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Abstract

We consider a central place forager with two qualitatively different types of

food sources; type 1 sources are always available whereas type 2 sources become

available intermittently and this availability is signalled by information present

at the central place. Source 1 is modelled using a standard patch foraging model

whereas source 2 is modelled somewhat schematically in terms of the presence

of information, the time spent at the source and the average reward received. The

only decision in the model is the time spent by the forager at source 1 on each trip.

We characterise the optimal foraging time and the optimal overall reward rate un-

der the two source model and compare it with the corresponding quantities for

a single source model. We show that, in general, the potential for information

transfer has a marked effect on the forager’s behaviour, and that a forager behav-

ing optimally should return to check for new information with what might, under

a single source model, seem to be a strictly submaximal load. We consider the

dependence of the optimal foraging time and the optimal overall reward rate on

the source 2 model parameters, and also show that our qualitative results hold for

a variety of models for the time spent on source 2.
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1 Introduction

We consider a central place forager with two qualitatively different types of food

sources. The essential difference is that type 1 sources are always available whereas

type 2 sources become available intermittently and this availability is signalled by in-

formation present at the central place. Amongst other things, our analysis highlights

the effect the availability of this information has on the behaviour of the forager on

standard type 1 sources.

Type 1 sources are modelled using a standard patch foraging model (Charnov 1976,

Stephens & Krebs 1986). We writer(t) > 0 for the rate at which the forager gains

food when the current time on a patch ist and we assumer(t) is either constant or is

decreasing witht. We writeτ for the travelling time for a single round trip from the

central place to a patch and back. As is usual with such models, we assume either that

r(t) is constant, reflecting a resource that offers a constant supply of food (Model 1) of

thatr(t) is strictly decreasing witht, reflecting a resource that gets depleted over each

foraging period (Model 2).

To allow for a variety of interpretations and applications, source 2 is modelled some-

what more schematically in terms of the presence of information, the time spent at the

source and the average rewards received. We assume that each time the forager returns

from source 1, there is a certain probability that information will be present indicating

the availability of source 2. This probability will generally depend on the length of

time the forager has been away. We writeP (s) for the probability that such informa-

tion is present when the forager returns from a round trip of total lengths to source 1.

For clarity of presentation we will initially assume that source 2 becomes available at

some constant rateλ > 0, so thatP (s) = 1 − e−λs and1/λ can be interpreted as the

expected time until source 2 is again available. However in Section 5 we show that our

results extend directly to a wider class of models forP (s) (ref!!).

If a forager arrives at the central place and no information is present, then it immedi-

ately returns to source 1. If information is present, then the forager exploits source 2

for a time with expected lengthT > 0, until the source is no longer available. This

may include several trips by the forager. It then recommences foraging at source 1,

irrespective of the current information state. We writeγ for the overall rate at which

food is gained at source 2, so the expected total food gained from the source at each
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exploitation isγT . Note that the only decision in the model is the time spent by the

forager at source 1 on each trip.

Finally, we note an alternative interpretation in terms of a ‘foraging-recovery’ model,

which can be viewed as complementary to previous treatments of diving models with

convex-increasing un-rewarded recovery times (Houston & McNamara 1985, Houston

& McNamara 1999). Consider a model under which each foraging round trip of total

lengtht+ τ is automatically followed by a recovery period of lengthP (t+ τ)T during

which the forager receives a reward at rateγ. Assume the recovery time is a bounded

increasing concave function of the total trip time and is zero if the total trip time is

zero, i.e. thatP (t) is a bounded increasing concave function oft with P (0) = 0. The

average reward under this model, for a policy with foraging timet and journey time

τ , is exactly the same as under the original model. To distinguish between models we

refer to this version as the ’foraging-recovery’ model and refer to the original model

as the ’foraging-information’ model.

For a given choice oft, the ’foraging-recovery’ model evolves deterministically as a

sequence of reward cycles, each of fixed total lengtht + τ + P (t + τ)T , while the

’foraging-information’ model evolves stochastically, with each reward cycle compris-

ing a random number of foraging trips to source 1 followed by a single visit to source

2. However, although conceptually different, the models are operationally equivalent

in that for the same choice of parameter values they lead to the same optimal choice of

foraging time and the same optimal reward. While it was natural under the ’foraging-

information’ model to focus on the caseγ > γ∗1 , for the ’foraging-recovery’ model it

may be more natural to consider the caseγ < γ∗1 .

2 Review of the single-source model

Previous authors (Charnov 1976, Stephens & Krebs 1986) have considered the ‘single-

source’ case where information is not included in the model and the forager exclusively

uses sources of type 1. The foraging process is modelled as a standard renewal reward

process with renewal points at the epochs when the forager starts out on a new foraging

trip. Assume each time the forager makes a trip, it stays for a timet on a source before
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returning. WriteG(t) for the total food received in that time, then

G(t) =

∫ t

0

r(v)dv

and the reward rate over a round trip to source 1 with foraging times and total travel

time τ is is
G(t)

t + τ
.

In line with standard foraging theory we restrict attention to the following models.

Assumption 2.1

We assumer(s) is defined ons ≥ 0, is positive and either

(i) r(s) = r0 is constant (Model 1), or

(ii) r(s) is strictly decreasing ins (Model 2). ¤

Define

σG(s) = (G(s)/G′(s))− s,

so thatσG(s) as the distance from the origin to the point where the tangent to the curve

G(s) ats intersects thex-axis. In particular,σG(s) can be interpreted as the travel time

for which the foraging times would be optimal for the single-source model, and thus

can be a useful tool for developing intuition about the optimal foraging time for the

single source model (Charnov 1976, Stephens & Krebs 1986).

Now let t∗ be the optimal foraging time for this single source model and denote the

corresponding optimal reward by

γ∗1 = sup
t

G(t)

t + τ
.

The following two lemmas follow summarise results for the single source case, and

follow from standard treatments of central place foraging or by direct calculation.

Lemma 2.2 If r(s) is strictly decreasing then:

(i) G(s) is strictly concave and strictly increasing ins with G(0) = 0 andG′(s) =

r(s).

(ii) G(s)/(s + τ) is maximised at a finite valuet∗, andγ∗1 = G(t∗)/(t∗ + τ) = r(t∗).

(iii) σG(s) is strictly increasing ins with σG(0) = 0 andσG(t∗) = τ . ¤
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Lemma 2.3 If r(s) is constant (sayr0)then:

(i) G(s) = r0s andσG(s) = 0 for all s ≥ 0.

(ii) G(s)/(s + τ) = r0s/(s + τ) is strictly increasing ins for all s ≥ 0, soγ∗1 = r0.

In this case we writet∗ = ∞. ¤

3 Two source model with information

Under the two-source model with information, a forager that arrives at the central

place when no information is present immediately returns to source 1. If information

is present, then the forager makes a single visit to source 2 of lengthT and then re-

commences foraging at source 1, irrespective of the information state when the forager

finished on source 2. For a given fixed foraging times, the number of visits to source

1 between each visit to source 2 has a Geometric distribution with mean1/P (s + τ).

Consider a reward cycle that starts each time the forager returns from source 2 and

ends the next time the forager returns from source 2. During the cycle the forager will

make on average1/P (s + τ) trips to source 1, each with a total trip time (foraging

plus journey) ofs+ τ and each earning rewardG(s), and will make one visit to source

2 of total timeT and total rewardγT . Then the expected length of the cycle is(s +

τ)/P (s + τ) + T and the expected reward during the cycle isG(s)/P (s + τ) + Tγ.

Write Γ(s) for the average reward rate for this fixed foraging times ≥ 0. Then

Γ(s) =
G(s)/P (s + τ) + Tγ

(s + τ)/P (s + τ) + T
=

G(s) + P (s + τ)Tγ

s + τ + P (s + τ)T
. (1)

Now for s ≥ 0 we define

σP (s) = (P (s)/P ′(s))− s,

Just asσG(s) was useful in studying the single source model, characterising properties

of P (s) in terms ofσP (s) can provide useful information in the two source model. In

particular, we can interpretσP (s) as the distance from the origin to the point where the

tangent to the curveP (s) at s intersects thex-axis andP ′(s)σP (s) as the height from

the origin to the point where it intersects they-axis.

For ease of presentation we have assumed that information about the availability of

source 2 becomes present at rateλ, so P (s) has the Exponential distribution with
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parameterλ. In fact, all that is really necessary for existence and uniqueness of an

optimal foraging time is thatP (s) is strictly concave and strictly increasing ins. This

will certainly be true for the Exponential distribution whereP (s) = 1 − e−λs, but is

also true, for example, for the Pareto distribution whereP (s) = 1−(c/(c+s))λ. Some

properties that follow from this assumption are summarised in the following lemma.

Lemma 3.1 AssumeP (s) is defined ons ≥ 0 and is strictly concave and strictly

increasing ins, with P (0) = 0 and withP (s) → 1 ass →∞. Then:

(i) P ′(s) is positive and strictly decreasing ins with P ′(s) → 0 ass →∞.

(ii) σP (s) is strictly increasing ins with σP (0) = 0 andσP (s) →∞ ass →∞.

(iii) P ′(s)σP (s) is strictly increasing ins andP ′(s)σP (s) → 1 ass →∞.

Proof The properties easily follow by direct calculation. For example, the last property

follows from
d

ds
[P ′(s + τ)σP (s + τ)] =

d

ds
[P (s + τ)− (s + τ)P ′(s + τ)] = P ′(s +

τ)− P ′′(s + τ)(s + τ)− P ′(s + τ) = −P ′′(s + τ)(s + τ) > 0 by strict concavity of

P . ¤

In many cases the optimal foraging time under the two source model can be charac-

terised by application of the following lemma.

Lemma 3.2 The derivative ofΓ(s) has the same sign as the expression

r(s)(τ − σG(s))− (γ − r(s))
TP ′(s + τ)σP (s + τ)

1 + TP ′(s + τ)
. (2)

Proof Γ(s) has derivative[(G′(s) + P ′(s + τ)Tγ)(s + τ + P (s + τ)T ) − (G(s) +

P (s + τ)Tγ)(1 + TP ′(s + τ))]/[s + τ + P (s + τ)]2. Simplifying, using the facts that

G(s) = (s+σG(s))G′(s), P (s+τ) = (s+τ +σP (s+τ))P ′(s+τ) andG′(s) = r(s),

we deduce that the derivative has numeratorr(s)(τ − σG(s))(1 + TP ′(s + τ)) −
(γ − r(s))TP ′(s + τ)σP (s + τ) and so overall the derivative has the same sign as the

expression above. ¤

We will see below that the first term in the expression (2)(i.e.r(s)(τ −σG(s))) is often

monotone decreasing for alls ≥ 0, and is positive ats = 0 and is zero ats = t∗.

Conversely, the second term (i.e.(γ − r(s))[TP ′(s + τ)σP (s + τ)]/[1 + TP ′(s + τ)])

is often monotone increasing for alls ≥ 0 and is positive ats = t∗. In such cases

there exists a unique finite values∗ such thatΓ(s) is monotone decreasing fors > s∗

and monotone increasing fors < s∗ (if s∗ > 0), and this value represents the optimal
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foraging time under the model. Some intuition about the situation can be derived from

the schematic diagram in Fig 1. In general, we will see thats∗ < t∗, implying that

potential information transfer has a marked effect on the forager’s behaviour, and that

a forager behaving optimally should return to check for new information with what

might, under a single source model, seem to be a strictly submaximal load.

r(τ − σG)

(γ−r)Tp’σP______
1 + Tp’

(a)

(b)(c)

||

t~ t*

Figure 1: Hereγ, T andτ are constants,r denotesr(s), σG denotesσG(s), P ′ denotes

P ′(s + τ) andσp denotesσP (s + τ). Case (a)γ < r(0); case (b)r(0) < γ < γ̄; case

(c) γ̄ < γ.

Now set

γ̄ = r(0)[1 + τ(1 + TP ′(τ))/(TP ′(τ)σP (τ))] (3)

if r(0) is finite, and set̄γ = ∞ otherwise. Under both models forr(s) we have that

for each fixeds, G(s)/(s + τ) ≤ r(0)s/(s + τ) ≤ r(0), soγ∗1 ≤ r(0) ≤ γ̄. We will

see thatγ∗1 andγ̄ represent upper and lower bounds on the values ofγ for which the

‘foraging-information’ model is applicable in practice. Forγ < γ∗ the rate of reward

at source 2 is less than the maximal reward rate for foraging on source 1, contradicting

our interpretation of source 2 as the more attractive. Conversely, we will see that for

γ ≥ γ̄ the optimal foraging time under the model is zero, reflecting the attractiveness
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of gaining information about the availability source 2 and the fact that the forager

would be better off returning straight away from source 1 without spending any time

foraging.

Lemma 3.3 For r(s) is strictly decreasing ins andγ ≥ γ∗1 , Γ(s) is maximised over

s ≥ 0 at a unique finite values∗, where

(a) s∗ = 0 if and only ifγ ≥ γ̄;

(b) 0 < s∗ < t∗ if and only ifγ∗1 < γ < γ̄;

(c) s∗ = t∗ if and only ifγ = γ∗1 .

Proof

Assumer(s) is positive and strictly decreasing withs, soσG(s) is strictly increasing,

with σG(0) = 0 andσG(t∗) = τ . Hencer(s)(τ − σG(s)) is strictly decreasing on

(0,∞), is positive ats = 0 and is zero ats = t∗.

Similarlyγ−r(s) is strictly increasing, whileP ′(s+τ)σP (s+τ) is positive and strictly

increasing andP ′(s) is positive and strictly decreasing, soTP ′(s + τ)σP (s + τ)/(1 +

TP ′(s + τ)) is positive and strictly increasing. Hence(γ − r(s))TP ′(s + τ)σP (s +

τ)/(1 + TP ′(s + τ)) is strictly increasing and its minimum value is taken ats = 0.

Moreover, its value ats = t∗ is positive ifγ > γ∗1 = r(t∗) and zero ifγ = γ∗1 = r(t∗),

and its value ats = 0 is less thanr(0)(τ − σG(0)) only if γ < γ̄.

Thus if γ∗1 < γ < γ̄ expression (2) is strictly decreasing, is positive ats = 0 and is

negative ats = t∗. In this case there exits a unique values∗ at which the expression

is zero and this value lies in the interval(0, t∗). Since the derivative ofΓ(s) has the

same sign as the expression,s∗ is also the unique stationary point forΓ(s) andΓ(s) is

increasing fors < s∗ and decreasing fors > s∗, sos∗ is the unique maximising value

for Γ(s). However, ifγ = γ∗1 , then expression (2) is strictly decreasing and is zero

s = t∗, soΓ(s) is maximised ats∗ = t∗, while if γ ≥ γ̄ then expression (2) is strictly

decreasing and never positive, soΓ(s) is maximised ats∗ = 0. ¤

For the single source model withr(s) strictly decreasing ins, we have seen in Lemma

2.2 thatγ∗1 = G(t∗)/(t∗ = τ) = r(T ∗). It follows from the characterisation ofs∗ as

the unique zero of expression (2) that the corresponding relationship for the two source

model is:

Γ(s∗) = r(s∗)
[
1 +

τ − σG(s∗)
σP (s∗ + τ)

]
(4)
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displaying clearly the effect ofT andP (s) on the optimal overall reward rate.

Consider now the case (Model 1) wherer(s) = r0 is constant. We will see that ifγ is

close toγ∗1 (γ∗1 ≤ γ ≤ r0(T + τ)/T ), then the optimal foraging time on source 1 for

the two source model is infinite. However, for most values ofγ the possible presence

of information at the nest ensures thats∗ is finite even whenr(s) is constant. This

contrasts sharply with the situation without potential information transfer, where the

optimal time at the food source ist∗ = ∞.

Note also that whenr(s) is constant (sayr0) for the single source model, the rate of

reward is a strictly increasing function of the foraging time, soγ∗1 = r0 andt∗ = ∞.

Lemma 3.4

For r(s) = r0 constant (sot∗ = ∞) andγ > r0(T + τ)/T , Γ(s) is maximised over

s ≥ 0 at a unique finite values∗, where

(a) s∗ = 0 if and only ifγ ≥ γ̄;

(b) s∗ > 0 if and only ifr0(T + τ)/T < γ < γ̄.

For r(s) = r0 constant andγ∗1 ≤ γ ≤ r0(T + τ)/T , Γ(s) is strictly increasing over

s ≥ 0 and we writes∗ = ∞.

Proof

(i) We start with the second statement of the Lemma. The proof follows closely that

of Lemma 4.2. Herer(s) is constant andσG(s) = 0 so the first term in expression (2)

is constant with valuer0τ > 0. If γ = γ∗1 = r0, then the second term is zero, in which

case expression (2) is always positive andΓ(s) is strictly increasing for alls ≥ 0. If

γ > γ∗1 = r0, thenγ−r(s) is constant, with valueγ−r0 > 0, whileP ′(s+τ)σP (s+τ)

is positive and strictly increasing with limiting value1 andP ′(s) is positive and strictly

decreasing with limiting value0. Hence(γ−r(s))TP ′(s+τ)σP (s+τ)/(1+TP ′(s+τ))

is positive and strictly increasing with limiting value(γ − r0)T . If γ∗1 < γ ≤ r0(T +

τ)/T then(γ − r0)T ≤ r0τ , so expression (2) is again again always positive andΓ(s)

is strictly increasing for alls ≥ 0.

For the first statement, note thatγ̄ = r0 + r0τ(1 + TP ′(τ))/(TP ′(τ)σP (τ)) > r0 +

r0τ/T = r0(T + τ)/T. Thus if r0(T + τ)/T < γ < γ̄ expression (2) is strictly

decreasing, is positive ats = 0 and is negative for sufficiently larges. In this case

there exits a unique finite values∗ > 0 at which expression (2) is zero andΓ(s) is

maximised. However, ifγ ≥ γ̄ then expression (2) is strictly decreasing and never

positive, soΓ(s) is maximised ats∗ = 0. ¤
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Finally in this section we note the following (obvious) bounds on the optimal overall

reward rate.

Lemma 3.5

LetΓ∗ = sups Γ(s). Thenγ∗1 ≤ Γ∗ ≤ γ.

Proof

Recall first that for any positive constantsa, b, c, d,

a

b
≤ c

d
=⇒ a

b
≤ a + c

b + d
≤ c

d
(5)

with strict inequalities throughout if the first inequality is strict.

Forγ > γ∗1 , the definition ofγ∗1 implies that for any finites, G(s)/(s + τ) ≤ γ∗1 ≤ γ.

Sinceγ = [P (s + τ)T ]γ/[P (s + τ)T ], applying equation(5) givesG(s)/(s + τ) ≤
[G(s) + P (s + τ)Tγ]/[s + τ + P (s + τ)] ≤ γ. Thusγ∗1 = sups G(s)/(s + τ) ≤
sups[G(s) + P (s + τ)Tγ]/[s + τ + P (s + τ)] ≤ γ and soγ∗1 ≤ Γ∗ ≤ γ. ¤

Note that thatγ∗1 < γ does not always imply thatγ∗1 < Γ∗ < γ. For example, for

constantr(s) = r0 andγ∗1 = r0 < γ < r0(T + τ)/T , it follows from Lemma 3.4 that

γ∗1 = r0 = Γ∗ < γ.

4 Sensitivity analysis

Our model results in particularly clear predictions about the dependence of the optimal

foraging time and the optimal overall reward rate on the source 2 model parameters

γ, T andλ. In general, for cases where0 < s∗ < ∞, the optimal foraging times∗ on

source 1 is strictly decreasing with each of the parametersγ, T andλ and the optimal

overall reward rate is strictly increasing inγ, T andλ (in each case for fixed values of

the other two parameters). Thus a forager acting optimally will spend strictly less time

per trip on source 1, and will do strictly better overall, as each parameter increases –

and in particular will forage for less time per trip on source 1 and do strictly better

overall than under a single source model where only source 1 is available.

These results make intuitive sense. Asγ increases, the reward rate on source 2 becomes

more attractive; asT increases, source 2 effectively becomes more valuable since it is
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available for longer; asλ increases, the frequency of availability of source 2 increases.

In each case, information indicating the availability of source 2 becomes more valuable

or is more likely to be present, and foraging time on source 1 is sacrificed as a result.

Indeed, Lemmas 3.3 and 3.4 predict that if source 2 is particularly rewarding in terms

of the reward rateγ or the expected duration of availabilityT , the forager spends no

appreciable time at source 1, but returns immediately to check for the presence of

information.

Note that in the casesT = 0 and/orλ = 0 the duration and/or the frequency of

availability of source 2 is zero and the model predicts that the forager behaves as if

only source 1 was available. Similarly, ifγ = γ∗1 so the rate of reward on source 2 is

exactly equal to the maximum rate of reward on source 1, then again Lemmas 3.3 and

3.4 imply thats∗ = t∗ andΓ∗ = γ∗1 , so that the forager’s optimal behaviour is the same

as under the single source model and the optimal reward rate is also the same.

More precise statements, covering also the cases wheres∗ = 0 ands∗ = t are given in

the lemmas below. We note first for reference the following property of the Exponen-

tial distribution.

Lemma 4.1

AssumeP (s) = 1 − e−λs for s ≥ 0. Write P (s, λ) and σP (s, λ) to make clear the

dependence of these quantities onλ. ThenP ′(s, λ)σP (s, λ)/(1 +TP ′(s, λ)) is strictly

increasing withλ.

Proof The proof follows either by direct calculation or as a particular application of

Lemma 5.2 below.

Lemma 4.2

Consider those cases when0 < s∗ < t∗ or s∗ = t∗ = ∞ (From Lemmas 3.3 and 3.4

these are the cases where either (a)r(s) is strictly decreasing ins andγ∗1 ≤ γ < γ̄, or

(b) r(s) = r0 is constant andr0 = γ∗1 < r0(T + τ)/T < γ < γ̄). Then for fixed values

of the other two parameters:

(i) s∗ is strictly decreasing in each ofγ, T andλ.

(ii) Γ∗ is strictly increasing in each ofγ, T andλ.

Proof

(i) In the cases considered here,s∗ is the unique value at which expression (2) is zero.
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For fixedT andλ, the second term in the expression increases withγ for each fixeds

while the first term stays constant. Thus if the the expression was zero ats > 0 for a

givenγ then it will be negative ats for a small increase in the parameter to, say,γ′ > γ

and the new zero will be at0 < s′ < s. Thuss∗ decreases with increasingγ.

Similarly, for fixedγ andλ, the second term in expression (2) increases withT for

each fixeds while the first term stays constant, so the same argument shows thats∗

decreases with increasingT .

Finally, for fixedγ andT , Lemma 4.1 shows thatP ′(s, λ)σP (s, λ)/(1 + TP ′(s, λ))

increases withλ so again the second term in expression (2) increases withλ for each

fixeds while the first term stays constant, so agains∗ decreases with increasingλ.

(ii) First considerγ increasing. WriteΓ(s, γ) for the overall reward rate corresponding

to foraging for times on source 1 for the given value ofγ, write sγ for the correspond-

ing optimal foraging time on source 1, and writeΓγ for the corresponding optimal

overall reward rate.

For fixedT andλ, the derivative ofΓ(s, γ) w.r.t. γ is strictly positive, so, for each

fixed s, Γ(s, γ) is strictly increasing inγ. Thus forγ′ > γ, Γ(sγ, γ) < Γ(sγ, γ
′).

Moreover,Γ(sγ, γ
′) < Γ(sγ′ , γ

′) from Lemma 3.3, sincesγ′ < sγ from above andsγ′

is the unique maximising value forΓ(s, γ′). ThusΓ(sγ, γ) < Γ(sγ, γ
′) < Γ(sγ′ , γ

′)

implying that the optimal overall reward rateΓγ is strictly increasing inγ.

Similarly, in appropriate notation, for fixedγ andλ and for each fixeds, the derivative

of γ(s, T ) w.r.t.T has the same sign asγ− [G(s)/(s+ τ)], which is strictly positive as

γ > γ∗1 ≥ G(s)/(s + τ). Thus exactly the same method can be used to show that for

T ′ > T , Γ(sT , T ) < Γ(sT , T ′) < Γ(sT ′ , T
′) implying that the optimal overall reward

rateΓT is strictly increasing inT

Finally, again in appropriate notation, for each fixedγ andT and for each fixeds,

P (s, λ) is strictly increasing inλ, so the derivative ofΓ(s, λ) w.r.t. λ has once again

the same sign asγ − [G(s)/(s + τ)], and so is strictly positive. Thus the same method

also shows that forλ′ > λ, Γ(sλ, λ) < Γ(sλ, λ
′) < Γ(sλ′ , λ

′) implying that the optimal

overall reward rateΓλ is strictly increasing inλ. ¤

Lemma 4.3

Assumes∗ = 0 and consider increasing values of each ofγ, T andλ for fixed values

of the other two parameters. Then:
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(i) the optimal foraging time remains constant ats∗ = 0.

(ii) the optimal overall reward rateΓ∗ is strictly increasing.

Proof

(a) From Lemma 3.3 and Lemma 3.4,s∗ = 0 if and only if γ ≥ γ̄.

Consider fixed values ofγ, T andλ, for whichγ ≥ γ̄. If γ increases toγ′ while T and

λ remain constant, thenγ′ > γ ≥ γ̄, so the optimal foraging time will still bes∗ = 0.

Now considerT increasing toT ′ > T while γ andλ remain constant. Writēγ(T )

to denote the dependence ofγ̄ on T . From the definition of̄γ in (3), the derivative of

γ̄(T ) w.r.t.T is strictly negative, sōγ(T ) is strictly decreasing inT . Thusγ ≥ γ̄(T ) ⇒
γ ≥ γ̄(T ′), so the optimal foraging time will still bes∗ = 0.

Similarly, from Lemma 4.1,[1 + TP ′(τ, λ)]/[P ′(τ, λ)σP (τ, λ)] is strictly decreasing

in λ, so (in obvious notation)̄γ(λ) is also strictly decreasing inλ. As for T above, it

follows that the optimal foraging time remains constant at zero ifλ increases toλ′.

Finally,Γ(s, γ) is strictly increasing in each ofγ, T andλ for fixeds and fixed values of

the other two parameters. Since the optimal foraging time remains constant ats∗ = 0,

Γγ = Γ(0, γ) < Γ(0, γ′) = Γγ′ and the optimal overall reward rate is increasing inγ.

Similar arguments apply for increasingT andλ. ¤

Lemma 4.4

Assumes∗ = t∗ = ∞ andγ∗1 < γ < r0(T + τ)/T and consider increasing values of

each ofγ, T andλ for fixed values of the other two parameters. Then:

(i) the optimal foraging time remains constant ats∗ = ∞;

(ii) the optimal overall reward rateΓ∗ remains constant atΓ∗ = r0.

Proof

From Lemma 3.4,s∗ = t∗ = ∞ if and only if r(s) = r0 is constant andr0 = γ∗1 ≤
γ ≤ r0(T + τ)/T , and in this case the optimal reward rate isr0.

Consider fixed values ofγ, T andλ for whichγ∗1 ≤ γ < r0(T + τ)/T . This inequality

will still be satisfied for sufficiently small increases inγ and/orT , and will clearly still

be satisfied ifλ increases, so in each case it will still be true thats∗ = ∞ and the

optimal reward rate isr0. ¤

Lemma 4.5

Assumes∗ = t∗ = ∞ andγ = r0(T + τ)/T . Then asλ increases for fixed values of
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the other two parameters:

(i) the optimal foraging time remains constant ats∗ = 0;

(ii) the optimal overall reward rateΓ∗ remains constant atΓ∗ = r0.

However, as each ofγ andT increase for fixed values of the other two parameters:

(i) the optimal foraging times∗ is strictly decreasing and finite;

(ii) the optimal overall reward rateΓ∗ is strictly increasing.

Proof

Consider fixed values ofγ, T andλ for which γ∗1 < γ = r0(T + τ)/T . Again, this

inequality is independent ofλ, so asλ increases it will still be true thats∗ = ∞ and

the optimal reward rate isr0.

However, ifγ increases toγ′ > γ for fixed T andλ, thenγ′ > r0(T + τ)/T . Denote

the new optimal overall reward rate byΓγ′ and the new optimal foraging time bysγ′.

Now chooseγ′′ with r0(T + τ)/T < γ′′ < γ′. Then from Lemma 3.4,sγ′ < sγ′′ < ∞
and from Lemma 4.2Γγ′ > Γγ′′ . However, for any fixeds, G(s)/(s + τ) < γ∗1 , and

hereγ∗1 = r0 < r0(T + τ)/T < γ′′. Thus, as in Lemma 3.5,G(s)/(s + τ) < [G(s) +

TP (s+τ)]/[s+τ +TP (s+τ)] = Γ(s, γ′′) ≤ Γγ′′ , sor0 = γ∗1 = sups G(s)/(s+τ) ≤
Γγ′′ < Γγ′. Thus asγ increases toγ′, the optimal foraging times∗ strictly decreases

and becomes finite and the optimal overall reward rateΓ∗ strictly increases fromr0 to

Γγ′ > r0.

Finally, sincer0(T + τ)/T decreases with increasingT , if T increases toT ′ > T for

fixedγ andλ, thenγ > r0(T
′ + τ)/T ′ and an exactly similar argument applies. ¤

5 General models forP (s)

The models described so far have restricted attention to the simple case where source

2 becomes available at a constant rateλ, so thatP (s) = 1 − e−λs. In this section we

will show that, under appropriate assumption, all the results above carry over to more

general models forP (s).

For concreteness, assume the functionP can be parameterised by a parameterλ, with

0 ≤ λ < ∞, and writeP (s, λ) to indicate the dependence on both the arguments and

the parameterλ. Simple standard examples include the Exponential distribution, where

P (s, λ) = 1− e−λs, and the Pareto distribution, whereP (s, λ) = 1− (c/(c + s))λ.
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We noted with Lemma 3.1 that the existence and uniqueness of the optimal foraging

time depended only on the fact thatP (s) was strictly concave and strictly increasing

in s. One indicator of concavity is the functionσP (s), which in this extended notation

becomesσP (s, λ) ≡ (P (s, λ)/P ′(s, λ)) − s. To show that the optimal foraging time

and the optimal overall reward rate are monotone functions of the source 2 model

parameters, we need to make the following additional assumptions aboutP (s, λ) and

σP (s, λ).

Assumption 5.1

(i) P (s, λ) is defined ons ≥ 0 and is strictly concave and strictly increasing ins,

with P (0, λ) = 0 andP (s, λ) → 1 ass →∞.

(ii) As λ increases from0 to∞ P (s, λ) is strictly increasing from0 to 1.

(iii)
∂

∂λ
P ′(s, λ)σP (s, λ) > 0.

(iv)
∂2

∂λ∂s
σP (s, λ) > 0. ¤

These assumptions are satisfied for several distributions of interest, including the Ex-

ponential and Pareto cases. For example, in the Exponential caseP (s, λ) = 1 − e−λs

andP (s, λ)− sP ′(s, λ) = 1− e−λs − λse−λs

so
∂

∂λ
[P (s, λ)− sP ′(s, λ)] = se−λs − se−λs + s2λe−λs > 0.

Similarly P (s, λ)/P ′(s, λ) = (eλs − 1)/λ

so
∂

∂λ
[P (s, λ)/P ′(s, λ)] = [λseλs − (eλs − 1)]/λ2 = [1 + (λs− 1)eλs]/λ2 > 0

since the function[1 + (x− 1)ex] is zero atx = 0 and is positive forx > 0.

One might also hypothesis that∂
∂λ

P ′(s, λ) < 0 but this is not always true for the

distributions of interest. For example, in the Exponential case,∂
∂λ

P ′(s, λ) = (1 −
λs)e−λs). This is positive forλ < s, soP ′(s, λ) increases withλ until λ = s.

Lemma 5.2

Assume∂
∂λ

P ′(s, λ)σP (s, λ) > 0 and ∂2

∂λ∂s
σP (s, λ) > 0.

ThenP ′(s, λ)σP (s, λ)/(1 + TP ′(s, λ)) is strictly increasing withλ.

Proof

WriteP ′(s, λ) for ∂
∂s

P (s, λ) andPλ(s, λ) for ∂
∂λ

P (s, λ). SinceσP (s, λ) = P (s, λ)/P ′(s, λ)−
s, the assumptions above imply that∂

∂λ
[P (s, λ)−sP ′(s, λ)] > 0 and ∂

∂λ
[P (s, λ)/P ′(s, λ)] >
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0. ThusPλ(s, λ)− sP ′
λ(s, λ) > 0 andPλ(s, λ)P ′(s, λ)− P (s, λ)P ′

λ(s, λ) > 0, which

gives

∂

∂λ

[
P ′(s, λ)σP (s, λ)

1 + TP ′(s, λ)

]

=
∂

∂λ

[
P (s, λ)− sP ′(s, λ)

1 + TP ′(s, λ)

]

=
[(Pλ(s, λ)− sP ′

λ(s, λ))(1 + TP ′(s, λ))− (P (s, λ)− sP ′(s, λ))TP ′
λ(s, λ)]

[1 + TP ′(s, λ)]2

=
[(Pλ(s, λ)− sP ′

λ(s, λ)) + T (Pλ(s, λ)P ′(s, λ)− P (s, λ)P ′
λ(s, λ))]

[1 + TP ′(s, λ)]2

> 0.

¤

The only properties ofP (s, λ) that were assumed in deriving the results in the previous

sections were (in Lemma 3.1) thatP (s) was defined ons ≥ 0 and was strictly concave

and strictly increasing ins, with P (0) = 0 and withP (s) → 1 ass →∞, and (Lemma

4.1) thatP ′(s, λ)σP (s, λ)/(1+TP ′(s, λ)) was strictly increasing withλ. Thus all those

results hold for any model forP (s, λ) which satisfies Assumption 5.1

6 Limiting Models

As T increases monotonically over the interval[0,∞), we can again show that the

condition (3) for the optimal foraging time to be positive changes monotonically to the

T -independent condition:

γ ≤ r(0)[1 + τ/σP (τ)], (6)

which we assume is satisfied for a non-degenerate problem.

For T = 0 the reward function again reduces to that for the single source model,

since each visit to source 2 only lasts for a zero amount of time, so agains∗0 = t∗

andΓ∗0 ≡ Γ(s∗0, 0) = γ∗1 . As T increases monotonically in the interval(0,∞), it is

clear from the form ofΓ(s) in (1) thatΓ(s) is bounded above byγ and increases toγ

for each fixeds. HenceΓ∗T converges toγ asT increases to∞. It might also seem

that, asT increases, the optimal foraging time will tend to zero, in particular ifγ >

r(0). However, forγ satisfying (6), we can show that asT increases monotonically
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in the interval(0,∞), Γ(s∗(T ), T ) increases monotonically toγ but s∗(T ) decreases

monotonically to a positive limiting values∗∞, wheres∗∞ is the unique solution of the

equation

r(τ − σG(s)) = (γ − r(s))σP (s + τ).

This is precisely the equation for the optimal foraging time on source 1 in an average

cost semi-Markov decision process where the forager has probabilityP (s + τ) of

moving to source 2 at the end of each round trip to source 1, and then stays on source

2 indefinitely.

As λ increases monotonically over the interval[0,∞), we can show that the non-

degeneracy condition from (3) for the optimal foraging time to be positive becomes

monotonically modified to theλ-independent condition:

γ ≤ r(0)[1 + τ/T ], (7)

which we assume is satisfied for a non-degenerate problem.

As λ increases to∞, the problem reduces to one in which source 2 is certain to be on

each time the forager returns (or equivalently, in the ‘foraging-information’ version,

the recovery time is constant and independent of the foraging trip time).

Let s∗∞ be the optimal foraging time for this limiting problem, and letΓ∗∞ be the opti-

mal reward for the limiting problem. We can show that, asλ increases monotonically

over the interval[0,∞), s∗λ decreases monotonically tos∗∞ wheres∗∞ is the unique

solution of the equation

r(s)(τ − σG(s)) = (γ − r(s))T.

Furthermore,Γ∗λ increases monotonically toΓ∗∞ < γ, where ats = s∗∞ (by comparison

with (4)) Γ(s, λ) satisfies the equation

Γ(s,∞) = r(s)

[
1 +

τ − σG(s)

σP (s + τ)

]
.
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