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Abstract

We consider a central place forager with two qualitatively different types of
food sources; type 1 sources are always available whereas type 2 sources become
available intermittently and this availability is signalled by information present
at the central place. Source 1 is modelled using a standard patch foraging model
whereas source 2 is modelled somewhat schematically in terms of the presence
of information, the time spent at the source and the average reward received. The
only decision in the model is the time spent by the forager at source 1 on each trip.
We characterise the optimal foraging time and the optimal overall reward rate un-
der the two source model and compare it with the corresponding quantities for
a single source model. We show that, in general, the potential for information
transfer has a marked effect on the forager’s behaviour, and that a forager behav-
ing optimally should return to check for new information with what might, under
a single source model, seem to be a strictly submaximal load. We consider the
dependence of the optimal foraging time and the optimal overall reward rate on
the source 2 model parameters, and also show that our qualitative results hold for
a variety of models for the time spent on source 2.
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1 Introduction

We consider a central place forager with two qualitatively different types of food
sources. The essential difference is that type 1 sources are always available whereas
type 2 sources become available intermittently and this availability is signalled by in-
formation present at the central place. Amongst other things, our analysis highlights
the effect the availability of this information has on the behaviour of the forager on
standard type 1 sources.

Type 1 sources are modelled using a standard patch foraging model (Charnov 1976,
Stephens & Krebs 1986). We writé¢t) > 0 for the rate at which the forager gains
food when the current time on a patchiiand we assume(t) is either constant or is
decreasing witht. We write 7 for the travelling time for a single round trip from the
central place to a patch and back. As is usual with such models, we assume either that
r(t) is constant, reflecting a resource that offers a constant supply of food (Model 1) of
thatr(¢) is strictly decreasing with, reflecting a resource that gets depleted over each
foraging period (Model 2).

To allow for a variety of interpretations and applications, source 2 is modelled some-
what more schematically in terms of the presence of information, the time spent at the
source and the average rewards received. We assume that each time the forager returns
from source 1, there is a certain probability that information will be present indicating
the availability of source 2. This probability will generally depend on the length of
time the forager has been away. We wiités) for the probability that such informa-

tion is present when the forager returns from a round trip of total lesngptrsource 1.

For clarity of presentation we will initially assume that source 2 becomes available at
some constant rate > 0, so thatP(s) = 1 — e~** and1/\ can be interpreted as the
expected time until source 2 is again available. However in Section 5 we show that our
results extend directly to a wider class of modelsigk) (ref!!).

If a forager arrives at the central place and no information is present, then it immedi-
ately returns to source 1. If information is present, then the forager exploits source 2
for a time with expected length’ > 0, until the source is no longer available. This
may include several trips by the forager. It then recommences foraging at source 1,
irrespective of the current information state. We wrjtéor the overall rate at which

food is gained at source 2, so the expected total food gained from the source at each



exploitation isy7". Note that the only decision in the model is the time spent by the
forager at source 1 on each trip.

Finally, we note an alternative interpretation in terms of a ‘foraging-recovery’ model,
which can be viewed as complementary to previous treatments of diving models with
convex-increasing un-rewarded recovery times (Houston & McNamara 1985, Houston
& McNamara 1999). Consider a model under which each foraging round trip of total
lengtht + 7 is automatically followed by a recovery period of lend(¥ + 7)T" during

which the forager receives a reward at rateAssume the recovery time is a bounded
increasing concave function of the total trip time and is zero if the total trip time is
zero, i.e. thatP(t) is a bounded increasing concave functiort ofith P(0) = 0. The
average reward under this model, for a policy with foraging tinaad journey time

T, is exactly the same as under the original model. To distinguish between models we
refer to this version as the 'foraging-recovery’ model and refer to the original model
as the 'foraging-information’ model.

For a given choice of, the 'foraging-recovery’ model evolves deterministically as a
sequence of reward cycles, each of fixed total lerigtht + P(t + 7)1, while the
'foraging-information’ model evolves stochastically, with each reward cycle compris-
ing a random number of foraging trips to source 1 followed by a single visit to source
2. However, although conceptually different, the models are operationally equivalent
in that for the same choice of parameter values they lead to the same optimal choice of
foraging time and the same optimal reward. While it was natural under the foraging-
information’ model to focus on the case> ~;, for the 'foraging-recovery’ model it

may be more natural to consider the case ;.

2 Review of the single-source model

Previous authors (Charnov 1976, Stephens & Krebs 1986) have considered the ‘single-
source’ case where information is not included in the model and the forager exclusively
uses sources of type 1. The foraging process is modelled as a standard renewal reward
process with renewal points at the epochs when the forager starts out on a new foraging
trip. Assume each time the forager makes a trip, it stays for attiomea source before



returning. WriteG(¢) for the total food received in that time, then

and the reward rate over a round trip to source 1 with foraging tirmed total travel
timerisis

G(t)

t+71

In line with standard foraging theory we restrict attention to the following models.

Assumption 2.1

We assume(s) is defined ors > 0, is positive and either

(i) r(s) = ro is constant (Model 1), or

(il) r(s) is strictly decreasing ix (Model 2). O

Define
oc(s) = (G(s)/G'(s)) — s,

so thato(s) as the distance from the origin to the point where the tangent to the curve
G(s) ats intersects the-axis. In particularg(s) can be interpreted as the travel time
for which the foraging time would be optimal for the single-source model, and thus
can be a useful tool for developing intuition about the optimal foraging time for the
single source model (Charnov 1976, Stephens & Krebs 1986).

Now let t* be the optimal foraging time for this single source model and denote the
corresponding optimal reward by

G(t)
t+71

*

"= Sltlp

The following two lemmas follow summarise results for the single source case, and
follow from standard treatments of central place foraging or by direct calculation.

Lemma 2.2 If r(s) is strictly decreasing then:

(i) G(s) is strictly concave and strictly increasing inwith G(0) = 0 andG'(s) =
r(s).

(i) G(s)/(s+ 7)is maximised at a finite valug, and~; = G(t*)/(t* + 1) = r(t").
(iii) oq(s) is strictly increasing ins with o(0) = 0 andog(t*) = 7. O



Lemma 2.3 If r(s) is constant (say,)then:
(i) G(s) =rgsandog(s) =0forall s > 0.
(i) G(s)/(s+ 1) =rgs/(s+ 7) is strictly increasing ins for all s > 0, SO0~} = ro.
In this case we writ¢* = oc. O

3 Two source model with information

Under the two-source model with information, a forager that arrives at the central
place when no information is present immediately returns to source 1. If information
is present, then the forager makes a single visit to source 2 of |gngiid then re-
commences foraging at source 1, irrespective of the information state when the forager
finished on source 2. For a given fixed foraging timméhe number of visits to source

1 between each visit to source 2 has a Geometric distribution with ydags + 7).
Consider a reward cycle that starts each time the forager returns from source 2 and
ends the next time the forager returns from source 2. During the cycle the forager will
make on averageé/P(s + 1) trips to source 1, each with a total trip time (foraging
plus journey) ofs + 7 and each earning rewa¢d s), and will make one visit to source

2 of total time7" and total rewardyT. Then the expected length of the cycle s+
7)/P(s + 7) + T and the expected reward during the cyclé/is)/P(s + 1) + T.

Write I'(s) for the average reward rate for this fixed foraging tisne 0. Then

I(s) = G(s)/P(s+ 1)+ Tv _ G(s)+ P(s+7)Ty
(s+7)/P(s+7)+T s+7+P(s+7)T"

(1)

Now for s > 0 we define

op(s) = (P(s)/P'(s)) — s,

Just asr(s) was useful in studying the single source model, characterising properties
of P(s) in terms ofop(s) can provide useful information in the two source model. In
particular, we can interprety(s) as the distance from the origin to the point where the
tangent to the curv®(s) at s intersects the:-axis andP’(s)op(s) as the height from

the origin to the point where it intersects thaxis.

For ease of presentation we have assumed that information about the availability of
source 2 becomes present at rajeso P(s) has the Exponential distribution with
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parameter\. In fact, all that is really necessary for existence and uniqueness of an
optimal foraging time is thaP(s) is strictly concave and strictly increasingdnThis

will certainly be true for the Exponential distribution whePés) = 1 — e=*¢, but is

also true, for example, for the Pareto distribution whé¢e) = 1—(c/(c+s))*. Some
properties that follow from this assumption are summarised in the following lemma.

Lemma 3.1 AssumeP(s) is defined ons > 0 and is strictly concave and strictly
increasing ins, with P(0) = 0 and withP(s) — 1 ass — oo. Then:

(i) P'(s)is positive and strictly decreasing inwith P'(s) — 0 ass — oc.

(i) op(s) is strictly increasing ins with op(0) = 0 andop(s) — oo ass — .

(iii)y P'(s)op(s) is strictly increasing ins and P'(s)op(s) — 1 ass — oc.

Proof The properties easily follow by direct calculation. For example, the last property
d d
follows from d—[P’(s +T)op(s+7)] = d—[P(s +7)—(s+71)P(s+7)]=P(s+
S S
7)—P'(s+7)(s+7)—P(s+71)=—P"(s+7)(s+7) > 0 by strict concavity of
P. 0]

In many cases the optimal foraging time under the two source model can be charac-
terised by application of the following lemma.

Lemma 3.2 The derivative of'(s) has the same sign as the expression

r(6)r = a(s) — (0 r(s) T e L) @
Proof I'(s) has derivativg(G'(s) + P'(s + 7)Ty)(s + 7+ P(s + 7)T) — (G(s) +
P(s+7)Ty)(1+TP'(s+7))]/[s + 7+ P(s + 7)]*. Simplifying, using the facts that
G(s) = (s+oa(s))G (s), P(s+71) = (s+74+0p(s+7))P'(s+71)andG'(s) = r(s),

we deduce that the derivative has numeratoy)(r — o¢(s))(1 + TP'(s + 7)) —

(v —r(s))TP'(s+ 7)op(s + 7) and so overall the derivative has the same sign as the
expression above. O

We will see below that the first term in the expression (2)ti(e) (7 — o (s))) is often
monotone decreasing for all > 0, and is positive at = 0 and is zero at = t*.
Conversely, the second term (i(e.— r(s))[T'P'(s +T)op(s +7)]/[L + TP (s + 7)])

is often monotone increasing for all> 0 and is positive at = t*. In such cases
there exists a unique finite valyé such thafl’(s) is monotone decreasing fer> s*
and monotone increasing fer< s* (if s* > 0), and this value represents the optimal
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foraging time under the model. Some intuition about the situation can be derived from
the schematic diagram in Fig 1. In general, we will see thak ¢*, implying that
potential information transfer has a marked effect on the forager’s behaviour, and that
a forager behaving optimally should return to check for new information with what
might, under a single source model, seem to be a strictly submaximal load.

~(© (b)

@)

(y-n)Tp'op
1+Tp

. r(t—og)

% N

Figure 1: Herey, T andr are constants, denotes:(s), o denotesr;(s), P’ denotes
P'(s + 1) ando, denotesrp(s + 7). Case (a)y < r(0); case (b)(0) < v < 7; case
€7 <~

Now set
=101+ 7(1+TP(r))/(TP(r)op(T))] 3)

if 7(0) is finite, and sety = oo otherwise. Under both models fofs) we have that

for each fixeds, G(s)/(s +7) < r(0)s/(s + 7) < r(0), sov; < r(0) < 7. We will

see thaty; and~ represent upper and lower bounds on the valuesfof which the
‘foraging-information’ model is applicable in practice. Fpk ~x the rate of reward

at source 2 is less than the maximal reward rate for foraging on source 1, contradicting
our interpretation of source 2 as the more attractive. Conversely, we will see that for
~ > 4 the optimal foraging time under the model is zero, reflecting the attractiveness
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of gaining information about the availability source 2 and the fact that the forager
would be better off returning straight away from source 1 without spending any time
foraging.

Lemma 3.3 For r(s) is strictly decreasing is and~y > ~;,T'(s) is maximised over
s > 0 at a unique finite value*, where

(@) s* =0ifand only ify > 7;

(b)0 < s* < t*ifand only ifyy < v < 7;

(c) s* =t*ifand only ify = ~7.

Proof

Assumer(s) is positive and strictly decreasing with soo(s) is strictly increasing,
with 04(0) = 0 andog(t*) = 7. Hencer(s)(T — o¢(s)) is strictly decreasing on
(0, 00), is positive ats = 0 and is zero at = ¢*.

Similarly y—r(s) is strictly increasing, whilé”’(s+7)op(s+7) is positive and strictly
increasing and” (s) is positive and strictly decreasing, @' (s + 7)op(s+7)/(1 +
TP'(s+ 7)) is positive and strictly increasing. Hen¢e — r(s))TP'(s + 7)op(s +
7)/(1L + TP'(s + 7)) is strictly increasing and its minimum value is takersat 0.
Moreover, its value at = t* is positive ify > +f = r(t*) and zero ify = ~; = r(t¥),
and its value at = 0 is less than(0)(7 — o¢(0)) only if v < 7.

Thus ifv§ < v < 7 expression (2) is strictly decreasing, is positivesat 0 and is
negative ats = t*. In this case there exits a unique vakieat which the expression

is zero and this value lies in the interv@, t*). Since the derivative df (s) has the
same sign as the expressiehjs also the unique stationary point fbfs) andI'(s) is
increasing fors < s* and decreasing for > s*, sos* is the uniqgue maximising value
for I'(s). However, ify = 47, then expression (2) is strictly decreasing and is zero
s = t*, sol'(s) is maximised at* = t*, while if v > 5 then expression (2) is strictly
decreasing and never positive,I5) is maximised at* = 0. O

For the single source model witfis) strictly decreasing is, we have seen in Lemma
2.2 thaty; = G(t*)/(t* = 7) = r(T™*). It follows from the characterisation af as
the unique zero of expression (2) that the corresponding relationship for the two source

model is:
T — UG(S*)]

op(s*+71)

[(s*) =r(s") {1 + 4)

8



displaying clearly the effect df' and P(s) on the optimal overall reward rate.

Consider now the case (Model 1) whet@) = r( is constant. We will see that if is
close toy; (vf < v < ro(T'+ 7)/T), then the optimal foraging time on source 1 for
the two source model is infinite. However, for most values tiie possible presence

of information at the nest ensures thdtis finite even whemnr(s) is constant. This
contrasts sharply with the situation without potential information transfer, where the
optimal time at the food source s = oc.

Note also that when(s) is constant (say,) for the single source model, the rate of
reward is a strictly increasing function of the foraging timep$e= r, andt* = oc.

Lemma 3.4

For r(s) = ry constant (sad* = oo) andy > ro(T + 7)/T', I'(s) is maximised over
s > 0 at a unique finite value*, where

(@) s* =0ifandonly ify > 7;

(b) s* > 0ifand only ifro(T + 7)/T < v < 7.

For r(s) = ro constant andy; < ~ < ro(T + 7)/T, I'(s) is strictly increasing over
s > 0 and we writes* = oc.

Proof

(i) We start with the second statement of the Lemma. The proof follows closely that
of Lemma 4.2. Here(s) is constant and(s) = 0 so the first term in expression (2)
is constant with value,r > 0. If v = ~; = ro, then the second term is zero, in which
case expression (2) is always positive di{d) is strictly increasing for alk > 0. If

v > ~F = 1o, theny—r(s) is constant, with valug —rq > 0, while P'(s+7)op(s+7)

is positive and strictly increasing with limiting valueand P’(s) is positive and strictly
decreasing with limiting value. Hence(y—r(s))TP'(s+7)op(s+7)/(1+TP'(s+7))

is positive and strictly increasing with limiting valde — r)7T". If 77 <y < ro(T +
7)/T then(y — )T < ro7, SO expression (2) is again again always positivelafd

is strictly increasing for alk > 0.

For the first statement, note that= rq + ro7(1 + TP'(7)) /(TP (1)op(T)) > 10 +
ro7/T = ro(T + 7)/T. Thus if ro(T" + 7)/T < v < 7 expression (2) is strictly
decreasing, is positive at= 0 and is negative for sufficiently large In this case
there exits a unique finite valug¢ > 0 at which expression (2) is zero amds) is
maximised. However, ify > 4 then expression (2) is strictly decreasing and never
positive, sd(s) is maximised at* = 0. O



Finally in this section we note the following (obvious) bounds on the optimal overall
reward rate.

Lemma 3.5
LetI™ = sup,['(s). Them; < T < ~.

Proof
Recall first that for any positive constantd, ¢, d,
a_c _, a_atec_c
b~ d b~ b+d~ d
with strict inequalities throughout if the first inequality is strict.

(5)

For~y > ~f, the definition ofy; implies that for any finites, G(s)/(s + 7) < 5 < 7.
Sincey = [P(s + 7)T)y/[P(s + 7)T], applying equation(5) give&§(s)/(s + 7)
G(s) + P(s+ 7)Tv]/[s + T+ P(s + 7)] < . Thus~; = sup,G(s)/(s + )
sup,[G(s) + P(s +7)T7]/[s+ 7+ P(s+ 7)) <yand soy; <TI'* <~.

+7) <
+7) <
O
Note that thaty; < ~ does not always imply that; < I'* < ~. For example, for

constant(s) = ro andy; = ro < v < ro(T + 7)/T, it follows from Lemma 3.4 that
n=ro=I" <.

4  Sensitivity analysis

Our model results in particularly clear predictions about the dependence of the optimal
foraging time and the optimal overall reward rate on the source 2 model parameters
~,T and\. In general, for cases whebe< s* < oo, the optimal foraging time* on
source 1 is strictly decreasing with each of the parametéfsand A and the optimal
overall reward rate is strictly increasingin7’ and\ (in each case for fixed values of

the other two parameters). Thus a forager acting optimally will spend strictly less time
per trip on source 1, and will do strictly better overall, as each parameter increases —
and in particular will forage for less time per trip on source 1 and do strictly better
overall than under a single source model where only source 1 is available.

These results make intuitive sense.~Aiacreases, the reward rate on source 2 becomes
more attractive; a$’ increases, source 2 effectively becomes more valuable since it is
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available for longer; as increases, the frequency of availability of source 2 increases.
In each case, information indicating the availability of source 2 becomes more valuable
or is more likely to be present, and foraging time on source 1 is sacrificed as a result.
Indeed, Lemmas 3.3 and 3.4 predict that if source 2 is particularly rewarding in terms
of the reward rate/ or the expected duration of availabiliy, the forager spends no
appreciable time at source 1, but returns immediately to check for the presence of
information.

Note that in the cases = 0 and/or\ = 0 the duration and/or the frequency of
availability of source 2 is zero and the model predicts that the forager behaves as if
only source 1 was available. Similarly,4f= ~; so the rate of reward on source 2 is
exactly equal to the maximum rate of reward on source 1, then again Lemmas 3.3 and
3.4 imply thats* = ¢* andIl™ = ~{, so that the forager’s optimal behaviour is the same
as under the single source model and the optimal reward rate is also the same.

More precise statements, covering also the cases where) ands* = t are given in
the lemmas below. We note first for reference the following property of the Exponen-
tial distribution.

Lemma4.1

AssumeP(s) = 1 — e for s > 0. Write P(s,\) andop(s,\) to make clear the
dependence of these quantities)ormhenP’ (s, \)op(s, \) /(1 +TP'(s, \)) is strictly
increasing with\.

Proof The proof follows either by direct calculation or as a particular application of
Lemma 5.2 below.

Lemma 4.2

Consider those cases whén< s* < t* or s* = t* = oo (From Lemmas 3.3 and 3.4
these are the cases where either«&) is strictly decreasing is and~; < v < 4, or
(b) r(s) = r¢ is constant and, = v < ro(T' 4+ 7)/T < v < 7). Then for fixed values
of the other two parameters:

(i) s*is strictly decreasing in each of 7" and \.

(i) I'* is strictly increasing in each of, T" and \.

Proof
(i) Inthe cases considered heséjs the unique value at which expression (2) is zero.
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For fixedT and ), the second term in the expression increases withr each fixeds
while the first term stays constant. Thus if the the expression was zero @kfor a
given~ then it will be negative at for a small increase in the parameter to, say;
and the new zero will be & < s’ < s. Thuss* decreases with increasing

Similarly, for fixedy and \, the second term in expression (2) increases Witlor
each fixeds while the first term stays constant, so the same argument shows‘that
decreases with increasirg

Finally, for fixedy andT, Lemma 4.1 shows tha®’(s, \)op(s, \)/(1 + TP'(s, \))
increases with\ so again the second term in expression (2) increases\ith each
fixed s while the first term stays constant, so agsiirdecreases with increasing

(i) First considery increasing. Writd'(s, ) for the overall reward rate corresponding
to foraging for times on source 1 for the given value ¢f write s, for the correspond-
ing optimal foraging time on source 1, and write for the corresponding optimal
overall reward rate.

For fixed T and ), the derivative ofl'(s,~) w.r.t. v is strictly positive, so, for each
fixed s, I'(s,~) is strictly increasing iny. Thus fory’ > ~, I'(s,,v) < I'(s,,7).
Moreover,I'(s,,v") < I'(s,,~") from Lemma 3.3, since,, < s, from above and.,
is the unique maximising value fdt(s,~’). ThusI'(s,,v) < I'(s,,7) < I'(sy,7)
implying that the optimal overall reward rake is strictly increasing iny.

Similarly, in appropriate notation, for fixedand\ and for each fixed, the derivative

of v(s,T) w.r.t. T has the same sign as- [G(s)/(s+ 7)], which is strictly positive as

v > 75 > G(s)/(s + 7). Thus exactly the same method can be used to show that for
T >T,T(sp,T) < U(sp,T") < I'(sy, T") implying that the optimal overall reward
ratel'r is strictly increasing iff’

Finally, again in appropriate notation, for each fixgc&and'I" and for each fixed;,
P(s, A) is strictly increasing in\, so the derivative of (s, \) w.r.t. A\ has once again
the same sign ag— [G(s)/(s + 7)], and so is strictly positive. Thus the same method
also shows that fok’ > X, I'(sy, A) < I'(sa, ') < I'(sn, \') implying that the optimal
overall reward raté’, is strictly increasing in. 0J

Lemma 4.3
Assumes* = 0 and consider increasing values of eachmof” and A for fixed values
of the other two parameters. Then:
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(i) the optimal foraging time remains constantsit= 0.
(ii) the optimal overall reward ratdé™ is strictly increasing.

Proof
(a) From Lemma 3.3 and Lemma 3#,= 0 if and only if v > 7.

Consider fixed values of, T" and A, for which~y > 7. If v increases te’ while 7" and
A remain constant, theyl > ~ > 7, so the optimal foraging time will still be* = 0.

Now considerI" increasing tdl” > T while v and A remain constant. Write(T')
to denote the dependenceybn 7. From the definition ofy in (3), the derivative of
~(T) w.r.t. T is strictly negative, s§(7T') is strictly decreasing iff’. Thusy > 3(T') =
v > 3(T"), so the optimal foraging time will still be* = 0.

Similarly, from Lemma 4.1[1 + TP'(7, \)]/[P'(T, A\)op(T, \)] is strictly decreasing
in A, so (in obvious notationy(\) is also strictly decreasing ih. As for 7" above, it
follows that the optimal foraging time remains constant at zeraiifcreases to.'.

Finally, I'(s, ) is strictly increasing in each af 7" and for fixed s and fixed values of
the other two parameters. Since the optimal foraging time remains constant dt,
I, =1(0,v) < I'(0,4") =I',, and the optimal overall reward rate is increasingin
Similar arguments apply for increasifigand \. 0J

Lemma 4.4

Assumes* = t* = oo andy; < v < ro(T + 7)/T and consider increasing values of
each ofy, T"and \ for fixed values of the other two parameters. Then:

(i) the optimal foraging time remains constantsdt= oo;

(ii) the optimal overall reward raté™ remains constant dt* = ry.

Proof
From Lemma 3.4s* = t* = oo if and only if r(s) = r( is constant andy = ~; <
v <ro(T + 7)/T, and in this case the optimal reward rategjs

Consider fixed values of, 7" and\ for which~; < v < ro(7 + 7)/7'. This inequality
will still be satisfied for sufficiently small increases+yrand/orT’, and will clearly still
be satisfied ifA increases, so in each case it will still be true thiat= oo and the
optimal reward rate is;. O

Lemma 4.5
Assumes* = t* = oo and~y = ro(T + 7)/T. Then as\ increases for fixed values of

13



the other two parameters:

(i) the optimal foraging time remains constantsit= 0;

(ii) the optimal overall reward ratd™* remains constant dt* = r.

However, as each of andT increase for fixed values of the other two parameters:
(i) the optimal foraging time* is strictly decreasing and finite;

(ii) the optimal overall reward raté™ is strictly increasing.

Proof

Consider fixed values of, T and A for which~; < v = ro(T + 7)/T. Again, this
inequality is independent of, so as\ increases it will still be true that* = oo and
the optimal reward rate ig,.

However, ify increases to’ > ~ for fixed " and\, theny’ > ro(T" + 7)/7". Denote
the new optimal overall reward rate by, and the new optimal foraging time By, .
Now choosey” with 7o(T + 7)/T < ~" < ~'. Then from Lemma 3.45,/ < s.,» < 00
and from Lemma 4.2, > I'.». However, for any fixed, G(s)/(s + 7) < 77, and
hereyf =rq <ro(T 4+ 7)/T < +". Thus, as in Lemma 3.57(s) /(s + 7) < [G(s) +
TP(s+7)|/[s+7+TP(s+71)] =T(s,7") <., s0rg =77 =sup,G(s)/(s+7) <
I',» < T'y. Thus asy increases to/, the optimal foraging time* strictly decreases
and becomes finite and the optimal overall reward Fétstrictly increases from, to
'y > ro.

Finally, sincery(7" + 7)/T decreases with increasifig if 7" increases td” > T for
fixed and, theny > ro(7" 4+ 7) /1" and an exactly similar argument applies. O

5 General models forP(s)

The models described so far have restricted attention to the simple case where source
2 becomes available at a constant ratso thatP(s) = 1 — e~**. In this section we

will show that, under appropriate assumption, all the results above carry over to more
general models foP(s).

For concreteness, assume the functtboan be parameterised by a parametawith

0 < X < oo, and writeP(s, \) to indicate the dependence on both the arguraemid

the parametek. Simple standard examples include the Exponential distribution, where
P(s,\) =1 — e, and the Pareto distribution, whergs, \) = 1 — (¢/(c + s))*.
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We noted with Lemma 3.1 that the existence and uniqueness of the optimal foraging
time depended only on the fact th&fs) was strictly concave and strictly increasing

in s. One indicator of concavity is the functions(s), which in this extended notation
becomesrp(s, \) = (P(s,\)/P'(s,\)) — s. To show that the optimal foraging time
and the optimal overall reward rate are monotone functions of the source 2 model
parameters, we need to make the following additional assumptions &eut) and

op(s, ).

Assumption 5.1

(i) P(s, ) is defined ors > 0 and is strictly concave and strictly increasing 4n
with P(0,\) = 0andP(s,\) — 1 ass — oo.

(i) As X increases fron) to co P(s, A) is strictly increasing frond) to 1.

... 0

(iii) 52]3/(3, Nop(s,A) > 0.

W) 5305
These assumptions are satisfied for several distributions of interest, including the Ex-
ponential and Pareto cases. For example, in the Exponentialtasg) = 1 — e
andP(s,\) —sP'(s,\) =1 — e — hse™*

SO%[P(S, A) = sP'(s5,\)] = se™ — se™ 4 52\ > 0,

Similarly P(s,\)/P'(s,\) = (e —1)/A

soa%[P(s, N /P (5,\)] = [Ase? — (¥ — 1)]/A2 = [1 + (As — 1)e™] /A > 0

since the functionl + (z — 1)e”] is zero at: = 0 and is positive forr > 0.

op(s,\) > 0. O

One might also hypothesis th%P’(s, A) < 0 but this is not always true for the
distributions of interest. For example, in the Exponential cgsé)'(s,\) = (1 —
As)e=*¢). This is positive for\ < s, soP'(s, \) increases with\ until A = s.

Lemma5.2
Assumed P'(s,\)op(s,\) > 0 and 52 op(s, A) > 0.
ThenP'(s,\)op(s,\)/(1 +TP'(s,\)) is strictly increasing with\.

Proof
Write P'(s, A) for 2 P(s, \) andPy(s, A) for 3 P(s, \). Sinceop(s, \) = P(s, A)/P'(s,\)—
s, the assumptions above imply th&{ P (s, \)—sP'(s, )] > 0and % [P(s, \)/P'(s,\)] >
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0. ThusPy(s, A) — sP5(s,A) > 0 and Py(s, A\) P'(s,\) — P(s, A)P{(s, A) > 0, which
gives

0 [P’(S, Nop(s, A)]

OXN | 14+TP'(s,)\)
0 [P(s,\) —sP'(s,A)
)N { 1+TP/(s,\) }
_ [(Pr(s,A) — sP5(s,\)(1+TP'(s,\) — (P(s,\) — sP'(s,\)) TP (s, \)]
(14 TP'(s,\)]?
_ (25, A) = sPi(s,A)) + T(Pa(s, A) P'(s,A) — P(s, ) Pi(s, A))]
14+ TP'(s,\)]?
> 0.

O

The only properties oP (s, A) that were assumed in deriving the results in the previous
sections were (in Lemma 3.1) th&ts) was defined or > 0 and was strictly concave
and strictly increasing i, with P(0) = 0 and withP(s) — 1 ass — oo, and (Lemma
4.1) thatP’(s, N\)op(s, A)/(1+TP'(s, X)) was strictly increasing with. Thus all those
results hold for any model faP (s, A\) which satisfies Assumption 5.1

6 Limiting Models

As T increases monotonically over the interf@loo), we can again show that the
condition (3) for the optimal foraging time to be positive changes monotonically to the
T-independent condition:

7 <O +7/op(7)], (6)

which we assume is satisfied for a non-degenerate problem.

ForT' = 0 the reward function again reduces to that for the single source model,
since each visit to source 2 only lasts for a zero amount of time, so again ¢*
andl'y = I'(s§,0) = ~f. As T increases monotonically in the interv@, co), it is
clear from the form of'(s) in (1) thatI'(s) is bounded above by and increases to

for each fixeds. Hencel. converges toy as7' increases tec. It might also seem
that, asT’ increases, the optimal foraging time will tend to zero, in particular i

r(0). However, fory satisfying (6), we can show that dsincreases monotonically
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in the interval(0, c0), I'(s*(T"), T') increases monotonically tg but s*(7") decreases
monotonically to a positive limiting valug’_, wheres?_ is the unique solution of the
equation

r(r —o6(s) = (v — r(s))op(s + 7).

This is precisely the equation for the optimal foraging time on source 1 in an average
cost semi-Markov decision process where the forager has probabiliy+ 7) of
moving to source 2 at the end of each round trip to source 1, and then stays on source
2 indefinitely.

As ) increases monotonically over the interya] oc), we can show that the non-
degeneracy condition from (3) for the optimal foraging time to be positive becomes
monotonically modified to thea-independent condition:

v <r(0)1 +7/T], ()
which we assume is satisfied for a non-degenerate problem.

As )\ increases tac, the problem reduces to one in which source 2 is certain to be on
each time the forager returns (or equivalently, in the ‘foraging-information’ version,
the recovery time is constant and independent of the foraging trip time).

Let s%, be the optimal foraging time for this limiting problem, and I&t be the opti-
mal reward for the limiting problem. We can show that \aacreases monotonically
over the interval0, oo), s§ decreases monotonically tj_ wheres’_ is the unique
solution of the equation

r(s)(r —oa(s)) = (v = r(s))T.

Furthermorel'; increases monotonically it < -, where at = s’_ (by comparison
with (4)) I'(s, \) satisfies the equation

I'(s,00) = r(s) {1 + la(s)} .

op(s+7)
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