

j∈Γ(i)

∑

k∈T (i)

ξj p̄jk i 6= 0, i ∈ S.
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