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Distances between grid points

Imagine you have a very large piece of squared paper, say with centimetre
squares.

If you measure the distance between two grid points, what are the possible
answers?
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Pythagoras

Here’s what Pythagoras may have
looked like. (At least the headgear
and beard are probably right). This
bust is in the Capitoline museum in
Rome. He lived from about 570 BC
to about 495 BC.
Pythagoras founded a religious sect
who loved mathematics and
philosophy, and they probably knew
how to calculate the hypotenuse of a
right-angled triangle. But there’s no
evidence that Pythagoras himself
ever proved a theorem!
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The Pythagorean theorem

The Pythagorean’s weren’t even the first people to know how to calculate
the length of the long side of a right-angled triangle. It was known earlier
in India and in Babylon.

Getting back to those distances between grid points, the distances we can
measure are exactly the numbers d that can be written as

d =
√
x2 + y2,

where x and y are whole numbers, also known as integers.
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The first few distances

√
0,
√

1,
√

2,
√

4,
√

5,
√

8,
√

9,
√

10,
√

13,
√

16,
√

17,
√

18,
√

20, . . .

Is there a pattern?
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A more precise question

If you give me a distance d , how can I decide whether it is the distance
between two grid points?

The first thing to check is whether d2 is an integer. If not, then d is not
the distance between two grid points.

So the interesting question is,

“Which positive integers are equal to the sum of two squares?”

Dr Edward Crane (University of Bristol) Pythagoras hits the prime time! February 11, 2015 6 / 42



Let’s start by looking at some small examples:

0 = 02 + 02

1 = 12 + 02

2 = 12 + 12

3

4 = 22 + 02

5 = 22 + 12

6

7

8 = 22 + 22

9 = 32 + 02

10 = 32 + 12
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A few more cases (blue = sum of two squares)

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59

Can you see any patterns?
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Now in columns corresponding to values (mod 12)

0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107

Can you see any patterns here that you didn’t notice before?
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A bit further...

0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107

108 109 110 111 112 113 114 115 116 117 118 119
120 121 122 123 124 125 126 127 128 129 130 131
132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155
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From patterns to proofs

We spotted lots of different patterns. How can we tell which patterns
continue to hold no matter how far we look?

We’ll need to prove that our guesses are correct.

For that we need to use some mathematics called number theory.

Our most important tool will be modular arithmetic, also called clock
arithmetic.
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Modular arithmetic

We say that x is congruent to y (mod n) when x − y is a multiple of n.
That is, x and y leave the same remainder when you divide them both by
n.

We write this as
x ≡ y (mod n)

It means there’s an integer (whole number) k such that

x − y = k n

So we could also write the same thing as n | (x − y).

We read this out as “n divides x − y”.

For example, 3 ≡ 15 (mod 12).
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Modular arithmetic

In the equation 3 ≡ 15 (mod 12), the number 12 is called the modulus.

We can do addition, multiplication and subtraction (mod n).

If a ≡ b (mod n) and c ≡ d (mod n) then

a + c ≡ b + d (mod n) ,

a− c ≡ b − d (mod n) , and

ac ≡ bd (mod n) .

To prove the last one, ac − bd = (a− b)c + b(c − d).

The red factors are both multiples of n.
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Squares (mod 4)

What are the possible values of x2 (mod 4) when x is an integer?

If x is even then x2 is a multiple of 4, so x2 ≡ 0 (mod 4).

If x is odd then x = 2y + 1 for some integer y . Then

(2y + 1)2 = 4y2 + 4y + 1 ≡ 1 (mod 4) .

So squares are always congruent to 0 or 1 (mod 4).
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Sums of two squares (mod 4)

The possible values of x2 + y2 (mod 4) are

0 + 0 ≡ 0 (mod 4)

0 + 1 ≡ 1 (mod 4)

1 + 0 ≡ 1 (mod 4)

1 + 1 ≡ 2 (mod 4)

So we can never get x2 + y2 ≡ 3 (mod 4).
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Another view - columns correspond to values (mod 9)

0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98

Can you see any interesting columns this time?
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What if 3 | n and n = x2 + y 2?

What are the possible squares (mod 3)?

Only 0 and 1.

How can two of these add up to 0 (mod 3)?
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What if 3 | n and n = x2 + y 2?

Then we must have x ≡ 0 (mod 3) and y ≡ 0 (mod 3).

So x = 3a and y = 3b for some integers a and b, and

x2 + y2 = (3a)2 + (3b)2 = 9(a2 + b2) .

Therefore 9 | n.

So we can’t have x2 + y2 ≡ 3 (mod 9),

and we can’t have x2 + y2 ≡ 6 (mod 9).
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A different view - the multiplication table

× 1 2 3 4 5 6 7 8 9 10 11

1 1 2 3 4 5 6 7 8 9 10 11
2 2 4 6 8 10 12 14 16 18 20 22
3 3 6 9 12 15 18 21 24 27 30 33
4 4 8 12 16 20 24 28 32 36 40 44
5 5 10 15 20 25 30 35 40 45 50 55
6 6 12 18 24 30 36 42 48 54 60 66
7 7 14 21 28 35 42 49 56 63 70 77
8 8 16 24 32 40 48 56 64 72 80 88
9 9 18 27 36 45 54 63 72 81 90 99

10 10 20 30 40 50 60 70 80 90 100 110
11 11 22 33 44 55 66 77 88 99 110 121
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A guess

× 1 2 3 4 5 6 7 8 9 10 11

1 1 2 3 4 5 6 7 8 9 10 11
2 2 4 6 8 10 12 14 16 18 20 22
3 3 6 9 12 15 18 21 24 27 30 33
4 4 8 12 16 20 24 28 32 36 40 44
5 5 10 15 20 25 30 35 40 45 50 55
6 6 12 18 24 30 36 42 48 54 60 66
7 7 14 21 28 35 42 49 56 63 70 77
8 8 16 24 32 40 48 56 64 72 80 88
9 9 18 27 36 45 54 63 72 81 90 99

10 10 20 30 40 50 60 70 80 90 100 110
11 11 22 33 44 55 66 77 88 99 110 121

Guess: blue × blue = blue and blue × red = red?
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Euler’s identity (blue × blue = blue)

(x2 + y2)(a2 + b2) = (xa− yb)2 + (xb + ya)2 .

Euler was a Swiss mathematician and physicist who lived from 1707 to
1783. He worked at the imperial court in St Petersburg, and moved in
1741 to Berlin to work for the Prussian emperor Frederick the Great. He
was one of the most prolific mathematicians ever.
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Squares (mod 7)

The possible squares (mod 7) are 0, 1, 2 and 4.

How can two of these add up to 0 (mod 7)?
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What if 7 | n and n = x2 + y 2?

Then we must have x ≡ 0 (mod 7) and y ≡ 0 (mod 7).

So x = 7a and y = 7b for some integers a and b, and

x2 + y2 = (7a)2 + (7b)2 = 49(a2 + b2) .

Therefore 49 | n. We have proved that

7 | (x2 + y2) =⇒ 49 | (x2 + y2) .
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Squares (mod 11)

{0, 1, 3, 4, 5, 9}

How can two of these add up to 0 (mod 11)?

11 | x2 + y2 =⇒ 112 | x2 + y2 .
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Squares (mod 19)

{0, 1, 4, 5, 6, 7, 9, 11, 16, 17}

How can two of these add up to 0 (mod 19)?

19 | x2 + y2 =⇒ 192 | x2 + y2 .

Dr Edward Crane (University of Bristol) Pythagoras hits the prime time! February 11, 2015 25 / 42



Squares (mod 19)

{0, 1, 4, 5, 6, 7, 9, 11, 16, 17}

How can two of these add up to 0 (mod 19)?

19 | x2 + y2 =⇒ 192 | x2 + y2 .

Dr Edward Crane (University of Bristol) Pythagoras hits the prime time! February 11, 2015 25 / 42



Squares (mod 19)

{0, 1, 4, 5, 6, 7, 9, 11, 16, 17}

How can two of these add up to 0 (mod 19)?

19 | x2 + y2 =⇒ 192 | x2 + y2 .

Dr Edward Crane (University of Bristol) Pythagoras hits the prime time! February 11, 2015 25 / 42



What about division?

In modular arithmetic we can sometimes do division, but not always.

For example 3 ≡ 15 (mod 12) but we can’t divide both sides by 3 because
1 6≡ 5 (mod 12).

The problem here was that 3 was also a factor of the modulus.
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Modular division

Suppose we want to divide by c when we are working modulo n.

We can do it if c is not zero and c is coprime to the modulus n. That
means that they don’t have any factors in common other than 1.

A different way to say this is that the highest common factor or greatest
common divisor of c and n is 1:

gcd(c , n) = hcf(c , n) = 1 .
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Euclid’s algorithm

Euclid was a Greek who lived in
Alexandria (now in Egypt) around
300 B.C.

He is famous for The Elements, a
book in which theorems about
geometry were deduced carefully
from a small set of initial
assumptions called axioms.

Given integers c and n, Euclid’s
algorithm enables us to find integers
r and s such that

rc + sn = gcd(c , n) .
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Modular division again

If gcd(c , n) = 1 then Euclid’s algorithm gives us rc + sn = 1, so

rc ≡ 1 (mod n)

Now if we want to divide by c (mod n), instead we multiply by r .

If cx ≡ y (mod n) then

x ≡ (rc)x = r(cx) ≡ ry (mod n) .

In particular we can do this if n is prime and c 6≡ 0 (mod n).
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Fermat’s little theorem

Pierre de Fermat (1601 - 1655) was
a French lawyer who is most famous
for his mathematics - in particular a
certain comment in a margin!
Here’s a fact that he actually did
prove:

If p is prime and a 6≡ 0 (mod p) then

ap−1 ≡ 1 (mod p) .
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Fermat’s little theorem

To prove Fermat’s little theorem, consider

(p − 1)! ap−1 = (a)(2a)(3a) . . . ((p − 1)a) .

When you reduce them (mod p), the factors on the right-hand side are
exactly the numbers 1, . . . , p − 1, in some order. To see this, it is enough
to check that they are all non-zero and all distinct. So the right-hand side
is just (p − 1)! again. Therefore

(p − 1)!ap−1 ≡ (p − 1)! (mod p) .

Because p is prime, p does not divide (p − 1)! so this implies

ap−1 ≡ 1 (mod p) .
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Generalizing from 3, 7, 11, 19 . . .

Suppose x2 + y2 ≡ 0 (mod p), where p is an odd prime.

Also suppose y 6≡ 0 (mod p). Then

x2 ≡ −y2 (mod p)

and we can find r such that

ry ≡ 1 (mod p) .

So
(rx)2 = r2x2 ≡ −r2y2 = −(ry)2 ≡ −1 (mod p) .

Now raise both sides to the power (p − 1)/2 and use Fermat’s little
theorem:

1 ≡ (rx)p−1 ≡ (−1)(p−1)/2 (mod p) .

This implies that (p − 1)/2 is even. That is, p ≡ 1 (mod 4).
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What we just proved, stated differently

If p is a prime such that p ≡ 3 (mod 4) then

p | x2 + y2 =⇒ p | y and p | x .

In this case, x2 + y2 = p2(a2 + b2) for some integers a and b.

It follows that p can only divide a sum of two squares to an even power.
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What about primes congruent to 1 (mod 4)?

Here are the first few of them:

5 = 22 + 12

13 = 32 + 22

17 = 42 + 12

29 = 52 + 22

37 = 62 + 12

41 = 52 + 42

53 = 72 + 22

61 = 62 + 52

73 = 82 + 32

89 = 82 + 52
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Wilson’s theorem

Here’s a theorem that was first stated by Ibn al-Haytham around 1000 AD,
and was rediscovered in Europe by Edward Waring and John Wilson in
1770 first proved by Lagrange in 1771. So it is a bit unfair that we call it
Wilson’s theorem!

If p is prime then (p − 1)! ≡ −1 (mod p).

Proof: We can arrange the numbers from 2 to p − 2 into pairs (a, b)
where ab ≡ 1 (mod p). Multiplying them all together gives us 1 (mod p).
That leaves just 1 and −1 in the factorial.
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An application of Wilson’s theorem

If p = 4k + 1 is a prime then

−1 ≡ (4k)! ≡ (1.2.3 . . . 2k)((−2k)(−(2k − 1)) . . . (−1))

≡ ((2k)!)2(−1)2k ≡ ((2k)!)2 (mod p)

So we have found an integer m such that m2 ≡ −1 (mod p).
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From m2 ≡ −1 (mod p) to p = x2 + y 2

Sort the numbers m, 2m, 3m, . . . , d√pem, reduced (mod p). There are
more than

√
p of them all between 1 and p − 1, so there must be two of

them, say am and bm, that are quite close together around the (mod p)
clock:

(a− b)m ≡ am − bm ≡ c (mod p)

where
|a− b| ≤ d√pe − 1 <

√
p

and
1 ≤ c ≤ p

d√pe
<
√
p
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From m2 ≡ −1 (mod p) to p = x2 + y 2

Squaring we get

c2 ≡ (a− b)2m2 ≡ −(a− b)2 (mod p)

so
c2 + (a− b)2 ≡ 0 (mod p)

but
0 < c2 + (a− b)2 <

√
p2 +

√
p2 = 2p

and therefore
c2 + (a− b)2 = p .
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What we just proved

Every prime congruent to 1 (mod 4) is a sum of two squares.

So is 2.

Every positive integer can be expressed in only one way as a product of
powers of primes.

A prime congruent to 3 (mod 4) can only divide x2 + y2 to an even power.

Theorem

A positive integer n is a sum of two squares if and only if every prime
congruent to 3 (mod 4) that divides n actually appears to an even power
in the prime factorization of n.
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A large example

Let’s take the first prime after 1016 that is congruent to 1 (mod 4).

It turns out to be 10000000000000061 = 1016 + 61.

Can we write it as a sum of two squares in practice?

Yes! Luckily, there are fast algorithms for a computer to find a square root
of −1 (mod p) and to find a solution of x2 + y2 = p given this square root.
The running time for each one is no more than a constant times (log p)3.

They both use fun bits of number theory, but they would take a whole talk
to explain.

Dr Edward Crane (University of Bristol) Pythagoras hits the prime time! February 11, 2015 40 / 42



A large example

Let’s take the first prime after 1016 that is congruent to 1 (mod 4).

It turns out to be 10000000000000061 = 1016 + 61.

Can we write it as a sum of two squares in practice?

Yes! Luckily, there are fast algorithms for a computer to find a square root
of −1 (mod p) and to find a solution of x2 + y2 = p given this square root.
The running time for each one is no more than a constant times (log p)3.

They both use fun bits of number theory, but they would take a whole talk
to explain.

Dr Edward Crane (University of Bristol) Pythagoras hits the prime time! February 11, 2015 40 / 42



1016 + 61 as a sum of two squares

1016 + 61 = 500715252 + 865612062

Dr Edward Crane (University of Bristol) Pythagoras hits the prime time! February 11, 2015 41 / 42



Two even larger examples - to show you I didn’t cheat!

2786632381806099580032 + 1494884600452377546102

= 100000000000000000000000000000000000000109 = 1041 + 109

36847587138599206042 + 42235624485179944052

= 3141592653897932384626433832795028841 = b1037πc
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