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Abstract

We describe and analyse a new simplified policy iteration type algorithm for finite average
cost Markov decision processes that are skip-free in the negative direction. We show that the
algorithm is guaranteed to converge after a finite number of iterations, but the computational
effort required for each iteration step is comparable with that for value iteration. We show
that the analysis can be easily extended to solve continuous time models, discounted cost
models and communicating models, and provides new insights into the formulation of the
constraints in the linear programming approach to skip-free models. We also introduce and
motivate a new class of models for multidimensional control problems which weldgH
free Markov decision processes on tragsl show that the algorithm naturally extends to this
wider class of models.
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1 Introduction

Markov decision processes (MDPs) provide a class of stochastic optimisation models that have
found wide applicability to problems in Operation Research. The standard methods for comput-
ing optimal policy are based on value iteration, policy iteration and linear programming algo-
rithms. Each approach has its advantages and disadvantages. In particular, each step in value
iteration is relatively computationally inexpensive but the value function may take some time
to converge and the algorithm provides no direct check that it has computed the optimal value
function and an optimal policy. Conversely, each step in policy iteration may be computationally
expensive but the algorithm can be proved to converge in a finite number of steps, confirms when
it has converged and automatically identifies the optimal value function and an optimal policy on
exit.

Here we focus on models with special structure, in that theyskig-free in the negative
direction (Keilson 1965, p.10) oskip-free to the lef(Stidham & Weber 1989); i.e. whatever the
action taken, the process cannot pass from one state to a ‘lower’ state without passing through
all the intervening states. Such skip-free models arise naturally in many areas of OR. The most
obvious examples are the control of discrete time random walks and continuous time birth and
death processes (Serfozo 1981) such as queueing control problems with single unit arrivals and
departures (see, for example, Stidham & Weber (1989) and references therein). In these basic
one-dimensional models, the state spdds (a subset of) the integer lattice and transitions are
only possible to the next higher or lower integer state. However there are several other standard
OR models that fall within the wider one-dimensional skip-free framework including examples
from the areas of inventory control (Miller 1981) and reliability and maintenance (Derman 1970,
Thomas 1982).

Previous treatments of controlled skip-free processes have considered only the one-dimentional
formulation. For processes with the ‘skip-free to the left’ property, work has focussed on quali-
tative properties, in particular the existence of monotone optimal policies for models with appro-
priately structured cost functions (Stidham & Weber 1989, Stidham & Weber 1999). Conversely,
work on processes with the corresponding ‘skip-free to the right’ property has concentrated on
analysis of an approximating bisection method for countable state space models (Wijngaard &
Stidham 1986, Wijngaard & Stidham 2000).

One way of characterising the essential features of a finite skip-free model is in terms of the
following properties: (i) there is a single distinguished state, (5ayii) for any other state
there is a unique shortest path frero 0; (iii) from each state # 0 the process can only make
transitions to either the adjacent state in the unique path frtom, or to some statg for which
i lies in the unique shortest path fraito j. Thus the model is skip-free if and only if the state



space can be identified with the graph of a finite tree, rooté\aith each state corresponding
to a unique node in the tree.

In this setting, the one-dimensional skip-free model above, with state §pac@, 1, ..., M},
corresponds to the simplest case where each interior node is connected to just two adjacent nodes
and the tree reduces to a single linearly ordered branch connecting the roal tmdee ter-
minal (or leaf) nodelM. However, the analysis extends easily to cases where the state space
has a richer, possibly multidimensional, structure. Here, the analogue of the simple birth and
death process is ee procesgKeilson 1979), in which transitions are only possible to states
corresponding to adjacent nodes in the tree. Examples of genuinely skip-free models with multi-
dimensional state spaces arise in simple multi-class queueing systems with batch arrivals (Yeung
& Sengupta 1994, He 2000, and references therein), but such treatments have focussed mainly
on describing the behaviour of the process for fixed parameter settings.

In this paper we consider finite state MDPs that are skip-free in the negative direction. For the
standard recurrent average cost skip-free model, our main contribution is a new simplified policy
iteration algorithm in which the computational effort required for each iteration step is compa-
rable with that for value iteration, but which is guaranteed to converge after a finite number of
iterations and which automatically identifies the optimal value function and an optimal policy on
exit. In the more general setting, our contribution is what appears to be the first development and
analysis of multidimensional MDP models on trees, the extension of the simplified policy itera-
tion algorithm to skip-free MDP models on trees, and a corresponding proof of the convergence
properties of the extended algorithm. In both cases, the analysis can be extended to continuous
time models, discounted cost models and communicating models, and provides new insights into
the formulation of the constraints in the linear programming approach to skip-free models.

The remaining sections are organized as follows. In Section 2, we describe the standard dis-
crete time skip-free model with finite state spate- {0, 1, ..., M }. We identify the appropriate
average cost optimality equations for recurrent models, develop an interpretation in terms of a
correspondingz-revised’ problem, and present and prove convergence for the new policy itera-
tion algorithm. In Section 3, we show that, with simple modifications, results for the new policy
iteration algorithm can be extended to continuous time average cost models, discounted cost
models and communicating models 8nand that they lead to an alternative set of constraints in
LP formulations of the average cost problem. Finally, in Section 4, we introduce and illustrate
a new class of multidimensional MDP models, and show how the optimality equations, the new
policy iteration algorithm and the convergence results can all be extended to the skip-free average
cost multidimensional setting, together with its continuous-time, discounted, communicating and
LP variations.



2 The skip-free MDP model

Consider a discrete time Markov decision process (MDP) with finite state spacf), 1,2, ..., M}
over an infinite time horizon € {0, 1,2,...}. Associated with each statec S is a non-empty
finite set of possible actions; sinéas finite, we assume without loss of generality that the set of
actionsA is the same for each If actiona € A is chosen when the process is in state= i

at timet, then the process incurs an immediate eggt) and the next state iX;,; = j with
probabilityp;; (a).

When S is a subset of the integer lattice, we say the MDP modskig-free in the negative
direction (Keilson 1965, Stidham & Weber 1989);if;(a) = 0 forall j < i — 1 anda € A, i.e.
the process cannot move from each sidtea state with inde)¥ < ¢ without passing through all
the intermediate states. To avoid degeneracy, we assumgy¢h@t < 1 for a € A and that for
eachi € {1,..., M}, p;_1(a) > 0 for at least onex € A. A similar definition applies to MDP
models that arekip-free in the positive directioor skip-free to the righfWijngaard & Stidham
1986, Wijngaard & Stidham 2000); on the finite integer lattice the models are interchangeable, in
that each can be converted to the other by an appropriate relabelling of the states.

Obvious examples include the many applications where the process can be modelled as a
controlled random walk or (in continuous time) a controlled birth and death process (Serfozo
1981), such as arrival and service rate control ¥6f)/ /1 queues with finite buffers. Simple
discrete time examples with non-degenerate skip-free transitions include (i) inventory control
with single-item demands, where the staigthe stock level, the actianis the amount ordered,
and transitions are only possible to stajes= i — 1 (demand and no re-order), = i + a
(demand plus re-order), gr= i + a; (ii) maintenance/replacement problems where the state
is the performance level of a machireX broken and must be replaced, = newly replaced),
where the state deteriorates by at most one level each time period, and where the maintenance
actiona determines the probability the state will improve to, say: ¢ + k, and may include
deterministic transitions to stalé under a replacement action. Simple continuous time examples
with non-degenerate skip-free transitions include control of fifite)/ /1 queues with batch
arrivals (Stidham & Weber 1989), and perhaps less obvious examples such as cantf@l of 1
gueues (Stidham & Weber 1989). In the latter case, each service is compdseskpbnential
stages, and a staie= rK + s denotes a situation where there arpbs currently waiting in
the buffer and the job currently in service hastages left to complete. Thus transitions are
only possible to states = i — 1 (the next service stage is completed)jor (r + 1)K + s (a
new job arrives to the buffer). More generally, the model applies to control of tho<SeH /1
gueues, for which the phase-type (PH) service distribution is itself skip-free, in that transitions
from stage/phaseare only possible to stages/phdsek — 1,...,s,s — 1.



For finite skip-free MDP models on the integer lattice, it is often more convenient to define
the upper tail probabilities

M
pij(a) = P(Xyy1 > j| Xy =i, Ay =a) = Zpis<a)
s=j

and to assume that the model is specified in terms of the parameters
pii,l(a),lgiSM,aeA ﬁij(a),0§i<j§M,a€A.

We will see that it is easier to represent quantities and perform calculations in termggf the
rather than use the standard (and equivalent) representation in terms of the transition probabilities
pij(a), i,j €S, a € A.

A policy 7 is a sequence of (possibly history dependent and randomised) rules for choosing
the action at each given time point A deterministicdecision rule corresponds to a function
d: S — A and specifies taking actiom = d(i) when the process is in state A stationary
deterministicpolicy is one which always uses same the deterministic decision rule at each time
pointt. Where the meaning is clear from the context, we use the same nofdfiiorboth the
decision rule and the corresponding stationary deterministic policy.

We say an MDP model iecurrentif the transition matrix corresponding to every stationary
deterministic policy consists of a single recurrent class. In particular, this implies that, for all
a € A, pi_1(a) >0fori =1,...,M andp;(a) < 1 foralli € S. We say an MDP model
is communicatingf, for every pair of stateg andj in S, j is reachable fromi under some (sta-
tionary deterministic) policyl; i.e. there exists a policy, with corresponding transition matrix
P,, and an integen > 0, such thatP,(X, = j|X, = ¢) > 0. In contrast to recurrent models,
communicating models allow there to banda with p;;_1(a) = 0 and /orp;(a) = 1.

The expected average cost incurred by a poficwith initial statei is given by g, (i) =
limsup,,_. + B (317 Cx,(a;)|Xo =) , where X, is the state at time¢ and, is the ac-
tion chosen at time underx. Similarly, for a given discount factod < (5 < 1, the to-
tal expected discounted cost incurred by a policyvith initial statei is given by V(i) =
Er (5720 8" Cox,(a)| Xo = i)

For simplicity of presentation, we restrict attention in the remainder of this section to deter-
mining a policy which, for each initial state, minimises the expected average cost in a given finite
recurrent discrete time average cost skip-free MDP model. We defer to Section 3 the extension
of these results to continuous time, discounted cost and communicating models.

2.1 Skip-free average cost optimality equations

For finite recurrent models, the solution to the expected average cost problem can be characterised
by the correspondingverage cost optimality equatio@Buterman 1994;8.4)
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h; = mln{ ci(a) — g+ Zpu iesS (2)

in that: (i) there exist real numbegs andh},: € S satisfying the optimality equations; (ii)
the optimal average cost is the same for each initial state and is givef fiy) the optimality
equations uniquely determing and determine thé! up to an arbitrary additive constant; (iv)
the stationary deterministic poliay is an average cost optimal policy, where, for each S,
d*(i) is an action achievingin,{ ¢;(a) + Zjﬂio pij(a)h; }.

For simplicity of presentation, we now assume throughout that the actions have been labelled
in some strictly ordered fashion and that, when a minimum over actions is required, the corre-
sponding action is uniquely defined by taking the minimising action to be the one with the lowest
valued label in the case of ties.

It follows from (iv) above that there is an optimal policy in the class of stationary deterministic
policies. We therefore restrict attention from now on to stationary deterministic policies, writing
‘policy’ as a shorthand for ‘stationary deterministic policy’.

For eachi,j € S, we can interpret,; — h; as the asymptotic relative difference in the
total cost that results from starting the process in stather than statg, under the stationary
deterministic policyd*. Thus the quantities; — A} are uniquely defined, but the quantities
hf,i € S are defined only up to an arbitrary additive constant. We focus on the particular solution
normalised by setting; = 0 and refer to the correspondirtg as the normalised relative costs
under an optimal policy.

In general, the optimality equations (1) cannot be solved directly. Instead an optimal policy in
the class of stationary deterministic policies is usually found by methods based on value iteration,
policy iteration or linear programming, or combinations of these approaches (Puterman 1994).
For skip-free models, howevaer,;(a) = 0 for j < i — 1 and equations (1) take the simpler form

h—mln{cz —g—l—Zp” i=M,...,0. (2)
j=i—1
Now ¢;(a )—g+2§wi L Dij(a)h; > h;ifand only if¢;(a )—g+2§”i+1pij( J(hj—h;) > (hi—
hi—1)pii—1(a), with appropriate modifications far= 0 and M, and equallty in one expression
|mpI|es equality in the other. AIS 2, | pij(a)(hy—hi) = 3001 pij(a) Ya_s oy (he—hi—1) =
a1 (= hy—1) 200 pig(a) = S2pl sy (hi—hu—1)Pa(a). Thus, writingy; for hf —h}_,, i =
1,..., M, and using the normalisatidi}, = 0, we see that for skip-free models the optimality



eguations are equivalent to the set of equations

Ym = maln{ (ear(a) — @) /panr—a(a) } (3a)
M
yi = min{ (ci(a) =z + Y Pula)yn)/pi-1(a) } i=M-1,...,1 (3b)
k=i+1
M
0= maln{ co(a) —x + Zﬁik(a)yk } (3¢)
k=1
in that (i) these equations also have unique solutioasidy;, .. ., ya; (ii) the optimal average

costisg® = x and the normalised relative costs under an optimal policyare y, +- - - +y;, i =
1,..., M; (iii) an optimal policy is given byi*, whered*(i) is any action minimising the rhs of
theith equation.

In the optimality equations (3), the value ©f; depends only on, and in each subsequent
equation the value of; depends only on the values ¢f for £ > i. Thus, if the value of
x was known, it would be easy to compute thien turn for y,,,...,y; and to determine the
corresponding policy, defined below, which takes the optimal action in each state. . . , M.

Definition 1 For fixedz, let ag, aq,...,ay; be the actions minimising the rhs in equations (3)
and letyy, ..., y) be the corresponding values. Define the ‘optimality equation’ polidy, to

be the policy for whichl,(:) = a;, i = 0,1,..., M. For ease of reference writ&,, for d,.(0),

SO

M
e = argmin,{ co(a) — = + Zﬁz‘k(a)yk }
k=1

This observation motivates an iterative approach to finding an average cost optimal policy —
choose an initial value for the average costompute the updated ‘optimality equation’ policy
d.. for thatz and compute its average cost, setqual to this new value and iterate until con-
vergence. The principle underlying this iterative approach idea is not new. Low (1974) used a
similar solution method but his results were restricted to a specific birth and death model. Other
treatments of skip-free models (Wijngaard & Stidham 1986, Stidham & Weber 1989, Stidham
& Weber 1999, Wijngaard & Stidham 2000) have used iterative methods to search for a good
approximation for the average castbased on the value of current and previous approximations,
or used the form of the optimality equations to derive qualitative properties of the solution, in
particular monotonicity of optimal policies, but neither approach explicitly identified the simple
policy improvement algorithm described here.

In contrast, we prove directly that that the policy computed at each stage, using iterations
based oni,., either provides a strict improvement in the average cost or has converged to an
optimal policy. Moreover, we develop in the next section an alternative viewpoint that offers
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more insight into the problem and that helps identify other, possibly better, ways of performing
the policy updating process.

2.2 Policy improvement

In this section we will identify and compare three slightly different ways of improving a current
policy, and use insights from the correspondingevised problem and renewal-reward theory to
show that, in each case, the updated policy either provides a strict improvement in the average
cost or the process has converged to an optimal policy.

We start our analysis of the average cost model by defining a related problem that we will call
the z-revised first return problemThe model for this problem has the same state spadhe
same action spacé and the same transition probabilitigs;; (a) } as the average cost model, but
the immediate costs are revised downward by the fixed amgustic;(a) is revised ta;(a) — x.

The objective for this new problem is to find a policy that minimises the expeactesiised cost
until first return to staté®, where, for a process starting wifty, = 0, we define the first return
epoch to stat® to be the smallest value > 0 such thatX,. ; # 0 and X, = 0. The MDP
is assumed recurrent under any stationary deterministic policy,isavell defined and almost
surely finite.

Since the process is Markov and skip-free in the negative direction, it follows that a policy
minimises the expectedrevised cost until first return to staiéf and only if it also minimises the
expectedc-revised total cost until first passage to stafer each starting state# 0 and hence,
for each staté = 1,..., M, minimises the expected cost until first passage fiamtoi — 1.

This latter problem has been called theevised first passage problem (Stidham & Weber 1989).
For each fixedr, letay, ..., ay be actions minimising the rhs in equations (3a) and (3b) above
andyy, ..., yy be the corresponding values. Then the policy that takes actiod(i) = a; in
statei is optimal for thex-revised first passage problem and the minimal expected cost until first
passage fromi to : — 1 is given byy; (Stidham & Weber 1989). It follows that the policy that
uses actiong; in statei = 1,..., M has the property that for each state- 1,..., M it also
minimises the expected totatrevised cost until first passage to statand that the minimum
expectedz-revised total cost until first passage to statestarting in stateé > 0, is given by

Yi +Yi1 + o+ Y1

Now consider a process that starts in staté&Jnder a policy that specifies actianin state
0, the expected time until the process first leaves stasel /(1 — poo(a)) and during that time
it incurs z-revised costs at ratg(a) — = per unit time. Conditional on leaving statethe first
transition is to statg with probabilitypy;(a)/(1 — poo(a)). From above, the minimum additional
expected total cost until the process next re-enters&tatg +y,_; +- - - +y1, and this minimum
expected cost is achieved by the policy that takes actipimsstates = 1,..., M. Thus, if a pol-
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icy takes action in state0, the minimum expectegd-revised cost from leaving stafeuntil first

return to stat@® is 27 poj(a) (y; + -1+ +31) /(1 —poo(a)) =>_ 11, po(a) (9, we) /(1 —

poo(@)) =25l (30555 pos (@) /(1 = poo(a) =324L, yibow (@) /(1 = poo(a)). It follows that the
optimal action in staté is one that minimises the quantity,(a) — = + S"0", For(a)yi)/(1 —

poo(a)). We summarise this analysis in the following definition and lemma.

Definition 2 For fixedz, letay, ..., ay be actions minimising the rhs in equations (3a) and (3b)
and lety, ..., yy be the corresponding values. We define the ‘first return’ polidy, to be the
policy for whichdg, (i) = a;, i = 1,..., M, andd(0) = ag, where

M

ag = argmin,{ (co(a) — = + ZﬁOk(a)yk)/(l — poo(a)) }.
k=1
Lemma 3 For givenz, dg is an optimal policy for ther-revised first return problem and the
expected:-revised first return cost undet;, is

M

(colag) — =+ Y Por(aw)yw)/(1 — poo(as)).
k=1

We now show that, if: corresponds to the average cost under some paittyen the average
cost undewly, is no greater tham = g(d). For each fixed policy on S = {0,1,..., M}, write
7(d) for the expected first return epoch for a process that stafisdid) for the expected first
return cost unded, H(d) for the expected:-revised first return cost undér andg(d) for the
expected average cost underTo relate these quantities, we view the average cost problem from
a renewal-reward perspective. Since stairecurrent under any stationary deterministic policy
d, it follows (Ross 1970, p.160) that

g(d) = C(d)/7(d). (4)

In terms ofr(d) andC'(d), the expected-revised cost undet until first return to staté® is
given by
H(d) = C(d) — x7(d) ()

since costs are adjusted downwards by an ametiot a time period with expected lengtiid).
Moreover, from this and (4), we have

g(d) =z + H(d)/7(d). (6)

This enables us to compadg to a current policyl through the following lemma.



Lemma 4 Let = correspond to the average cost under some given paliend letd; be an
optimal policy for ther-revised first return problem. Then:

(i) the average cost undek;, is no greater than the average cost under

(i) if the average cost undef;. is the same as the average cost unde¢hend;, is an optimal
policy for the average cost problem.

Proof (i) For the fixedz, dg is by definition an optimal policy for the-revised first return
problem. ThusH (di) < H(d), and from (5) this implie€(d,) — 27(ds) < C(d) — z7(d).
Becauser corresponds to the average cost undethen, from (4),z = g(d) = C(d)/7(d) so
C(d)—z7(d) = 0. Thus,H (d,) = C(dg) —x7(dgy) < 0andg(dg) = C(dg)/7(de) < & = g(d).
(i) If g(de:) = g(d), then from aboveH (dy,) = H(d) = 0. But, from Lemma 3,H (d;,) =
(colag) — x + S0t Por(ae)yr) /(1 — poo(ag)), wherepgo(ag) < 1. It follows that H (dy,) =

0 = (colan) — x4+ 00, Por(ag)yr) = 0. Thus, wheny(dg) = g(d), the values: = g(dx)
andyq, ..., y) satisfy the optimality equations (3a-3c) atgis a decision rule corresponding
to the actions minmising the rhs of each equation. It follows thaits an optimal average cost
policy, the optimal average costgs = g(d) = g(d) and the normalised relative costs under the
optimal policy areh; = y; + -+ +y;, j=1,..., M. O

For any fixed policyl, a similar argument to that preceding Definition 2 can be used to derive
the expected-revised first return cost (d), the expected first return coS{d) and the expected
first return epoch-(d). Sayd specifies action; in statesj = 0,..., M. For these fixed;, let
war = (ear(bar) = @) /parnr—1 (bar) and letw; = (c;(b;) — = + 341,y Piw(by)w) /pji-1(by) for
j =M —1,...,1. Then, by considering the possible actions in sjate be restricted to just
b;, it follows thatw; + w;_y + --- + w; can be interpreted as the expecterkvised total cost
underd until first passage back to staidollowing the transition to stat¢. Hence the expected
x-revised first return cost is

M

H(d) = (co(bo) — x4+ > Po(bo)wi) /(1 = poo(bo))- (7)
k=1
Moreover, from (5),C'(d) corresponds to the expecteetrevised first return cost for the special
caser = 0, soC(d) can be computed in exactly the same way, but taking 0 and making
appropriate adjustments in the equationsuey. . . , w,.

For the expected first return epoch undemrite ¢, = 7(d) > 0 and writet; > 0 for the
expected first passage timefrom i to : — 1. Interprett, as the expectet-revised first return
cost underd for a model with immediate costs(a) = 1 for all states and actions (and with
x = 0), with a similar interpretation for thg. Then, as with thev;, thet; can be computed as
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recursively using the following equations:

tv = 1/prvn—1(bar)

ti=(1+ Z Dir (b)) /pii—1(b;) i=M-1,...,1
to = (1+ Zﬁ%(bo)tk)/(l — poo(bo)) (8)

If the policy d specifies action$; and has expected-revised first passage costs and
timest;, then, from (7) and (8)H (d) = (co(bo) — = + S pe, Bor (bo)wr)/ (1 — poo(bo)) and and
7(d) = (14+ 342, Por(bo)te) /(1= poo(bo)), SOH (d) /7(d) = (co(bo) =+ 34, Por(bo)wi) /(1 +
Zﬁilp%(bo)tk). However,g(d) = « + H(d)/7(d) from (6). Sincex is fixed, this motivates
updating a current policy with the poliay,; defined below and characterised in the following
lemma.

Definition 5 For fixedz, letay, . .., ays be actions minimising the rhs in equations (3a) and (3b)
and lety,, . . ., yas be the corresponding values. We define the ‘minimising’ polidy; to be the
policy for whichd,;(i) = a;, i =1,..., M, andd;(0) = an;, where

M

M
ami = argmin,{ (coa) — 2+ po(a)y)/(1+ D por(ao)ts) }
k=1 k=1
Lemma 6 For givenz, d,,; minimises the average cogtd) over all policiesd that take action
a; in statesl, ..., M.

For fixedx, the policiesd,., d. andd,,; specify the same actions in states 1,..., M, but
in general they may all specify different actions in stateNevertheless, the following lemma
establishes that all three policies exhibit the same qualitative behaviour relative to the fixed value

Z.

Lemma 7 For fixedz, the values o§(d..) — =, g(dg) — x andg(d.,;) — = are either all positive,
all negative or all zero. If: corresponds to the average cost under a given palittyen either all
three policies strictly improve odior all three policies provide an optimal average cost policy.

Proof For fixedz and any policyd, g(d) — = = H(d)/7(d) from (6) andr(d) is positive,
so g(d) — x has the same sign d$(d). Since all three policies take actionsin statesi =

1,..., M, expression (7) gives their expectedevised first return costs d$(d) = (co(ap) —

z + S Bor(ao)yr) /(1 — poo(ao)), wherea is the action they specify in stateand where
poo(ap) < 1 by the assumptions of the skip-free model.
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Now H (doe) <0 == (co(toe) — 2+ Y 4y Pok(aoe) )/ (1 = poo(aee)) < 0 = (co(ag) —
r+ Z,ﬁilpo,c(afr)yk)/(l — poo(ag)) < 0 (asag minimises this quantity over choice of —-
H(dg) < 0. Conversel (di.) < 0 = (co(ag)—a+> pe, Bor(ae)ye)/(1—poo(ag)) <0 =
(colag) =z 4300, Por(an)yr) < 0 = (coltoe) =2+ 3 me, Por (Goe)yk) < 0 (@Sae. Minimises
this quantity over choice of) = H(d,.) < 0. A similar argument utilising the definition of
an; and the positivity of 1 + Zﬁilﬁ%(ao)tk) shows that{ (d..) < 0 <= H(d;) < 0. Exactly
similar arguments then show that(d,.) = 0 <= H(dy) = 0 <= H(d;) = 0, and that
H(dye) > 0 <= H(dy) > 0 <= H(dy;) > 0. The second part of the lemma then follows from
Lemma 4. U

2.3 Policy iteration algorithm

We now return to where we left off at the end of Section 2.1. For a given current pbligih
average cost, we know from Lemma 7 that updating the policy using any of the three policies
dye, de @andd,,; Will in each case result in either an improved policy with strictly smaller average
cost, or will confirm bothi and the updated policy as being average cost optimal.

The update usind,,; has the property that, for each current poligyt generates an improved
policy with average cost at least as small as the other two policies. This does not immediately
guarantee that improvements usifig converge faster than improvements using eitheor dj,.

After one iteration, each policy may take us to a different starting point for the next iteration, and
our results do not allow us to compare the policies from these different starting points — indeed

it might be that the larger the improvement from the first iteration, the smaller the improvement
resulting from the second iteration, as the average cost is now closer to the optimal value. Our
experience has been that the number of iterations taken by all three methods was often the same.
Where one was fastest, it was alwag, but there were some parameter settings whgravas
observed to be faster thal and others for which the order was reversed.

Informed by this discussion, we define the following PIA (policy iteration algorithm) based
on d,; and summarise its properties in the accompanying theorem. Note that other ways of
initialising the algorithm are possible — one alternative being tgset max; , ¢;(a).

PIA (Policy iteration algorithm)

1. Initialisation

Choose an arbitrary initial policy,. Perform a single iteration of step 2 below, with= 0 and
with a; restricted to the single valug (i), i = 0,1, ..., M. Compute the average cagtunder
this policy by settingy, = uy.

2. lteration
Setr = g,.
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e For: = M compute:

ay = argmin,{ (car(a) — z)/pym-1(a) }
Yvm = (CM(GM) - x)/pMM—1(CLM)
tv = 1/pun—1(an)

eFor: =M —1,...,1compute:

a; = argmin,{ (c;(a) —z+ Y 4L, Pin(@)ye)/pi-a(a) }
yi = (ci(a;)) —x+ Z]]{;W:i+1 Pi(@:)yx) [ Dii—1(a;)
o= (14 el Pula)ty) /pi-1 (@)
e For: = (0 compute:
ap = argmin,{ (co(a) —x + Y5 Por(@)yr) /(L + Y oly Pox(a)te) }
uy = (colao) =+ S e, Por(ao)yr) /(1 + e, Pow(ao)ts)

Setd,.1(i) = a; fori =0,..., M and sely,, 1 = ¢, + up.

3. Termination
If ug < 0 then return to step 2.

If up = 0 then stop and returd,,; as an optimal policyy,; as the optimal average cost, and
h;i=wv1+---+uwy;, i=1,... M as the corresponding normalised relative costs. O

Theorem 8 Consider the PIA above applied to a finite recurrent discrete time average cost skip-
free MDP model with state space= {0,1,2,..., M}. Then:

(i) At each iteration of the PIA eithed,,; < ¢, andd,; is a strict improvement od,,, or

Jni1 = gn @andd, ;1 is an optimal average cost policy.

(i) The PIA converges after a finite number of iterations.

Proof (i) Let d,, be be the policy identified at iteratiom, with expected average cogtd,,).
At iterationn + 1 the PIA computes,,; andd,.,, whered,,.; = d,,; for the fixed value
x = g, = g(dy,). Initially go = g(dy) by construction, and,, = ¢(d,,) impliesg,y1 = g, +
H(dpy1)/7(dny1) = g(dnyq1) from (6). Thus, by inductiong, .1 = g(d,;1). Finally, from
Lemma 7, eithep(d,+1) = g(dmi) < z = g(d,) or g(dpy1) = g(dwi) = © = g(d,,) andd,,;; is
an optimal average cost policy.

(i1) Since the set of possible stationary deterministic decision rules is finite, and each iteration
prior to convergence leads to a strictimprovement and hence a strictly different decision rule, the
process must converge after a finite number of steps. O

The computational requirement for each iteration in step 2 of the PIA is similar to that of the
corresponding step in value iteration. The comparison depends on the relative density of non-
zero elements i and P where, for a fixed policyl with transition probabilitie;; = p;;(d(i)),
we write P for the matrix with elements;; and write P for the same matrix but with the values
pi; replacingp;; for elements above the diagonal. Iterations for the PIA and for value iteration
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will require roughly the same effort for a random walk model, wherés at its sparsest and

P = P, and in the most dense case when all the elements above the diagéhaténpositive
and P and P have zeros in the same positions. For cases in betweenil always be more
densely filled thanP, an extreme example being when all states have positive probability of
making transitions to the largest state (c.f. Section 3.2), in which Bas@y be quite sparse but

P will be fully dense above the diagonal. Moreover, the algorithm differs from standard policy
iteration, in that it computes relative costs under a polity. () that does not correspond to the
average costy(d,)) under consideration; only at convergence do the relative costs and average
cost correspond to the same (optimal) policy.

3 Variations on the standard model

In this section, we show that, with simple modifications, the results in Section 2 for the new
policy iteration algorithm can be extended to continuous time models, discounted cost models
and communicating models, and that they lead to an alternative formulation for the constraints in
LP treatments of the average cost problem.

3.1 Continuous time models

Consider a continuous time Markov decision process (CTMDP) with finite state spaee
{0,1,2,..., M} and finite action spacé. The analysis in Section 2 easily extends to this contin-
uous time setting. We assume that when the current actioamnsl the process is in statg = i,
the process incurs costs at ratén) and makes transitions to state= S at rateg;;(a) (where
transitions back to the same state are allowed). For infinite horizon problems, under either an
average cost or a discounted cost criterion, we can restrict attention to stationary policies and
to models in which decisions are made only at transition epochs (Puterman 1994, p.560). For
simplicity of presentation we again restrict attention to recurrent models and defer treatment of
unichain and communicating models to Section 3.3. As for MDPs, we say a CTMDP is skip-free
in the negative direction if the process cannot move from each stata state; < ¢ without
passing through all the intermediate statesgi,€a) = 0 for all j <i — 1 anda € A.

To apply the PIA, we first convert the model to an equivalent uniformised model (Lippman
1975) with rateA = maxiesaca )_jes ¢ij(a). In this model, when the current actiondsand
the process is in statetransitions back to stateoccur at rate\ — >, ¢;;(a) while transitions
to statej # ¢ occur at rateg;;(a), so that overall transitions occur at uniform rate Next
we construct a discrete time problem with the same state and action space, and with transition
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probabilities and immediate costs given by:

pi;(a) = gij(a)/A, ci(a) = Aci(a), i1#£7=01,....M, ac A
phila) = 1= qi(a)/A, i=01,.... M acA
J#i

If the original CTMDP is recurrent and skip-free, then the discretised model is recurrent and
skip-free and can be solved using the PIA.

Finally, the optimal policyl* and the optimal average cagtfor the uniformised continuous
time problem are the same as the corresponding quantite®ly’ for the discrete time problem,
and the normalised relative costs for the uniformised problem are given in terms of those for the
discrete problem byt* = h./A, i =0,1,..., M (Puterman 199411.5).

3.2 Discounted cost models

Although our treatment has concentrated on average cost problems, the new policy iteration algo-
rithm can also be applied to find an optimal stationary deterministic policy and the corresponding
optimal value function for skip-free discounted cost models. Consider an MDP model that is
skip-free in the negative direction, with state space- {0, 1,..., M}, finite action spacel,
transition probabilitie®;;(a), immediate costs;(a) and discount factos.

Following Derman (1970, p.31), we construct an average cost MDP with modified state space
{0,1,..., M, M + 1} and modified transition probabilities and immediate costs given by:

pij(a) = Bpi(a), di(a) = ¢i(a), i,j=0,1,...,M, ac€ A
p/]\/[+1M(a) =, cv+(a) =0, a€ A
Pinrgr(a) =13, i=01,...M+1, ac A

In the spirit of similar models (Low 1974, Wijngaard & Stidham 1986), we note that this new
average cost MDP inherits from the original model the property of being skip-free in the negative
direction.

Letg andh;, i = 0,..., M + 1 be the optimal average cost and the corresponding relative
costs for the new average cost problem, normalised by seifjng 0. From aboveg’ and
R, i =1,...,M + 1, are the unique solutions to the optimality equations (1), and any set of
actions achieving the minimum on the rhs defines an optimal policy. In terms of the original
parameters, these equations take the form

Pyria = —g' 4+ Bhly + (1 = B)hiy
M

I, =min{ci(a) —g' + ) py(@)hy+ (1= By} i=0,.... M
=0
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Now setv; = h;—h'y, ,+9'/(1-03), j =0,..., M. Thenrewriting the equations fog, . .., by,
in terms ofuvy, . .., vy, We see that the; satisfy the equations

M
vi:min{ci(a)—i—ﬁZpij(a)vj} i=0,...,M.
=0

Thus thev; satisfy the optimality equations for the discounted cost problem, and so represent the
unique optimal3 discounted cost function (Puterman 1994, p.148).

Finally, letz" andyy, ..., y;,,, be solutions to the policy iteration algorithm applied to the
new skip-free average cost problem. Thgn= 2" and?) = ) +---+yj, i =1,...,M + 1.
Thus the optimal value function for the discounted problem is given explicitly in terms of the
output of the policy iteration algorithm by

vj =2 /(1= 0) = Y1+ + Yrrr) 7=0,....M

and a policy which is optimal for the modified average cost problem is also optimal for the
original discounted cost problem.

3.3 Communicating models

So far we have assumed the MDP model is recurrent. There are natural applications for which
this assumption excludes sensible policies, such as policies that are recurrent only on a strict
subset ofS. Simple examples include: maintenance/replacement problems where a policy might
specify replacing an item when the state reached some lowerAével 0 with a item of level
L < M; inventory problems where a policy might reorder when the stock reached some lower
level K > 0 and/or reorder up to level < M; queueing control problems where a policy might
turn the server off when the queue size reached some lowerAével0 and/or might refuse to
admit new entrants when the queue size reached Ievel)/ . In each case, determining optimal
values forK and L might be part of the problem. In this section we extend our result to the wider
class of communicating MDP models, to enable us to address examples like these.

We say an MDP model is communicating if, for every pair of statsd; in S, j is reachable
from i under some (stationary deterministic) polity.e. there exists a poliay, with correspond-
ing transition matrixP,, and an integer > 0, such that?,;(X,, = j| X, = 7) > 0. We say that/
is unichain if it decomposeS into a single recurrent class plus a (possibly empty) set of transient
states; if there is more than one recurrent class wedsaymultichain. Letd be a multichain
policy and, for eaclt, let g, denote the average cost undestarting in a state ik, and letF,,
be a recurrent set with smallest average cost,gsayBecause the model is skip-freg,, must
consist of a sequence of consecutive stétes. .., L,,; again, because the model is skip-free,
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the action in each each statgreater thar.,, can be changed if necessary so thatis reach-
able fromj; finally, because the model is communicating, the action in each slates than
K,, can be changed if necessary so thgt is reachable frony. Denote byd’ the new policy
created by changing actions in this way, if necessary, but leaving the actidfs imchanged.
Thend' is unichain by construction, and the average cost starting in eachjstat& is g,,,
which is no greater than the average cost startingunderd. Thus, for average cost skip-free
communicating models, nothing is lost by restricting attention to unichain policies.

In contrast to recurrent models, communicating models allow therestartd: with p;;(a) =
1 and/orp;;_1(a) = 0. For each- = 0,1,..., M, let U, be the (possibly empty) set of unichain
policiesd for which p,,._;(d(r)) = 0 butp;;_1(d(i)) > 0fori =r+1,..., M (where we take
pii—1(a) = 0 for all a for i = 0). Every unichain policy must be ifi, for somer. Partition the
possible actions for each statec S into B; = {a € A : p;_1(a) > 0} and its complement
B; ={a € A: p;_1(a) = 0}, whereB; may be empty buB; is non-empty by the assumptions
of the skip free model in Section 2. Then for a unichain policg U,, we have thati(i) €
B;, i =71+ 1,..., M, that state- is recurrent and(r) € B, by definition; and that states<
are transient.

Thus the minimum average cost over policieslinis the same as the minimum average
cost for a modified skip-free MDP modHI. with the same transition probabilities and immedi-
ate costs but with reduced state space= {r,..., M} and with state-dependent action spaces
A; = B;fori=r+1,...,M andA, = B,. In this notation, the model of Section 2 corresponds
to I1, and state plays the same role as the recurrent distinguished stdie that state) plays
in IT,. If we compare the result of applying the PIAIp with the result of applying it tal,, we
see that, for the same current valuerpthe algorithm computes the same valueg;of;, anda;
instates = M, M —1,...,r+1. However, in state, the PIA applied tdl, computes quantities
appropriate to the distinguished state, gaandwu”, where

a = argmingep { (er(a) — o+ 204 rela)ye) /(14 0L, Pr(@)t) }
uo= (e(an) = o+ 3L Pe(a )y /(14 0L  Pe(a)t)

and computes an updated ‘minimising’ poli¢y, , with average cosj, ,,where
dr(r) = ad; d (i) =a,i=r+1,...,M, and

T — T
In+1 = T+ u

This motivates the following modified PIA. First, it includes these extra computations for
each state, so that, in a single iteration, it simultaneously computes the optimal pdjlicyand
its average cosy;,, ; for eachS,. Secondly, at the end of the— 1th iteration it setsx = g, =
min, g, and setgl, to be the corresponding policy, where ties are broken by choosintj tivigh
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the smallest index. Say the minimum average cost at this stage is achieved by a policy with
indexr = K Then, by the properties of the PIA appliedlig, at the end of the next iteration
either () ¢, < ¢gX = z, in which casey,,1 = min, g/, < z = g,; or (i) uX,, = 0 and

g&., =g =z =min, g/, S0g,+1 = g, andd,;; = d~,, is an optimal average cost policy

for starting states = K, ..., M. In this case, because the model is communicating, it is possible
(Puterman 1994, p.351) to modify the actions chosen by the policy in the, now transient, states
0,...,K — 1 so that the modified,,,, satisfies the optimality equations for all states. ., M

and is an average cost optimal policy. We summarise this discussion in the following theorem.

Theorem 9 Consider the PIA modified as above applied to a finite communicating discrete time
average cost skip-free MDP model with state spéce {0,1,2,...,M}. Then:

(i) At each iteration of the PIA eithes,,; < ¢, andd,; is a strict improvement od,,, or

Jni1 = gn and for somek the policy satisfies the optimality equations for states. ., M

(i) The modified PIA converges after a finite number of iterations.

Finally, note that it is easy to check if a skip-free model is communicating. An assumption
of the (non-degenerate) skip-free model was that eachistat®/ was reachable from+ 1. It
follows that a skip-free MDP with state spae= {0, 1,..., M} is communicating if and only
if M is reachable frond under at least one stationary deterministic poticy.et N, = 0, let V;
be the index of the maximum stagdor which py;(a) > 0 for somea € A, and form =1, 2, ...
let N, be the index of the maximum stajdor which p;;(a) > 0 for some0 < i < N,, and
a € A. As the state space is finite, the sequefidg, } terminates, say with stat¥. Since the
model is skip-free)NV is the largest state that is reachable by all states below it, and the model is
communicating if and only ifV = M.

3.4 Linear programming formulation

Finite recurrent average cost MDP models can also be solved using a standard linear program-
ming approach (Puterman 1994.8) in which the form of the primal LP given below follows
directly from the standard optimality equations (1).

Standard primal: Maximize g subject to

g+hi =Y pij(a)h; < ci(a), i€S, acA

jeS

In a similar way, the new skip-free optimality equations (3) give rise to the following refor-
mulated primal LP for recurrent average cost skip-free models, where the form of the constraints
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genuinely differs from those of the standard primal applied to a model wjtla) = 0 for
7 <1—1.

Skip-free primal: Maximize x subject to

+ pum-1(a)ynm < cpla) ac A
M
z+ pii—1(a)y; — Z Dik(a)yr < ¢i(a) i=1,....M—-1,a€cA
k=i+1
M
v =Y pala)yr < cola) a€A
k=1

Corresponding to the standard primal LP is a standard dual LP, given as follows:

Standard dual:  Minimize > .o > ., zici(a) subjectto

sz — Zszapji(a) = 0, 1€ 8

acA j a€A

DI

i€S ac€A
Zia > 0, 1€S5,aeA

Although the dual LP can be derived directly by duality arguments from the primal, it also has
the following intuitive explanation. Interpret, as the stationary probability of being in state
and taking actior: under a given policy. Thed _, z, represents the stationary probability of
being in state under the policy and ;. > .. 4 ziaCi(a) represents the corresponding average
cost. The stationary probabilitiels;} for an irreducible finite Markov chain with transition
probabilities{p;;} are the unique positive number that satisfy the full balance equagjoas
Zj ¢;pj; and the normalisation equation, &, = 1. Thus the standard dual LP for an average
cost MDP can be interpreted as the minimisation of the average ¢ost) ° . , zi.ci(a) subject
to the constraints that the;,} correspond to probabilities satisfying the appropriate full balance
and normalisation equations.

As in the standard case, the following skip-free dual LP can be derived from the skip-free
primal LP by direct duality arguments.
Skip-free dual:  Minimize >, o> .4 Ziaci(a) subjectto

Z Ziapiifl(a) - i Z Zjaﬁji<a) = Oa 1= 17 R M (9)

acA j=0 a€cA

D)L

i€S a€A

Zia > 0, i1=0,....M; a€e A
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Even though the constraints (9) do not immediately appear to be in a suitable form, even
allowing for the skip-free nature of the process, this skip-free dual LP is capable of the same
simple intuitive interpretation as the standard dual. To see this, consider a skip-free process with
state spacé = {0,1,..., M} and transition probabilitie$p;;}. Let E be any subset of and
setE° = S\ E. In equilibrium the flow betweelr and E° must balance, so any solutidg; }
to the full balance equations satisfies the equatlois,, > cpe §iPik = D repe 2o jer SkPri-
TakingE = {i,...,M}inturnfori = 1,..., M, using the skip-free nature of the process and
writing p;; for Zi”:j Dis, these set balance equations reduce to

i—1
i1 = Y &by i=1,..., M. (10)
j=0

Since eaclt; can be solved for recursively in terms &f, equations (10), together with the
normalisation equation, uniquely determine the stationary distribution and it is precisely these
modified balance equations that generate the constraints (9). Although outside the focus of our
results, we note that the upper Hessenberg form of the constraint matrix corresponding to (9) may
lead to simplifications in the linear program (Reid 1982).

4  Multidimensional skip-free models

In this section we show how the skip-free MDP model and the PIA introduced in Section 2
can be generalised from the integer lattice to models with a richer, possibly multidimensional,
state space structure, illustrating our approach with examples that arise naturally in the control
of some multi-class queueing systems. Recall from Section 1 that a finite skip-free model has
the following properties: (i) there is a single distinguished state(s&yi) for any other staté
there is a unique shortest path frero 0; (iii) from each state # 0 the process can only make
transitions to either the adjacent state in the unique path frtovi, or to some statg for which
1 lies in the unique shortest path fraimo ;. Thus the state space of a finite skip-free model can
be identified with the graph of a finite tree, rooted atvith each state corresponding to a unique
node in the tree.

So far we have dealt only with the case where, for elacthere was exactly one state for
which the shortest path to staienhad lengthk. Thus there was &1 mapping of the states to
the integerq0, 1, ..., M} such that the distinguished state mapped &nd the state for which
the shortest path had lengthmapped tdc. We now extend consideration to models that satisfy
the same essential features, but where, for dat¢here may be more than one state for which
the shortest path has length In this case, rather than mapping to the integer lattice, there is a
fixed tree7 (in the graph theoretic sense) such that each state corresponds to a unique node of
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the tree, with the distinguished state mapping to the root node. It may help to visualise movement
between states in terms of the corresponding movement between nodes on the tree.

We start by describing two continuous time examples that exemplify the type of model we
have in mind. After going on to develop a more formal treatment of the model and deriving
the corresponding optimality equations, we set out the modified form of the PIA appropriate for
these multi-dimensional tree-form models. We show that the algorithm has the same convergence
properties as the simpler PIA derived earlier, and that the approach can be extended from the
recurrent discrete time average cost model to continuous time models, discounted models and
communicating models in a similar way to the extensions described in Section 3.

4.1 Example: Pre-emptive multi-class queueing system

Consider (He 2000, Yeung & Sengupta 1994) a single server multi-class queueing system with
exponential interarrival and service time distributions. Assume ther& anestomer classes and
that the system has finite capacityincluding the job (if any) in service, and that jobs that arrive
when the system is full are lost. Assume the service discipline is pre-emptive, so that a job that
arrives when the system is not full enters service immediately and the job currently in service at
that point return to the head of the buffer. When a job completes service, the server next serves
the job at the head of the buffer. The memoryless property of the exponential distribution implies
that the remaining service time of a job that resumes service has the same distribution as the
original service time, independent of the any service received up to the point of resumption.

The state of the system can be fully described by the multidimensional state wector
(k1,...,Ks) Wherex, denotes the class of the job currently in servicedenotes the class of the
job waiting for service in placg, j = 2,...,J, andx; = 0 if there are less than jobs in the
gueue so théth place is empty.

A simple service-rate control model might be that that clagshs arrive singly according to
class dependent arrival ratg, and complete service at class and action dependent service rate
ux(a). The possible transitions under this model are:
(i) the arrival of a class job (k = 1,..., K) to a partially full system (withx; = 0); this
corresponds to the transition = (ky,...,k;) — K = (x},...,x;) wherex| = k and
K =kKj_1, j=2,...,J,and occurs at rats;(k, a) = A,
(i) the completion of the job currently in service; this corresponds to the transgitier{x, . .., k;) —
K = (Ky,...,K;) wherex; = r;11, j = 1,...,J — 1 andx; = 0, and occurs at rate
[k, a) = b, (a).

Figure 1 illustrates the tree corresponding to the state space for a systemy witl2 job
classes and with capacity = 3. From the figure, we see that at any given node a service
completion moves the state to the adjacent ‘lower’ node and an arrival moves the state to one of
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the two adjacent ‘higher’ nodes, depending on the class of the arriving job.

(1,1,1) (2,1,1) (1,2,1) (2,2,1) (1,1,2) (2,1,2) (a,2,2) (2,2,2)

Figure 1: The tree corresponding to the state space for a pre-emptive multi-class queueing system
with K = 2 job classes and capacitiy= 3. The head of the queue (the job in service) is on the
left.

The model can be easily extended to allow for more general forms of class, state and action
dependent arrival and service rates. It can also be generalised to allow for batch arrivals with
given (state and action dependent) batch size, type and order distributions. For example, one
model might be that, if a batch of sizewith job typesw, . .., w, in that order arrived at a system
with s < r free places, then the last— s jobs in the batch would be lost and the remaining
jobs would pre-emptively join the system, so the arrival would correspond to the transition
(K1,...,ky) — K = (K],...,Kk;) wherex| = wq,..., K,
..., J.

In terms of the tree representation, such batch arrivals move the system from a given node to
one of the *higher’ nodes in the sub-tree rooted at that given node. For example, the arrival of a
batch of size2 with classeg2, 1) in that order to a system with a single job of clags figure 1
would move the state from node, 0, 0) to the nod€2, 1, 1) in the sub-tree rooted &t, 0, 0).

= ws, ANAK; = Kj_5, J = s+

4.2 Example: Pre-emptive multi-class priority queueing system

As a second example, consider again a single server multi-class queueing system with exponential
interarrival and service time distributions, with customer classes and with finite capacity (total
buffer size).J, where jobs that arrive when the system is full are lost.

Now, however, assume that classes served pre-emptively in order of priority, with higher
numbered classes having higher priority; that within each class jobs are served in order of arrival;
and that an arriving job of clagsis lost if the job already in service has class> k. More
precisely, if a clasg job arrives and the job in service also has classhen the arriving job
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joins the buffer at the tail of the clagsjobs but ahead of any jobs of lower class, whereas if the
job in service has class < k, the arriving job pre-empts the job in service and enters service
immediately while the pre-empted job returns to the head of the buffer. When a job completes
service, the server next serves the job at the head of the buffer. The priority discipline described
above implies that the jobs in the buffer are ordered in non-increasing order of class, and that the
job at the head of the buffer has class no higher than the job currently in service.

(2,2,2) (2,2,1) (2,1,1) (1,1,1)

Figure 2: The tree corresponding to the state space for a pre-emptive multi-class priority queueing
system withK' = 2 job classes and capacity= 3. The head of the queue (the job in service) is
on the left.

Again, the state of the system can be fully described by a multidimensional state nector
(k1,...,ks) Wherek, denotes the class of job currently in service andienotes the class of
the job waiting for service in placg, j = 2,...,J, and the model can allow for possibly
general forms of class, state and action dependent arrival and servicag@tes) andu(k, a).
Extensions are possible which allow batch arrivals with given batch size and type distribution.
Figure 2 illustrates the tree corresponding to the state space for such a system, again with
K = 2 job classes and with capacity = 3. Jobs of clasg can only enter the system if there
are no clasg jobs already present. From the figure, we see that at any given node a service
completion again moves the state to the adjacent ‘lower’ node and an arrival again moves the
state to one of the two adjacent ‘higher’ nodes, depending on the class of the arriving job. For
example, if a clas$ job arrives to a system with a single clalspb present, it joins the buffer
and the state moves from from nogde 0, 0) to node(1, 1, 0); if a class2 job arrives in the same
situation, it enters service and the pre-empted clgsb goes to the head of the buffer, so the
state moves from from node, 0, 0) to node(2, 1, 0);
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4.3 Skip-free MDP models on trees

To formalise the examples above, we start by considering a finite rooted tnéth N + 1 nodes
labelledo, 1,2, ..., N, with root node), and with a given edge set. The tree structure implies that
for each pair of nodesand; there is a unique minimal path (set of edges) in the tree that connects
i andj. Thus the nodes in the tree can be partitioned into levellsgts {0}, Ly, ..., Ly, such
that, form =0,..., M — 1,7 € L, if and only if the minimal path frond to i passes through
exactlym intermediate nodes. For adjacent nodes.,, andj € L,,,1, we sayi is the parent
of j andj is a child of: if the minimal path from0 to ; passes through More generally, for
1€ L,andj € L., r > m, we sayj is a descendant afif the minimal path fronD to j passes
throughi. Each nodg # 0 has a unique parent. We writé;) for the parent ofj, we write D(j)
for the set of descendants ffand we write7 (j) C 7 for (the nodes of the) sub-tree rooted at
7,807 (j) = {j} UD(j). A state with no descendants is said to be a terminal state, so all states
in the highest level,, are terminal states. For simplicity of presentation we will assume that
these are the only terminal states; the analysis easily extends to cases where intermediate levels
L,, can also contain some terminal states.

Now consider a finite MDP with state spaSeand action spacd. Assume we can construct
a rooted tre¢/” such that (i) the states ifi correspond to the nodes @, and (ii) for every state
1 € S and actioms € A, the only possible transitions from statander actior: are either to its
parent state(i) or to a state in the subtreg(i) rooted at;, with appropriate modifications for
state0 which has no parent and for terminal nodes which have only a parent and no descendants.
We will say that such an MDP &kip-free (in the negative direction) on the trde

Generalising the idea of a simple random walk (or simple birth and death process), Keilson
(1979, p.28) defined tree processo be a Markov process for which the statesSisorrespond
to the nodes of a tre€ in which states and;j were adjacent nodes if and onlyyif; > 0. These
models have many applications; in particular, any reversible process for which there is a unique
path between any two states is a tree process. We focus on models where the same tree structure is
assumed to hold under all stationary deterministic policies; the skip-free formulation then extends
the range of application by relaxing the restriction that ‘upward’ transitions to descendants are
always to adjacent nodes.

As with the simpler models in Section 2, it is convenient define the upper tail probabilities

pij(a) = P(Xip1 € T())| Xy =i, Ay = a),

corresponding to the probability that the next transition from stateder actioru is to a state in
the subtree rooted at and to assume that the model is specified in terms of the parameters

Piptiy(a), i € S, a € A; pij(a), i€ S,5 € D(i),ac A
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rather than the standard (and equivalent) representation in terms of the transition probabilities
pij(a), i,j €S, a € A.

4.4 Optimality equations

As in Section 2.1, the optimal average cgsfor finite recurrent models, and the corresponding
normalised relative costs', ¢ € S, are the unique solutions to the optimality equations (1) which
in this setting become

hi = min{ ci(a) — g + > pij(@)h + pis(a)hi + pipiy (@) } i€S (11)
JED(3)
and an optimal stationary deterministic policy is givendbywhered* (i) is any action minimising
the rhs of the equation corresponding to state

As in the integer lattice case, with appropriate modifications for the root Aoaled for
terminal nodes, simple rearrangement shows that) — g + >_,cp(;) Pij(a)h; + pi(a)hi +
Pip(i)(@)ho@y = hi if and only if ci(a) — g + 32 ;cpi) Pis(a)(hy — hi) = pipy(a)(hi — hy),
and that equality in one expression implies equality in the other.

Now for eachi # 0 € S'lety; = h; — h,). Thenfor each € D(i), there is a unique minimal
path in the tree connectinigand;. Say the path passes through 1 intermediate states and takes
the formi =ry — r — -+ — ry = j. Let A(7, j) denote the states followingn the path toj,
S0A(i, j) = {rl, .. 7"5} Foreachk =1,...,s,r,_ isthe parent of, sothat,_; = p(ry), and
hencel; — h; = =D et e =Ry = 20 ey = R = D05 U = Do ren(i) Yre
However, ifj is a descendant ofandr # j is in the path connecting and j, thenr is a
descendant of and j is in the subtree rooted &t and vice versa. Thus for fixedanda we
have thaty ;) pij(a)(h; — hi) = D epgi) 2orentiy) Pis(@Yr = D ey 2ojerr Pii(@)yr =
>_rep() Pir(@)yr.

Taking account of the modifications for the root state 0 and the terminal statesc L,,,
and the factthat € L,, = D(i) C L,+1 U---U Ly, it follows that the optimality equations
are equivalent to the equations

Y = main{ (CZ‘(G,) — J;)/pzp(z) (a) } 1€ L]\/[ (123.)

Yi = rnaln{ (ci(a) — 2 + Z Pir(@)Yr) /Dip@iy (@) } 1€ Ly—1,..., Ly (12b)
keD(3)

0= mln{ cola) —x + Z Pox(a)yr } (12¢)
keSo

in that these equations also have unique solutio@dy;, i € S, with z = ¢* andy, =
hi — h;(i), i € S, and an optimal stationary deterministic policy is givenddywhered*(i) is
any action minimising the rhs of the corresponding equatiomyfor
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4.5 General algorithm

The results in Section2.2 translate directly into this multidimensional setting, giving the following
generalised form of the PIA and a corresponding characterisation of its convergence properties.
The proof of Theorem 10 below then exactly mirrors that of Theorem 8.

Policy Iteration Algorithm

1. Initialisation

Choose an arbitrary initial policy,. Perform a single iteration of step 2 below, with= 0 and
with a; restricted to the single valug (i), i € S. Compute the average cagtunder this policy
by settinggy = uy.

2. lteration
Setr = g,.

e For: € L,; compute:
a; = argmin,{ (ci(a) — ) /pip(a) }
yi = (ci(a) — ) /pip) (@)
ti = 1/Dip(ai)
eForie L., r=M—1,...,1 compute:
a; = argmin,{ (ci(a) — 2z + > cpi) Pik(@)yr) [Pipy(a) }
yi = (cila:) =@+ D pep) Pie(ai)ye) /Dipi) (i)
o= (1+ ZkzeD(i) Dir(ai))/Pip(i (i)
e Forj = 0 compute:
ap = argmin, ming{ (co(a) = = + X rep(o) Por(@)yr) /(1 + X rep (o) Pok(ao)tr) }
up = (co(ao) = & + > pepo) Pok(@0)yx)/ (1 — poo(ao))
to = (1+ ZkeD(O) Pok(@o0)tr) /(1 = poo(ao))

Setd,,1(i) = a; fori =0,..., M and sely,, 1 = ¢, + up.

3. Termination
If ug < 0 then return to step 2.

If up = 0 then stop and returd,,; as an optimal policyy, 1 as the optimal average cost, and
hi=w+---+uwy;, i=1,... M as the corresponding normalised relative costs. O

Theorem 10 Consider the PIA above applied to a finite recurrent skip-free average cost MDP
model on a tree. Then:

(i) At each iteration of the PIA eithed,.; < ¢, andd,; is a strict improvement od,,, or

Jni1 = gn @andd, ;1 is an optimal average cost policy.

(i) The PIA converges after a finite number of iterations.
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Remarks

The PIA and the convergence results can be extended in the obvious way to models where inter-
mediate leveld.,, can also contain some terminal stgten step 2 the PIA computes using an
eqguation of the form corresponding to a statd.ip (derived from (12a) rather than (12b). They

also extend to continuous time, discounted cost and communicating average cost skip-free MDP
models on trees, in a similar way to the extensions for the standard model in Section 3.

The extension to continuous time models is straightforward. For discounted cost models, the
changes in Section 3.2 required the addition of a single extra state and appropriate changes to
the transition probabilities. Since the state space there corresponded to a single linear branch,
the extra state could be added to the previous terminal node without violating the requirements
of the skip-free model. Skip-free MDP models on trees require the addition of an extra state for
each terminal state (node) to preserve the skip-free property. This extra state now becomes the
terminal node in that branch. Transitions from this extra state are to the corresponding previous
terminal node, with probability, or back to itself, with probability — 5. Transition probabilities
from non-terminal states are modified as in Section 3.2, by seifj@) = Spi;(a) if j is a non-
terminal node of the modified tree and by assigning the remaining transition probabiitto
the newly added terminal nodes of the modified sub-Irég rooted at. The precise assignment
may be chosen arbitrarily — for example, each new terminal node in the modified sub-tree may
be chosen with equal probability — as long as the total probability surhs-to.

For communicating models, the idea again is that for each stédtte PIA is modified so
that in passing it solves the corresponding sub-proldlemwith state spac (i) and with state
1 as the distinguished state, and then computes the optimal updated average cost and policy by
minimising over the costs and policies for each of the sub-problems.

The algorithm also leads to a similar alternative formulation for the constraints in the LP
method of solution. The constraints for the primal LP follows directly from the optimality equa-
tions (12). For the dual LP, for eachet I'(i) denote the set of statgs# ¢ in the unique minimal
path in the tree connectirgandi, so if the path takes the forthv=rq) — r; — -+ = r, 5 —
re—1 = p(i) — rs = 1, thenT'(i) = {0,ry,re,...,75_2,p(i)}. Then the constraints for the
dual LP follow from a similar intuitive argument to that in Section 3.4 but with the set balance
equations (10) now taking the form

EiDip(i) = Z Z §iDjk 1#£0,i€ 8.
)

JED() kET (i
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