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Introduction

The chapters of this thesis concern themselves with various aspects of a

single theme: conformal mappings between Riemann surfaces have strongly

controlled geometry and this has interesting dynamical consequences when

we compose sequences of conformal mappings.

Chapter 1 covers various technical prerequisites. It is intended to make

the thesis reasonably self-contained. The reader is likely to be familiar with

some of this material.

In Chapter 2 we study a particular class of iterated function systems.

An iterated function system is a kind of random dynamical system. In an

ordinary discrete-time dynamical system, we have a state space X and a map

f : X → X which we apply repeatedly (iterate). We are typically interested

in the long-term statistical behaviour of an orbit

x0, x1 = f(x0), x2 = f(x1), x3 = f(x2), . . . .

An iterated function system differs in that the map Fn that must be applied

to step from xn−1 to xn is not fixed, but is a random variable; the maps at

different times are chosen independently, all from the same probability distri-

bution. Now the orbit is random; it forms a Markov chain. We recommend

two readable and up-to-date introductions to the subject [27, 69].

ix
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We were motivated by [3], which studied iterated function systems in

which the maps Fn are drawn from a finite set of analytic self-maps of the

open unit disc in the complex plane. In that paper a stability result for the

corresponding Markov Chain was proved using the Schwarz–Pick Lemma, a

contractivity property of such maps. We improve the sufficient condition for

stability in this situation. We then define the class of non-uniformly con-

tracting iterated function systems by abstracting the contractivity property;

as its author remarked, the method of [3] applies to give a stability theorem

for this class. We give an alternative proof, formalising a coupling argument

by the use of probability metrics. We then prove the continuous dependence

of the stationary distribution on the maps and probabilities. After proving a

weak law of large numbers for this class, we conclude by giving a necessary

and sufficient condition for stability in terms of the reverse iterates. These

are the maps obtained by composing the random maps Fn in reverse order.

In chapter 3, we study another type of random dynamical system that

belongs to complex dynamics. This is the iteration of multivalued algebraic

functions, or holomorphic correspondences. This is a relatively new subject,

but already a number of different aspects have been explored in the litera-

ture. The fact that the setting is a surface with a moduli space should lead

to an interaction between dynamical systems and arithmetic algebraic geom-

etry. We study some ergodic properties of the iteration of the critically finite

correspondences defined by Bullett [19]. These correspondences are actually

arithmetic algebraic objects, also called modular correspondences. A sta-

bility result for critically finite correspondences that we hoped was new has

recently appeared elsewhere [25]; we present our proof anyway, as is some-
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what different. We then use some ideas from Chapter 2 to prove a stability

result for a larger class of correspondences which are analogous to critically

finite rational maps. As far as we know this result is new. Finally we study

some concrete examples of correspondences. These are correspondences on

certain elliptic curves with complex multiplication; they are rigid in that the

topology of the correspondence determines the analytic isomorphism class

of the elliptic curve. Each of these correspondences gives rise to a natural

family of random dynamical systems parameterised by the underlying ellip-

tic curve. We also use these correspondences to construct examples for the

second stability result mentioned above.

Chapter 4 continues the first part of our theme, namely the restrictions on

the metric geometry of a map imposed by conformality. We study how poly-

nomial mappings in one complex variable distort Euclidean areas of sets. Us-

ing classical potential theory we prove that if p is monic and K is a Lebesgue

measurable subset of C, then(
Area (p−1(K))

π

)deg p

≤ Area(K)

π
.

In chapter 5 we study another question concerning the Euclidean geom-

etry of polynomials in one complex variable. This is Smale’s Mean Value

Conjecture, a well-known conjecture which sets bounds on where a polyno-

mial p maps any point z ∈ C in terms of the locations of the critical points

ζi of p and their images under p. It states that if p′(z) 6= 0 then

min
i

∣∣∣∣ p(z)− p(ζi)(z − ζi) p′(z)

∣∣∣∣ ≤ 1 .

The result is known with 1 replaced by 4 on the right-hand side, or better

constants in terms of the degree of p. Our result on the Conjecture itself is
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a reduction: we show that it suffices to give a proof for pairs (p, z) for which

the values in the minimum on the left-hand side are all equal. Unfortunately

we have not yet been able to make any use of this reduction to improve

the constant. We then proceed to formulate a Mean Value Conjecture for

rational maps, and prove it with weaker constant. Finally we study a special

case of these conjectures, that in which all the critical points are fixed.



Chapter 1

Preliminaries

In this chapter we collect many of the definitions and technical results that

we will need. None of the material presented in this chapter is new, with the

possible exception of Lemma 1.8 and Lemma 1.10, which we are not aware

of in the literature.

1.1 Analysis

1.1.1 Proper metric spaces

A metric space (X, d) is proper if every closed ball of any positive radius is

compact, which happens if and only if for every x ∈ X the distance function

d(x, ·) is a proper map. For example, a Riemannian manifold is proper if and

only if it is complete, by the Hopf–Rinow Theorem. Proper metric spaces are

the appropriate setting for most of the new results in Chapter 2. Every proper

metric space is complete and locally compact and has a countable compact

exhaustion so is separable. These properties allow us to use machinery from

1
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functional analysis, and ensure various desirable properties of probability

metrics. Several of our proofs will make explicit use of the compactness of

closed balls. Throughout Chapter 2 (X, d) stands for a proper and non-

empty metric space. In contrast Y stands for a topological space, subject to

conditions that vary from paragraph to paragraph.

1.1.2 Tight measures and the weak topology

Let Y be a topological space and µ be a finite Borel measure µ on Y . µ is

regular if for every Borel set A ⊂ X,

µ(A) = sup{µ(K) : K compact, K ⊂ A} .

µ is tight if this equation holds when A = X. If µ is regular then for every

Borel A ⊂ X we have

µ(A) = inf{µ(V ) : V open, V ⊃ A} .

When Y is metrizable, µ is tight if and only if µ is regular [29, Theorem

7.1.3]. A law on Y is a Borel probability measure. P(Y ) denotes the set of

regular laws on Y .

A Polish space is a topological space which can be metrized to be sepa-

rable and complete.

Theorem 1.1 (Ulam). [29, Theorem 7.1.4]

Let Y be a Polish space. Then every finite Borel measure on Y is tight.

A topological space is called universally measurable if every law on it is

tight. As a consequence of Ulam’s theorem, every proper metric space is
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universally measurable. In fact a topological space is universally measurable

if it is Borel-measurably isomorphic to a Borel subset of a Polish space [29,

57].

Let Y be a locally compact non-empty Hausdorff space. Let C(Y ) denote

the Banach space of bounded continuous functions on Y , with the supremum

norm. C0(Y ) is the closed subspace of C(Y ) consisting of functions f that

vanish at infinity, i. e. for any ε > 0 there exists a compact set K outside

which |f | < ε. Let M(Y ) denote the space of regular finite signed Borel

measures on Y , a Banach space with the total variation norm.

Theorem 1.2 (Riesz Representation Theorem).

For any locally compact non-empty Hausdorff space Y , M(Y ) is the dual of

C0(Y ) with respect to the integration pairing.

This statement may be obtained by considering complex conjugates in

[63, Theorem 6.19]. We will use the weak topology on M(Y ) that arises

from this representation. Convergence in norm implies but is not implied

by weak convergence. The weak topology on M(Y ) is Hausdorff and only

depends on the topology of Y , not on the metric.

A finite signed Borel measure integrates all bounded continuous functions,

but if Y is not compact, there are bounded linear functionals on C(Y ) which

are not represented by integration against a measure (take a Banach limit of

point evaluations along a sequence that tends to infinity).

Lemma 1.3.

Let Y be a locally compact non-empty Hausdorff space and µn a tight law for

each n ≥ 0. Then µn → µ0 weakly against C0(Y ) if and only if µn → µ0

weakly against C(Y ).
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The proof of Lemma 1.3 uses local compactness via Urysohn’s Lemma.

If Y is not compact then a sequence of probability measures may converge

weakly to a positive measure of mass less than 1, perhaps even 0; in that

case we do not have weak convergence against C(Y ).

A subset S ⊂ P(Y ) is uniformly tight if for each ε > 0 there exists a

compact set J ⊂ Y such that ν(J) > 1− ε for every ν ∈ S.

Lemma 1.4 (Le Cam). [29, Theorem 11.5.3]

Let (Y, d) be a locally compact metric space, and mun ∈ P(Y ) for n ≥ 0. If

µn → µ0, then the set {µ, µ1, µ2, . . . } is uniformly tight.

Lemma 1.5 (Prohorov). [29, Theorem 11.5.4]

Let (Y, d) be a Polish space and S ⊂ P(Y ). Then S is relatively compact if

and only if it is uniformly tight.

1.2 Kantorovich metrics

Let (Y, d) be a separable metric space. Define the subspace Pd ⊂ P(X) by

Pd =

{
µ ∈ P(X) :

∫
d (y0, y) dµ(y) < ∞

}
.

Pd is independent of the choice of y0 ∈ Y . For any ν1, ν2 ∈ Pd, let Pν1,ν2 stand

for the space of laws on Y × Y with marginals ν1 and ν2. The Kantorovich

distance Kd (ν1, ν2) is defined by

Kd (ν1, ν2) = inf

∫
d(x, y) dm(x, y) : m ∈ Pν1,ν2 (1.1)

We write Lip(Y ) for the space of Lipschitz functions f : Y → R, with

seminorm ‖f‖L, the best Lipschitz constant of f . The Wasserstein distance
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is defined by

γ (ν1, ν2) = sup

{∫
f(y)d (ν1 − ν2) (y) : ‖f‖L ≤ 1

}
.

Theorem 1.6 (Properties of Kd).

• Kd (ν1, ν2) = γ (ν1, ν2).

• The infimum in equation 1.1 is attained.

• Kd is a metric on Pd(Y ).

• The following are equivalent:

1. Kd (µn, µ)→ 0 as n→∞;

2. µn → µ weakly and for some (and hence any) fixed x0 ∈ X, we

have ∫
d (x, x0) dµn(x)→

∫
d (x, x0) dµ(x) ;

3. µn → µ weakly and for some (and hence any) fixed x0 ∈ X, we

have

lim
R→∞

sup
n

∫
d (x, x0) 1(d (x, x0) > R) dµn(x) = 0 .

• A subset A ⊂ Pd is relatively compact with respect to the metric Kd if

and only if it is relatively compact in the weak topology and

lim
R→∞

sup
m∈A

∫
d (x, x0) 1(d (x, x0) > R) dm(x) = 0 .

• If (Y, d) is complete, then (Pd, Kd) is also complete.
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The first three facts are proved in [29, §11.8]. The remaining results are

special cases of [61, Theorems 6.2.1, 6.3.1, 6.3.2 & 6.3.3]. Note that if (X, d)

has finite diameter then the integral conditions in the convergence criteria

are redundant, so Kd metrizes the weak topology on P(X).

Lemma 1.7.

Suppose that (X, c) is a proper metric space. Then every ball of finite radius

in the metric space (Pc, Kc) is uniformly tight.

Proof. Consider the ball B(µ,R). Given any ε > 0, there exists a compact

set K ⊂ X with µ(K) > 1− ε. K is contained in some c-ball B (x0, r) ⊂ X.

The ball K ′ = B (x0, r +R/ε) is compact because (X, c) is proper. If a

probability measure ν has ν(X \K ′) > 2ε then Kc(µ, ν) > R.

Suppose that we wish to study a particular probability measure that

happens not to lie in Pc. Then we change the metric on X to

c′(x, y) = ϕ(c(x, y)) .

When ϕ : R+
0 → R+

0 is continuous, strictly increasing and concave with

ϕ(0) = 0, this yields a new metric space (X, c′), with the same topology as

(X, c). Indeed, the balls in the c′-metric of radius less than supϕ are precisely

the balls of finite radius in the c-metric. If c is unbounded but ϕ is bounded

then Pc′ = P(X). However, in that case (X, c′) is not proper, so Lemma 1.7

cannot be applied. On the other hand if (X, c) is proper and ϕ(t) → ∞ as

t→∞ then (X, c′) is also proper.
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Lemma 1.8.

Given a separable metric space (X, c) and finitely many probability measures

µ1, . . . µk on X, there exists a continuous, strictly increasing and concave

function ϕ : R+
0 → R+

0 such that ϕ(0) = 0, ϕ(t) → ∞ as t → ∞ and such

that all the µi are in Pc′, where c′(x, y) = ϕ(c(x, y)).

Proof. Define

gi(t) = µi ({x ∈ X : c(x, x0) ≥ t}) .

These are decreasing functions such that gi(t) → 0 as t → ∞. We will

construct ϕ as a piecewise linear continuous function the vertices of whose

graph are at (tn, n) for n ∈ N. We will define inductively the values tn at

which ϕ (tn) = n. Note that ϕ is concave if and only if (tn − tn−1) is an

increasing sequence. Set t0 = 0, t1 = 1 and then for n ≥ 2 set

tn = inf
{
t : gi(t) ≤ (n+ 1)−3 for i = 1, . . . , k and tn − tn−1 ≥ tn−1 − tn−2

}
.

Then ϕ is certainly a continuous, strictly increasing, concave function with

ϕ(0) = 0 and ϕ(t)→∞ as t→∞. Moreover, for n ≥ 2 we have∫
ϕ (c (x, x0)) 1 [n ≤ ϕ (c (x, x0)) ≤ n+ 1] dµi(x) ≤ (n+1)·gi (tn) ≤ (n+1)−2 ,

so ∫
ϕ (c (x, x0)) dµi(x) <∞ ,

i. e. µi ∈ Pc′ where c′ = ϕ(c).

1.3 Prohorov metrics

The weak topology on P(X) is usually metrized by the Prohorov metric.

Although we will not use it, we discuss it here for two reasons. We will need
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it in appendix B to explain the context of our results in the literature on

IFSs, and the comparison with the Kantorovich metric serves to point out

the advantages of the Kantorovich metric for our applications.

Let (X, c) be a separable metric space. We denote the ε-neighbourhood

of a subset A by Aε. The Prohorov distance πc between two elements µ, ν ∈

P(X) is defined to be infimum of all ε > 0 such that for all Borel A ⊂ X

µ(A) ≤ ν (Aε) + ε and ν(A) ≤ µ (Aε) + ε.

[16] gives more information about the Prohorov metric. The important prop-

erties are that πc is a metric on P(X) and that it metrizes the weak topology.

Moreover, if (X, c) is separable and complete then so is (P(X), πc). The fol-

lowing result gives an alternative way to define πc, close in spirit to our first

definition of the Kantorovich metric Kc.

Lemma 1.9 (Strassen–Dudley Theorem).

Suppose πc(µ, ν) < α. Then there exists a measure m ∈ Pµ,ν such that

m({(x, y) : c(x, y) > α}) < α.

Note that the measure m acts as a certificate of the fact that πc(µ, ν) < α.

For a proof, see [16, Theorem 6.9].

The following inequalities relate the Prohorov and Kantorovich metrics

associated to a separable metric space (X, c).

Lemma 1.10.

1. πc (µ1, µ2) ≤
√
Kc (µ1, µ2).

2. Kc (µ1, µ2) ≤ πc (µ1, µ2) (1 + diamc(X)).
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Proof. 1. A minimizing measure on X×X for Kc is a certificate as in the

Strassen–Dudley Theorem.

2. The certificate m provided by the Strassen–Dudley Theorem has Kan-

torovich integral at most equal to the right-hand side.

The analogue of Lemma 1.7 for Prohorov metrics fails.

1.4 Ergodic theory

A measure-preserving dynamical system (m. p. d. s. ) is defined as a quadru-

ple (W,B, ν, T ), where W is a set, B is a σ-algebra of subsets of W , ν is

a positive measure on B, B is complete with respect to ν (i.e. contains all

subsets of ν-null sets), and T : W → W is a function such that T−1(B) ⊂ B

and T∗ν = ν. We allow T to be defined only ν-a.e. We will often make use

of the following result [58, p. 34].

Theorem 1.11 (Poincaré’s Recurrence Theorem).

Let (W,B, ν, T ) be a m. p. d. s. and suppose that ν(A) > 0. Then for ν-a.e.

x ∈ A, the sequence (T n(x))n∈N returns to A infinitely often.

Let (W1,B1, ν1, T1) and (W2,B2, ν2, T2) be m. p. d. s. Then α : W2 → W1

is a homomorphism or factor map if

α−1(B1) ⊂ B2 ,

α∗(ν2) = ν1 ,

α ◦ T2 = T1 ◦ α, ν2-a.e.
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We say that T2 is an extension of T1 and that T1 is a factor of T2.

If there also exists a homomorphism β : W1 → W2 such that α ◦ β = id,

ν1-a.e. (or equivalently β ◦α = id, ν2-a.e.) then we say α is an isomorphism.

We say that a homomorphism or a measurable function is essentially unique

if any two possible values of it agree a.e. with respect to the relevant measure.

Any m. p. d. s. (W,B, ν, T ) has an extension (Ŵ , B̂, ν̂, T̂ ) such that T̂ is

invertible and such that any homomorphism ψ from an invertible m. p. d. s.

to (W,B, ν, T ) is essentially uniquely expressible as ψ = φ ◦ χ. This is called

the natural extension of (W,B, ν, T ). Being a universal object it is unique

(up to an essentially unique isomorphism).1 If T is ergodic with respect to ν

then T̂ is ergodic with respect to ν̂.

The standard construction of the natural extension is to take Ŵ to be

the space of infinite backward orbits of T , i. e. sequences (wn)∞n=0 such that

wn = Twn+1 for all n, with the σ-algebra inherited from the product σ-

algebra on WN. The map T̂ is given by T acting co-ordinatewise, and T̂−1

is the left-shift. There is a unique measure ν̂ such that for each co-ordinate

projection map πm : Ŵ → W , we have (πm)∗ ν̂ = ν. Indeed, a compactness

argument on trees of pre-images shows that this condition specifies ν̂(Am)

consistently for sets of the form Am = {(wn)∞n=0 ∈ Ŵ : wm ∈ A}; the

Carathéodory Extension Theorem then gives existence and uniqueness.

1However, a universal object does depend on the category with respect to which it is

universal! Some authors do not insist that B be complete with respect to ν; their natural

extension may have a smaller σ-algebra than ours.
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1.5 Geometric function theory

We denote by C the complex numbers, by Ĉ the Riemann sphere, and by D

the open unit disc in C.

Theorem 1.12 (Uniformisation of Riemann surfaces).

Let R be any Riemann surface. Then R is the quotient of precisely one of

the Riemann surfaces Ĉ, C, and D by a group of automorphisms that acts

freely and properly discontinuously; this group is unique up to conjugation.

The universal cover of any Riemann surface has a unique complex struc-

ture that makes the covering map analytic, so the theorem amounts to prov-

ing that every simply-connected Riemann surface is isomorphic to precisely

one of Ĉ, C and D. The only case in which the universal cover is Ĉ is when

R = Ĉ. The only quotients of C are C itself, the once-punctured plane, and

the tori C/Λ for lattices Λ in C. The remaining Riemann surfaces covered

by D are called hyperbolic. In particular, any domain in C which omits at

least two points of C is hyperbolic, as is any Riemann surface whose fun-

damental group is non-abelian. The automorphisms of the disc D are also

isometries of the Poincaré metric on D, which is the unique complete con-

formal Riemannian metric on D of constant curvature −1. (A Riemannian

metric on a Riemann surface is conformal when with respect to some (hence

any) local co-ordinate z it has the form ds2 = ρ(z)|dz|2, where ρ is some

smooth positive function.) It follows that any hyperbolic Riemann surface

R has a unique complete conformal metric with curvature −1, which we call

the hyperbolic metric on R. We denote the corresponding distance function

dR or dhyp when there will be no confusion over which Riemann surface is
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being referred to. Let f : R → S be an analytic map between hyperbolic

Riemann surfaces. The derivative Df(z) is a scalar multiple of an isometry

of the tangent spaces at z and f(z); this scalar is written f#(z) and called

the hyperbolic derivative of f at z.

Lemma 1.13 (Schwarz–Pick Lemma).

Let f : R→ S be an analytic map between two hyperbolic Riemann surfaces.

Then f does not increase distances, i. e. for all z, w ∈ R,

dS(f(z), f(w)) ≤ dR(z, w) .

If there are two distinct points z and w for which equality holds then f is a

local isometry. Moreover, for each z ∈ R, f#(z) ≤ 1, with equality at any

single point if and only if f is a local isometry.

The following generalisation is apparently due to Nehari [55].

Lemma 1.14 (Branched Schwarz Lemma).

Let f, b : D → D be analytic, with f(0) = 0 = b(0), and suppose that b is a

finite Blaschke product. If the valency of f is at least the valency of b at each

point of D, then |f ′(0)| ≤ |b′(0)|. If |b′(0)| 6= 0 then equality holds if and only

if f ∼= λb, where λ is a constant of modulus 1.



Chapter 2

Iterated function systems

2.1 Iterated function systems

2.1.1 Definitions

Let Y be a topological space with Borel σ-algebra B. Let C(Y, Y ) denote

the space of continuous maps from Y to Y , and B(Y, Y ) the set of Borel-

measurable maps from Y to Y .

An Iterated Function System (IFS) F consists of the following data: a

topological space Y , a probability space (Ω,M,P), and a function f : Ω →

B(Y, Y ). We will abuse notation by using f also to stand for the correspond-

ing map Ω× Y → Y . We insist that the latter map be measurable (i. e. for

every A ∈ B, f−1(A) ∈ M× B). We will think of f as a random map of Y

into itself. We call the IFS F continuous when f : Ω→ C(Y, Y ). In the spe-

cial case in which Ω is finite, we call F an N-map IFS. Then we denote the

possible values of f by f1, f2, . . . , fN , taken with probabilities p1, p2, . . . , pN

13
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respectively.

We interpret F dynamically by constructing a sequence of independent

random maps (Fi)
∞
i=1, each map distributed as f is. We think of the map

Fi being applied to Y at time i. The (random) orbit of a (possibly random)

point x0 ∈ Y is the random sequence (xn), where

xn = Fn ◦ Fn−1 ◦ · · · ◦ F1 (x0) .

This may also be thought of as the orbit of a discrete-time Markov chain

(xi)
∞
i=0, where the probability of a transition into a Borel set A ⊂ Y is

defined by

P (xi+1 ∈ A|xi = y) = P (y, A) = P (f(y) ∈ A) .

P (y, A) is a measurable function of y [50, Lemma 2.1]. To fix notation, the

probability space on which the sequence (Fn) is defined is the unilateral shift

space

Ω = {1, 2, . . . N}N

with σ-algebraM obtained by completing the product σ-algebra with respect

to the Bernoulli measure Bp. Then

Fn = fωn .

In order to interpret F in terms of dynamical systems, we define the left-shift

map σ : Ω→ Ω given by

σ : (ω1, ω2, ω3, . . . ) 7→ (ω2, ω2, ω3, . . . ) .

and the skew-product map τ : Y × Ω→ Y × Ω given by

τ (x, (ω1, ω2, ω3, . . . )) = (fω1(x), (ω2, ω3, ω4, . . . )) .
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2.1.2 Linear operators associated to an IFS

Let B(Y ) denote the space of Borel-measurable real-valued functions on the

topological space Y . The composition of Borel-measurable functions is Borel-

measurable, so we can associate to any Borel-measurable map h : Y → Y

a pull-back operator h∗ : B(Y ) → B(Y ), defined by h∗(g) = g ◦ h. If h is

continuous then h∗ also acts on C(Y ). The push-forward of a Borel measure

µ on Y by h is defined by h∗(µ)(E) = µ (h−1(E)) for each Borel set E ⊂ Y .

Since h−1 : B → B is an algebra homomorphism, h∗(µ) is another Borel

measure. If h is continuous then h∗ takes tight measures to tight measures.

The Perron–Frobenius or transfer operator F∗ of an IFS F on Y acts on

g ∈ B(Y ) by

(F∗g) (y) := E (f ∗(g)(y)) =

∫
g ◦ f(y) dP(f) ,

where f is the random map in the definition of F and E is the expectation

with respect to P. Since g ◦ f is Borel-measurable, Fubini’s Theorem tells us

that F∗(g) ∈ B(Y ). The Markov operator F∗ acts on the space of all Borel

measures on Y by

(F∗µ) (A) := E (f∗(µ)(A)) = E
(
µ
(
f−1(A)

))
=

∫
P(f(x) ∈ A) dµ(x) ,

where A is any Borel subset of Y . We say that F has the weak Feller property

if F∗ acts on C(Y ). We will call F good if it has the weak Feller property and

F∗ acts on P(Y ). The weak Feller property does not imply that F∗ sends

tight measures to tight measures, although if Y is universally measurable

then this is automatic. Every continuous N -map IFS is good. If F is a good

IFS then F∗ is the adjoint of F∗ (with respect to the duality described by
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theorem 1.2), i. e. for every g ∈ C(Y ),∫
g(y) d (F∗µ) (y) =

∫
(F∗g) (y) dµ(y) .

Furthermore, if F is good then F∗ is a bounded operator of norm 1 on C(Y ).

In chapter 3 we will use IFSs that are good but not continuous.

A finite Borel measure µ on Y is invariant for F when F∗µ = µ. Note

that µ is invariant for F if and only if µ is a stationary distribution for the

associated Markov chain, which happens if and only if µ×Bp is an invariant

measure for τ . When µ is invariant for F , the Cartesian projection map

π : Y × Ω → Ω makes the m. p. d. s. (Y × Ω,B ×M, µ × Bp, τ) into an

extension of the m. p. d. s. (Ω,M, Bp, σ).

The Krylov–Bogolubov Theorem states that any continuous self-map of

a non-empty compact space has an invariant law. The following standard

result is the analogue for IFSs.

Lemma 2.1 (Krylov–Bogolubov for IFSs).

Let Z be a non-empty compact metric space and let R : C(Z) → C(Z) be

a bounded linear operator such that R(1) = 1. Then the adjoint R∗ acts on

P(Z) and has a fixed point there. In particular, any good IFS on Z has an

invariant law.

Proof. R∗ is continuous with respect to the weak topology on P(Z). The

Banach–Alaoglu Theorem says that the unit ball ofM(Z) is weakly compact;

P(Z) is a closed subset of this ball. The Schauder–Tychonov Fixed Point

Theorem [64, Theorem 5.28] says that any continuous self-map of a non-

empty compact convex subset of a locally convex topological vector space

has a fixed point.
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It is sometimes of interest to construct an invariant law. Choose any

µ0 ∈ P(Z) and for each n ∈ N define

µn =
1

n+ 1

n∑
k=0

R∗kµ0 .

Since P(Z) is weakly compact, there is a subsequence µni
that converges

weakly to µ ∈ P(Z), say.

R∗µn − µn =
1

n+ 1

(
R∗n+1µ0 − µ0

)
.

The norm of this is at most 2/(n + 1) so it converges weakly to 0. Thus

R∗µn → µ weakly as n → ∞. Since R∗ is continuous, R∗µn → R∗µ as

n→∞, so R∗µ = µ.

When X is not compact, P(X) is not weakly closed, let alone compact,

and an IFS F on X may fail to have invariant law.

T : P(X) → P(X) is asymptotically stable if there is a T -invariant law

µ such that for every ν ∈ P(X), we have T nν → µ weakly as n → ∞.

An asymptotically stable operator evidently has a unique invariant law. We

call an IFS F asymptotically stable when F∗ is asymptotically stable, which

happens if and only if for every g ∈ C0(Y ), the sequence (F∗)n g converges

pointwise to a constant function.
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2.2 Motivation and outline of results

2.2.1 Improving the Contraction Mapping Theorem

Let (X, d) be a complete and non-empty metric space. Suppose that f : X →

X is a contraction, i. e. for some K < 1 and all x, y ∈ X, d(f(x), f(y)) ≤

Kd(x, y). The Contraction Mapping Theorem says that f has a unique fixed

point x0 which attracts all orbits, i. e. for all y ∈ X, fn(y)→ x0 as n→∞.

The conclusion obviously fails if we allow K = 1. For a more delicate result,

define f : X → X to be strictly distance-decreasing if for all distinct x, y ∈ X,

d(f(x), f(y)) < d(x, y). Such maps are sometimes known as contractive, but

we will avoid that term as is it often used in looser senses. For strictly

distance-decreasing maps we have the following analogue of the Contraction

Mapping Theorem. It appears in [12]; here we give a proof to serve as a

model for the proofs of later results.

Proposition 2.2.

Suppose (X, d) is a proper metric space and f : X → X is strictly distance-

decreasing. Then either f has a unique fixed point which attracts all points of

X, or the orbit of each point tends to infinity (and this convergence is locally

uniform).

Proof. Firstly note that f is continuous. Suppose that the orbit of some point

x ∈ X does not tend to infinity, i. e. f ◦n(x) is in some compact set K for in-

finitely many n. Then the orbit has a convergent subsequence f ◦nk(x)→ x0

as k → ∞. Because f is continuous, f ◦(1+nk)(x) → f (x0) as n → ∞. How-

ever, the distances d
(
f ◦n(x), f◦(n+1)(x)

)
form a strictly decreasing sequence

whose limit is d (x0, f (x0)), by continuity of f and of the distance function.
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If d (x0, f (x0)) = 0 then x0 is a fixed point. In that case, for any other

point y ∈ X, d (f ◦n(y), x0) is a strictly decreasing sequence. Suppose for

a contradiction that it converges to ε > 0. By the properness condition,

the orbit of y is precompact so we may choose a convergent subsequence

f ◦mk(y) → y0. Then d (y0, x0) = ε, so d (f (y0) , x0) < ε, so by continuity

of f , we have d (f 1+mk(y), x0) < ε for k sufficiently large, a contradiction.

Hence the fixed point attracts all orbits.

Finally we must rule out the possibility that d (x0, f (x0)) = ε > 0. If this

were the case, then

d (f (x0) , f (f (x0))) < ε

and by continuity of f we would have for sufficiently large k

d
(
f ◦(1+nk)(x), f◦(2+nk)(x)

)
< ε ,

a contradiction.

The alternative is that for each compact set K, the orbit of x only visits

K finitely many times, i. e. f ◦n(x)→∞. In that case, for any compact set L,

f ◦n(L)∩L = ∅ for all but finitely many n. Indeed, let R be the diameter of L

and let NR(L) be the closed R-neighbourhood of L, which is compact by the

properness condition. Fixing some x ∈ L, the above intersection is certainly

empty when f ◦n(x) 6∈ NR(L), because f does not increase distances.

Example 2.1. Let (X, d) be the set of non-negative integers with the metric

d(m,n) =
1

2
+ 2−max(m,n) for m 6= n.

Let f : 0 7→ 0 and f : m 7→ m + 1 for m > 0. Then f is strictly distance-

decreasing. The topology is discrete, so X is locally compact. The point 0 is
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fixed, but the orbit of 1 is not precompact. HereX is complete, separable and

locally compact, with a countable compact exhaustion, but the conclusion of

Proposition 2.2 fails. Properness is genuinely required.

2.2.2 The Wolff–Denjoy Theorem

Let D be the open unit disc in the complex plane, equipped with the usual

hyperbolic metric, which is proper. Suppose that f : D→ D is analytic but is

not a conformal automorphism of D. The Schwarz–Pick Lemma tells us that

f is strictly distance-decreasing, so proposition 2.2 applies. In fact, a stronger

conclusion can be obtained, using not the one-point compactification of D,

but a bigger compactification, D.

Theorem 2.3 (Wolff–Denjoy).

Suppose that f : D → D is analytic. Unless f is an automorphism with a

fixed point, then there is an α ∈ D such that for all z ∈ D, fn(z) → α as

n→∞.

Note that the theorem does not assume that f extends continuously to

D. A simple proof of this theorem given by Beardon [12] is reproduced in

[23, §IV.3].

2.2.3 Ambroladze’s theorem

Let F be an N -map IFS on D whose maps are analytic. Suppose that all the

maps are automorphisms of D. If they have a common fixed point then there

are infinitely many invariant measures and each orbit stays on a circle. If

they have no common fixed point then it is known that there is no invariant
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measure on D. However, the automorphisms extend to Möbius maps of Ĉ

and the extended IFS has at least one invariant measure on the unit circle,

although it need not be asymptotically stable. Henceforth we assume that

with positive probability the random map f : D→ D is not an automorphism.

Theorem 2.4 (Ambroladze). [3]

Let F be an N-map IFS of analytic endomorphisms of D, and suppose that

at least one map, say f1, is not an automorphism. Then there is a measure µ

such that for any Borel law ν, the iterates Fn
∗ ν converge weakly to µ. Either

µ = 0 and F has no invariant law, or µ is the unique invariant law for F .

A sufficient condition for an invariant law to exist is that f1(D) is relatively

compact in D.

In particular an IFS of this type is automatically asymptotically stable if

it has an invariant law.

2.2.4 Outline of Results

Theorem 2.4 is a generalisation to IFSs of proposition 2.2 for the special case

of analytic self-maps of D. In §2.3 we make precise the suggestion in [3]

of generalising Theorem 2.4 to more general metric spaces and maps. We

introduce the class of non-uniformly contracting IFSs and prove Theorem 2.6,

which is a generalisation to these IFSs both of Theorem 2.4 and of Proposition

2.2. Ambroladze’s proof applies almost verbatim to prove Theorem 2.6; here

we give an alternative proof using a Kantorovich metric, in preparation for

using a similar method in the iteration of correspondences. In §2.3.2 we

study some consequences for IFSs of asymptotic stability, giving a weak law
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of large numbers for typical orbits of F , and for all orbits in the non-uniformly

contracting case.

An alternative way to generalise theorem 2.4 would be to produce a Wolff–

Denjoy Theorem for analytic IFSs on D. Suppose that Fn
∗ µ→ 0 as n→∞,

weakly against C0(D). Is there necessarily a law µ̃ supported on the unit

circle ∂D such that Fn
∗ ν → µ̃ weakly against continuous functions on D? We

make some minor progress on this question in §2.4.1.

In §2.4.2 we improve the sufficient condition for stability in Theorem 2.4.

Theorem 2.16 gives a geometric sufficient condition which will be useful in

Chapter 3 because it interacts well with covering maps.

Define the reverse iterates of the IFS F to be the random maps

Gn = F1 ◦ F2 ◦ · · · ◦ Fn .

One of the two proofs in [3] of the sufficient condition for existence of an

invariant law in Theorem 2.4 is based on the following result.

Theorem 2.5 (Letac’s Principle). [47].

Suppose that the sequence of reverse iterates (Gn)∞n=1 almost surely converges

pointwise to a (random) constant map. Then the distribution of that constant

limit is the unique invariant measure for F .

We will use Letac’s Principle in proving Theorem 2.16. In §2.5 we ask

which asymptotically stable IFSs can be proven to be asymptotically stable

using Letac’s Principle. We show in Corollary 2.25 that if an N -map analytic

IFS on D has an invariant law then the sequence of reverse iterates almost

surely converge pointwise to a (random) constant limit.



CHAPTER 2. ITERATED FUNCTION SYSTEMS 23

2.3 Non-uniformly contracting IFSs

Definition. An N -map IFS F is non-uniformly contracting if

• Each fi ∈ Lip(1), i. e. each fi is non-expanding:

d (fi(x), fi(y)) ≤ d(x, y) for all x, y ∈ X.

• At least one map, f1, say, is strictly distance-decreasing, i. e.

d (fi(x), fi(y)) < d(x, y) for all x 6= y ∈ X.

(When X is not compact, f1 need not be Lipschitz with any constant

less than 1.)

This terminology is new; we are not aware of any conflicting meanings in the

literature.

Here is the generalisation of Theorem 2.4 to the setting of a non-uniformly

contracting IFS.

Theorem 2.6.

Let X be a proper metric space. Let F = (f1, . . . , fm : X → X; p1, . . . pm) be

a non-uniformly contracting IFS.

1. If F has an invariant law µ, then F is asymptotically stable. In par-

ticular, µ is the unique invariant law.

2. If F has no invariant law then for any ν ∈ P(X), Fn
∗ ν → 0 weakly as

n→∞.
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Proof. The proof in [3] applies almost word-for-word to this generalisation,

writing X in place of D. We have to replace the limn→∞ |Zn| = 1 with

Zn →∞ (meaning that for any compact set K ⊂ X, Zn 6∈ K for sufficiently

large n). To generalise the proof of [3, Lemma 1], one needs the following

statement.

Suppose (xn) → ∞ as n → ∞ and d (xn, yn) is bounded, then

yn →∞ as n→∞.

This is true if and only if X is proper. The properness condition also allows

us to use the original proof of [3, Lemma 3], where it is necessary that for

any compact ball, the closed ball with the same centre but five times the

radius is also compact.

Something along these lines was suggested in [3] but not made precise (no

explicit condition was given on the metric space). All we claim to have added

is the information that properness of X is the appropriate condition. That

properness cannot be weakened much is demonstrated by example 2.1 above.

The context of this result in the IFSs literature is discussed in appendix B.

2.3.1 Stability via Kantorovich metrics

We will now give an alternative proof of part 1 of Theorem 2.6, using the

method of Kantorovich distances. This will serve as a model for the proofs

of several asymptotic stability results.

Suppose that (X, d) is a proper metric space and F is a non-uniformly

contracting IFS on (X, d). If c = ϕ(d) is a modified metric as in §1.2, where
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ϕ is strictly increasing, then F is also a non-uniformly contracting IFS on

(X, c).

The following lemma is the key to our use of Kantorovich metrics.

Lemma 2.7.

Let (X, c) be a proper metric space and let F be a non-uniformly contract-

ing IFS on (X, c). Then the push-forward F∗ acts on Pc and is strictly

distance-decreasing with respect to Kc. Also, F∗ does not increase the Pro-

horov distance πc.

Proof. Suppose µ ∈ Pc. Then∫
c (x, x0) d (F∗µ) (x) =

N∑
i=1

pi

∫
c (fi(x), x0) dµ(x)

≤
N∑

i=1

pi

(
c (fi (x0) , x0) +

∫
c (fi(x), fi (x0)) dµ(x)

)

≤ A+
N∑

i=1

pi

∫
c (x, x0) ,

where the additive constant A does not depend on the choice of µ. Thus F∗
acts on Pc.

Suppose that ν1, ν2 ∈ Pc are distinct. The infimum in the defining equa-

tion 1.1 is attained by a measure m0 ∈ Pν1,ν2 . The maps fi act on X × X

via fi × fi : (x, y) 7→ (fi(x), fi(y)), so we can define

F∗m0 =
N∑

i=1

pi (fi × fi)∗ m0.

Note that π1F∗ (m0) = F∗ν1 and π2m
′
0 = F∗ν2. Since f1 is strictly distance-

decreasing, we have

Kc (F∗ν1,F∗ν2) ≤
∫
c(x, y) dm′

0 <

∫
c(x, y) dm0 = Kc(ν1, ν2).
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Finally, we show that F∗ does not increase πc. It suffices to show that

if πc (ν1, ν2) < α then πc (F∗ν1,F∗ν2) < α. By Lemma 1.9 there is a mea-

sure m ∈ Pν1,ν2 such that m({(x, y) : c(x, y) > α}) < α. But we also

have F∗(m)({(x, y) : c(x, y) > α}) < m({(x, y) : c(x, y) > α}) because the

maps fi do not increase distance. So F∗m is a certificate for the inequality

πc (F∗ν1,F∗ν2) < α.

We now give an example to show that F∗ need not decrease Prohorov

distances. Let δx and δy be the unit masses at distinct points x, y ∈ X

such that c(x, y) < 1. Then πc (δx, δy) = c(x, y). Let f1 be a constant map

with value z, where c(x, z) and c(y, z) both exceed c(x, y), and let f2 be the

identity map. Taking positive probabilities p1 and p2 = 1 − p1 > c(x, y) we

have a 2-map non-uniformly contracting IFS, for which πc (F∗ (δx) ,F∗ (δy)) =

πc (δx, δy).

Lemma 2.8.

Let F be a non-uniformly contracting IFS on a proper metric space (X, d).

Suppose that F has an invariant law µ, and take any ν ∈ P(X). Then the

sequence Fn
∗ ν is uniformly tight.

First proof. By Lemma 1.8 there is a metric c = ϕ(d) such that ϕ is concave,

strictly increasing and unbounded (so (X, c) is proper and F is non-uniformly

contracting on (X, c)) and such that µ, ν ∈ Pc. By Lemma 2.7 the measures

Fn
∗ ν all lie in the ball B (µ,Kc(µ, ν)) in the Kc metric, which by Lemma 1.7

is uniformly tight.

Second proof. Let ε > 0. Because µ and ν are both tight, there is some

compact set K ⊂ X such that µ(X \ K) < ε and ν(X \ K) < ε. Let
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m = µ× ν ∈ P(X ×X). Then m(K ×K) > 1− 2ε. Using the push-forward

F∗ on P(X ×X) defined in the proof of Lemma 2.7, we have

(π1)∗ (Fn
∗m) = Fn

∗ µ = µ and (π2)∗ (Fn
∗m) = Fn

∗ ν .

Let r = diam(K) and let Nr(K) be the closure of the r-neighbourhood of

K, which by the properness property is also compact. If (x, y) ∈ K × K

and Fn ◦ · · · ◦ F1(x) ∈ K then Fn ◦ · · · ◦ F1(y) ∈ Nr(K). It follows that

Fn
∗m (K ×Nr(K)) is at least 1 − 3ε, and hence Fn

∗ (ν) (Nr(K)) > 1 − 3ε.

This bound is independent of n, as required.

We can now give our alternative proof of the first part of Theorem 2.6.

Alternative proof of Theorem 2.6(1).

Consider the modified metric ρ = d/(1 + d), for which diamρ(X) ≤ 1, so

Pρ = P(X). Let ν ∈ P(X). By Lemma 2.7 the sequence Kρ (Fn
∗ ν, µ) is

strictly decreasing. Suppose it converges to a positive limit λ. By Lemma

2.8, we can find a weakly convergent subsequence Fnk
∗ ν → ν̃. Because Kρ

metrizes the weak topology, we find Kρ(µ, ν̃) = λ. But since F∗ is distance-

decreasing and therefore continuous, we also have F1+nk
∗ ν → F∗ν̃. Then we

have

λ = Kρ (F∗ν̃, µ) < Kρ(ν̃, µ) = λ,

a contradiction. Since Kρ (Fn
∗ ν, µ) is strictly decreasing and does not con-

verge to any positive limit, it must converge to 0, which implies that Fn
∗ ν → µ

weakly. So the fixed point µ attracts all laws, as required.
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2.3.2 Ergodic properties in the stable case

A measurable dynamical system is called uniquely ergodic if it has only one

non-zero invariant measure, up to multiplication by scalars. The invariant

measure of a uniquely ergodic system is necessarily ergodic. The following

lemma is a version of that statement for IFSs. It is a simple consequence of

results of Ohno presented in [50, §I.1.2], but it is not explicitly stated in this

way there.

Lemma 2.9.

Suppose that an N-map IFS F = (f1, . . . , fN ; p1, . . . , pN) is uniquely ergodic,

i. e. has a unique invariant law µ. Write Bp for the corresponding Bernoulli

measure on the shift space {1, . . . N}N. Then the measure µ× Bp is ergodic

for the skew-product map τ .

Proof. Let µ be any F∗-invariant Borel measure onX. We say that a bounded

measurable function g on X is (F∗, µ)-invariant if F∗g = g, µ-a.e; a set

A ⊂ X is called (F∗, µ)-invariant if its characteristic function χA is (F∗, µ)-

invariant. We say µ is ergodic if every F∗-invariant function is constant µ-a.e.

It is shown in [50, §I.1.2] that µ is ergodic if and only if every (F∗, µ)-invariant

set has µ-measure equal to 0 or 1, and that µ is ergodic if and only if µ×Bp

is ergodic for the skew product map (in the usual sense of the term).

If A is an (F∗, µ)-invariant set with 0 < µ(A) < 1, then consider the

measure µ′ given by

µ′(B) = µ(A ∩B)/µ(A) .

This defines an F∗-invariant law on X different from µ. Hence the uniqueness

of the invariant measure implies that any (F∗, µ)-invariant set has µ-measure
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either 0 or 1. This completes the proof of Lemma 2.9.

The following corollaries tell us some circumstances in which we can plot

a good picture of the invariant measure µ of an IFS F just by plotting

sufficiently many points of a single random orbit.

Corollary 2.10.

If an N-map IFS F is asymptotically stable with invariant law µ then for µ-

a.e. x0 ∈ X, we have the following weak convergence of empirical measures,

almost surely:

1

k

k−1∑
i=0

δxi
→ µ .

Recall that x0 is a non-random point, whose random orbit under the IFS

F is the sequence (xi).

Proof. By Lemma 2.9, the measure µ × Bp is ergodic for the skew-product

τ . For any function g ∈ C0(X), we have g ◦π1 ∈ L1(X×Ω), so we can apply

Birkhoff’s Pointwise Ergodic Theorem to conclude that

lim
k→∞

1

k

k−1∑
i=0

g (xi) = g (x0, ω)

exists (µ×Bp)-a.s. and is a τ -invariant function, hence equal to the constant

g :=
∫
g dµ, for (µ×Bp)-a.e. point (x0, ω). Now we use the fact that C0(X)

is separable (this follows from the properness ofX, using a countable compact

exhaustion). If g (x0, ω) exists and equals g for each element g of a countable

dense subset of C0(X) (which again happens (µ×Bp)-a.e.) then it exists

and equals g for every g ∈ C0(X), which is precisely the statement that the

empirical measures converge weakly to µ.
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Corollary 2.11 (Weak law of large numbers).

Suppose that X is a proper metric space and that the N-map IFS F on X is

non-uniformly contracting and has an invariant law. Then for every x0 ∈ X,

we have the following weak convergence of empirical measures, almost surely:

1

k

k−1∑
i=0

δxi
→ µ .

Proof. Observe that if we have two sequences (xi) and (yi) such that the

empirical measures 1
k

∑k−1
i=0 δyi

converge weakly to a law µ on X and such that

d (xi, yi) → 0 as i → ∞, then the empirical measures of the sequence (xi)

must also converge weakly to µ. This follows from the fact that every element

of C0(X) is uniformly continuous. By corollary 2.10 the former happens for

µ-a.e. y0 ∈ X. Let K ⊂ X be a compact set such that µ(K) > 0. Consider

the set A = K × {ω ∈ Ω : ω1 = 1}. Poincaré’s Recurrence Theorem tells us

that for (µ×Bp)-a.e. point (y0, ω) ∈ A, τn (y0, ω) ∈ A for infinitely many n.

Thus we may choose a point y0 ∈ X for which Bp-a.s. the empirical measures

of (yi) converge weakly to µ and also for infinitely many i, we have yi ∈ K and

Fi+1 = f1. For such a y0 and for any x0 ∈ X, define the random sequences (yi)

and (xi) on the same shift space (Ω, Bp). This is a simple form of coupling of

the two Markov chains (xi) and (yi). We must show that d (xi, yi) → 0 a.s.

as i → ∞. Since d (xi, yi) is non-increasing and X is proper, xi returns to

some compact set L whenever yi returns to K. Suppose that d (xi, yi) 6→ 0

as i → ∞; then we could choose a sequence ik along which xik → x̂ and

yik → ŷ and such that ω1+ik = 1. Then d (xi, yi) ↘ d (x̂, ŷ) as i → ∞, but

d (f1(x̂), f1(ŷ)) < d(x̂, ŷ), so for k sufficiently large, d (x1+ik , y1+ik) < d(x̂, ŷ),

which is a contradiction.



CHAPTER 2. ITERATED FUNCTION SYSTEMS 31

2.4 Analytic IFSs on D

2.4.1 Wolff–Denjoy Conjecture for analytic IFSs on D

Suppose F is an N -map IFS of analytic maps of D, and suppose that F has

no invariant law. Theorem 2.4 then says that for any measure ν ∈ P(D) we

have Fn
∗ µ→ 0 weakly against C0(D), so the sequence Fn

∗ µ eventually leaves

every compact subset of P(D). The weak topology on P(D) coincides with

the subspace topology of P(D) ⊂ P
(
D
)
. In the case of a 1-map IFS, the

Wolff–Denjoy Theorem says that in P
(
D
)

we have Fn
∗ ν → δα as n → ∞,

where δα is the unit point mass at α ∈ D.

Conjecture 1 (Wolff–Denjoy for IFSs).

Let F be an N-map analytic IFS on D. Then there exists a measure µ ∈

P
(
D
)

such that for every ν ∈ P(D), we have Fn
∗ ν → µ weakly against C

(
D
)
.

Even in the special case where the maps extend continuously to D, the

extension of F to D may not be asymptotically stable. For example, there

are many invariant measures on ∂D for the map z 7→ z2.

Lemma 2.12.

Suppose that ϕ : R+ → R+ is an unbounded concave function with ϕ(0) = 0,

and let ρ be the metric ϕ (dhyp) on D, so that (Pρ(D), Kρ) is a proper metric

space. Let µn, νn ∈ Pρ(D) for each n ∈ N and let µ ∈ P(∂D). If µn → µ

weakly in P
(
D
)

as n → ∞ and the sequence Kρ (µn, νn) is bounded, then

νn → µ weakly in P
(
D
)
.

Corollary 2.13.

Suppose that µ0 ∈ P(D), that µ ∈ P(∂D), and that there is a sequence
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nk →∞ such that Fnk
∗ µ0 → µ weakly in P

(
D
)
. Then for any ν ∈ P(D), we

have Fnk
∗ ν → µ weakly in P

(
D
)
. Thus it suffices to prove conjecture 1 for

just one ν ∈ P(D).

Corollary 2.14.

If µ0 ∈ P(D) and µ ∈ P(∂D) then in P
(
D
)

we have Fnk
∗ µ0 → µ as k →∞

if and only if F1+nk
∗ µ0 → µ as k →∞.

Proof of Lemma 2.12 and Corollaries 2.13 and 2.14.

Let KE be the Kantorovich metric on P
(
D
)

associated to the Euclidean met-

ric. Since D has finite Euclidean diameter, KE metrizes the weak topology

on P
(
D
)
, so we have KE (µn, µ)→ 0 as n→∞. Now

KE (νn, µ) ≤ KE (µn, µ) +KE (µn, νn) ,

so it suffices to prove that KE (µn, νn) → 0. Let 0 < R < 1, and let DR be

the open disc about 0 of hyperbolic radius R. We claim that for any x ∈ D

and y ∈ D \ DR, and for R large enough,

|x− y| ≤ c(R)ρ(x, y) , (2.1)

where c(R) → 0 as R → ∞. To show this, suppose that ε > 0; we will

find R0 such that if R ≥ R0 then (2.1) holds with ε in place of c(R). Since

|x − y| ≤ 2, this is immediate when ρ(x, y) ≥ 2/ε. Since ϕ is unbounded,

this occurs for dhyp(x, y) ≥ S, where S is a constant depending on ε. On

the other hand, since ϕ is concave, there is a constant A > 0 such that

ρ(x, y) ≥ Adhyp(x, y) whenever dhyp(x, y) < S. Suppose that dhyp(0, y) ≥ R.

Then dhyp(0, z) ≥ R−S for every point z on the hyperbolic geodesic γ from x
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to y. Therefore for R sufficiently large, (say R ≥ R0), the hyperbolic density

at each point on γ is at least 1/(Aε). Putting this together we have

ρ(x, y) = ϕ(dhyp(x, y)) ≥ Adhyp(x, y) ≥ A
1

Aε

∫
γ

|dz| ≥ 1

ε
|x− y| ,

as required.

Now µn → µ weakly in P
(
D
)

and µ is supported on ∂D, so µn → 0

weakly in P(D). By the above comparison of metrics,

KE (µn, νn) ≤ 2µn (DR) + c(R)Kρ(µn, νn) ,

which we can make arbitrarily small by choosing R and then n sufficiently

large.

For corollary 2.13, use Lemma 1.8 to choose ϕ so that ν, µ0 ∈ Pρ, then

apply Lemma 2.7 to get boundedness of Kρ (Fn
∗ µ0,Fn

∗ ν). Corollary 2.14 is

proved similarly, taking ν = F∗µ0.

To prove conjecture 1 it would be sufficient to construct a non-empty

subset of P(D), forward-invariant under F∗, with only one limit point in

P(∂D). This is how Beardon’s proof of the Wolff–Denjoy Theorem works;

the forward-invariant set there is a Euclidean disc tangent to the unit circle

at one point, itself a limit of hyperbolic discs. Unfortunately, similar limits

of Kantorovich balls in P(D) do not have unique weak limits in P(D), so

further ideas are required.
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2.4.2 An improved sufficient condition for stability

Combining ideas from [3] and [13] we can obtain a better sufficient condition

than the one given by Ambroladze in [3] for an N -map IFS of analytic self

maps of D to have an invariant measure. We will show that if the image of

some finite composition of the maps is a Bloch subdomain of D then there

exists an invariant law.

Definition. Let U be a hyperbolic Riemann surface, with hyperbolic metric

d. Then a subdomain V ⊂ U is a Bloch domain if and only if it has finite

inradius, i. e.

r = sup
x∈V

d(x, U\V ) < ∞.

Bloch subdomains are useful here because of the following result.

Theorem 2.15. [13, Theorem 4.1]

Suppose that U is a hyperbolic Riemann surface. If V is a Bloch subdomain

of U with inradius r and f : U → V is conformal then f is Lipschitz with

constant tanh r with respect to the hyperbolic metric on U .

Remark: In [13] the theorem is only stated for plane domains, but the

proof applies to arbitrary hyperbolic surfaces.

Theorem 2.16.

Let U be a hyperbolic Riemann surface, and let F be an IFS specified by

analytic maps f1, . . . , fN : U → U and probabilities pi > 0. Suppose that

there is some finite composition of maps fi1 ◦ · · · ◦ fim that maps U into a

Bloch subdomain of U . Then F is asymptotically stable.
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Proof. By Theorem 2.6 we just have to show that F has an invariant law.

We will use Letac’s principle, so we have to show that the sequence of reverse

iterates converges to a constant map with probability 1.

Since f1(U) is a Bloch domain, we can take κ < 1 a Lipschitz constant

for f1 with respect to the hyperbolic metric on U . Pick x0 ∈ U . Define

A = max {d (x0, fi(x0)) : i = 1 . . . N} .

Then for any x ∈ U we have

d(x, fj(x)) ≤ d(x, x0) + d(x0, fj(x0)) + d(fj(x0), fj(x)) ≤ 2d(x, x0) + A.

Now for any x ∈ U put ym = F1 ◦ · · · ◦ Fm(x). Let h(t) be the (random)

number of values 1 ≤ i ≤ t such that Fi = f1. Then

d(ym, ym+n) ≤
m+n−1∑

t=m

d(yt, yt+1) (2.2)

≤
m+n−1∑

t=m

κh(t)d(x, ft+1(x)) (2.3)

≤ (2d(x, x0) + A)
m+n−1∑

t=m

κh(t) (2.4)

Claim.
∑∞

t=1 κ
h(t) <∞ almost surely.

It follows from the claim that ym is almost surely a Cauchy sequence. U

is a complete metric space, so we know that (ym) converges almost surely.

The inequality 2.4 above shows that the convergence is locally uniform in x;

furthermore if y′m = F1 ◦ · · · ◦ Fm(x′), then

d(ym, y
′
m) ≤ κh(t)d(x, x′).
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It also follows from the claim that h(t)→∞ almost surely and therefore the

limit function is almost surely constant.

It remains to prove the claim. The convergence of the sum is a tail event,

so has probability 0 or 1; we prove it converges with positive probability.

Let wn be the number of steps between the (n − 1)th occurence and nth

occurrence of Fi = f1. The wn are non-negative and have finite expectation

C, so

P(wn ≥ κ−n/2) ≤ C.κn/2 .

The wn are independent, so

P(∀n ≥ 1, wn ≤ κ−n/2) ≥ 1−
∞∏

n=1

(1− C.κn/2) > 0,

because
∑∞

n=1C.κ
n/2 converges. Now

∞∑
t=1

κh(t) =
∞∑

n=1

wnκ
n−1,

the right-hand side of which converges with positive probability, as required.

Note that the conditions for Theorem 2.16 may be satisfied even when no

individual fi maps into a Bloch subdomain. Bloch subdomains form a strictly

larger class than relatively compact subdomains. A particular advantage is

that the Bloch property is preserved under lifting to covering spaces. In

Chapter 3 this will allow us to apply Theorem 2.16 to prove uniqueness of

invariant measures for certain holomorphic correspondences.
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2.5 Convergence of reverse iterates

2.5.1 A generalisation of Letac’s Principle

Here we give a version of Letac’s Principle with weaker (albeit more compli-

cated) hypotheses than the original.

Theorem 2.17 (Generalised Letac’s Principle).

Let F be any IFS of continuous maps. Suppose that for every sequence (nk) in

some non-empty family S, the corresponding subsequence of reverse iterates,

i. e. Gnk
, almost surely converges pointwise to a (random) constant. Suppose

that

1. whenever (nk)
∞
k=1 ∈ S, then also (1 + nk)

∞
k=1 ∈ S, and

2. for any two sequences (ak), (bk) ∈ S, there is a sequence (ck) ∈ S such

that (ak) and (ck) have a common infinite subsequence and (bk) and

(ck) have a common infinite subsequence.

Then the distribution of the limit point does not depend on the choice of (nk)

from S and is the unique invariant measure for F .

The conditions here are more subtle than they appear at first sight. If Gnk

almost surely converges pointwise then so does G1+nk
, since F2 ◦ · · · ◦ Fnk+1

is identically distributed to Gnk
and appending the continuous map F1 on

the left does not affect convergence. Condition (1) is needed here because S

need not be the family of all sequences such that the corresponding sequence

of reverse iterates almost surely converges. (It seems unlikely that one could

establish condition (2) for that family without using the conclusion of the

theorem.)
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Proof.

Let (ak), (bk), (ck) be as in condition (2) in the statement. By hypothesis, the

sequences Gak
, Gbk

and Gck
all converge pointwise almost surely to random

constants a, b and c. Since (ak) and (ck) share a common infinite subsequence,

we must have a = c and likewise we must have b = c. Therefore the limit

does not depend on the choice of sequence from S.

Applying this result to the sequences in condition (1) in the statement,

we have

lim
k→∞

G1+nk
(x) = lim

k→∞
Gnk

(x) a.s.,

so these two limits have the same distribution.

Consider the shifted sequence of i. i. d. random maps F̃i = Fi+1. Note that(
F̃i

)∞
i=1

and (Fi)
∞
i=1 are identically distributed. Let

(
G̃i

)
be the sequence of

reverse iterates corresponding to
(
F̃i

)
.

Because F1 is continuous, we have

lim
k→∞

G1+nk
(x) = F1

(
lim
k→∞

G̃nk
(x)
)
.

We have shown above that the distribution µ of the left-hand side equals the

distribution of limk→∞Gnk
(x) . By construction this is also the distribution

of limk→∞ G̃nk
(x). Since F1 is independent of (F̃i)

∞
i=1, we obtain µ = F∗µ,

as required.

For uniqueness, let µ′ be any F∗-invariant measure. Let x be a random

point of X, independent of (Fi) and distributed according to µ′. Then the

random variables Gnk
(x) are all distributed according to µ′. Almost sure

pointwise convergence implies weak convergence in distribution, so µ′ = µ.
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2.5.2 Converse for non-uniformly contracting IFSs

Our reason for generalising Letac’s Principle in Theorem 2.17 is the following

result. It says that for a non-uniformly contracting IFS with an invariant

law, there always exists a family of sequences satisfying the conditions of

Theorem 2.17. So our generalised Letac’s Principle applies to every non-

uniformly contracting IFS.

Theorem 2.18 (Partial Converse of Theorem 2.17).

Let (X, d) be a proper metric space. Let

F = (f1, . . . , fm : X → X ; p1, . . . pm)

be a non-uniformly contracting IFS. Suppose that F has an invariant law µ.

Then there exists a sequence (ak)
∞
k=1 of positive integers with the following

property: for any sequence (nk)
∞
k=1 of positive integers with n1 ≥ a1 and

nk − nk−1 ≥ ak for all k ≥ 2, the corresponding subsequence of reverse

iterates

Gnk
= F1 ◦ · · · ◦ Fnk

almost surely converges locally uniformly to a (random) constant. The fam-

ily of such sequences satisfies the conditions on the family S in Theorem

2.17, so the limit does not depend on the choice of the sequence (nk) and the

distribution of the limit is the unique F∗-invariant measure, namely µ.

Proof.

The key to the proof is the following nesting lemma, which depends on the

same hypotheses as the theorem. Let α ∈ X be an arbitrarily chosen base

point, which will remain fixed for the remainder of §2.5.
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Lemma 2.19.

There exists an increasing sequence of radii (rk)
∞
k=0, with rk →∞ as k →∞,

and an increasing sequence of gaps ak ∈ N with the following property. For

any sequence of times nk ∈ N such that n0 = 0 and nk − nk−1 ≥ ak for all

k ≥ 1, there are almost surely infinitely many (random) offsets j ∈ N such

that

Fnj
= f1 and (∀k ≥ 1) g(k+j) (B (α, rk)) ⊂ B (α, rk−1) , (2.5)

where

gk = Fnk−1+1 ◦ · · · ◦ Fnk
.

We will prove Lemma 2.19 after showing how it is used to prove Theorem

2.18. The following geometric lemma is useful in both of these proofs.

Lemma 2.20. Let K and L0, L1, L2, L3, . . . be compact subsets of a metric

space (X, d), and suppose that f : X → X is strictly distance-decreasing.

Suppose that for all i, Li ⊂ K and

diam (Li+1) ≤ diam (f (Li)) .

Then

diam (Li) ≤ ti ,

where

ti → 0 as i→∞,

and ti depends only on i, K and f .

Proof. We have

diam (f(Li)) ≤ ϕ (diam(Li)) ,
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where for t ≥ 0, ϕ(t) is defined by

ϕ(t) = sup {d (f(x), f(y)) : x, y ∈ K and d(x, y) ≤ t} . (2.6)

It follows that for all i ≥ 1

diam(Li) ≤ ϕ◦i(diam(K)) .

Since f is continuous and the subset of X ×X over which the supremum in

(2.6) is taken is compact, the supremum is attained, say at (xt, yt). Therefore

for all t > 0 we have ϕ(t) < t. We claim that for any t0 > 0, the iterates

ti = ϕ◦i(t0) → 0 as i → ∞. Indeed, we have tn ↘ r as n → ∞, and

we can choose a subsequence along which (xt, yt) converges to (xr, yr). We

conclude that d (xr, yr) = r and also d (f (xr) , f (yr)) = r, a contradiction

unless r = 0. This completes the proof of lemma 2.20.

Now we will show how to use Lemma 2.19 to prove Theorem 2.18. The

conclusion of the theorem asserts the existence of a gap sequence (ak); this

will be the sequence (ak) given by Lemma 2.19. Let (nk)
∞
k=1 be a sequence

(as in the theorem) such that n1 ≥ a1 and for all k ≥ 2, nk − nk−1 ≥ ak. Set

n0 = 0 to get a sequence as in the lemma.

Let j1, j2, . . . be the (random) sequence of values of j for which the nesting

condition (2.5) is satisfied. We have

B (α, r0) ⊃ g1+jm (B (α, r1)) ⊃ g1+jm ◦ g2+jm (B (α, r2)) ⊃ . . .

. . . ⊃ g1+jm◦· · ·◦gjm+1

(
B
(
α, r(jm+1−jm)

))
⊃ g1+jm◦· · ·◦gjm+1 (B (α, r0)) .

(2.7)

Fix a ∈ N and consider the sequence of sets

Im = ga ◦ . . . gjm (B (α, r0)) ,
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defined for m sufficiently large, say m ≥ m0 (where m0 is minimal subject

to jm0 ≥ a). Since (X, d) is proper, each Im is compact. Because of the

inclusions (2.7) they are nested: whenever Im is defined then

Im ⊃ Im+1 ⊃ Im+2 ⊃ . . . .

We wish to show that almost surely their intersection is a (random) point,

which we will call za. Since (X, d) is complete, it suffices to show that

diam (Im) → 0 as m → ∞. This follows from Lemma 2.20. To see this, fix

m for the moment and in Lemma 2.20 take f = f1, K = B (α, r0) and (for

0 ≤ i ≤ m−m0)

Li =
(
g1+jm−i

◦ · · · ◦ gj1+m−i

)
◦ · · · ◦

(
g1+jm−1 ◦ · · · ◦ gjm

)
(B (α, r0)) . (2.8)

When they are defined, diam (Li+1) ≤ diam (f1 (Li)) because all the maps of

F do not increase distances and the rightmost map in each ‘block’ in (2.8)

is f1. So

diam (Im) ≤ diam (Lm−m0) ≤ tm−m0 ,

where tm−m0 is the bound from Lemma 2.20 that only depends on K and

f . Now we let m vary, but our choices of K and f do not vary, so the

bounds tm−m0 converge to 0 according to Lemma 2.20. We have shown that

diam (Im)→ 0 as m→∞, as required.

We digress briefly here to note that if we let a ∈ N vary then we obtain as

above a random sequence (za) of intersection points. For a ≥ 1 they satisfy

za = ga(za+1) .

We will return to the idea of a random infinite reverse orbit in the proof of

Theorem 2.24.
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Let L ⊂ X be any compact set. For i sufficiently large, L ⊂ B (α, ri) so

g1+jm ◦ · · · ◦ gi+jm(L) ⊂ B (α, r0) .

Applying g1◦· · ·◦gjm to both sides, we find that the compact sets g1◦· · ·◦gk(L)

converge to the point z1 as k →∞. We have shown that the sequence

Gnk
= g1 ◦ · · · ◦ gk

converges locally uniformly to the constant map with (random) value z1.

This is the first conclusion of Theorem 2.18.

Next we show that the family of sequences (nk)
∞
k=1 such that n1 ≥ a1 and

nk − nk−1 ≥ ak for all k ≥ 2 satisfies the conditions of the generalised Letac

principle. Condition (1) is obviously satisfied. For condition (2), to find the

sequence (ck), just take alternately a term from the sequence (ak) and then

a term from the sequence (bk), always ensuring that the gaps are sufficiently

long. This completes the proof of Theorem 2.18.

Proof of Lemma 2.19.

Choose any sequence of probabilities q1, q2, · · · ∈ (0, 1), such that
∑
qk <∞.

We will define inductively an increasing sequence of natural numbers (ak)
∞
k=1

and a sequence of positive radii (rk)
∞
k=0 such that rk →∞ as k →∞ and for

k ≥ 1 we have

(m ≥ ak) =⇒ P [F1 ◦ · · · ◦ Fm (B (α, rk)) ⊂ B (α, rk−1)] > 1− qk. (2.9)

Fix any positive integer b. We will show that with probability 1 the

nesting event 2.5 occurs for some j ≥ b. This implies that with probability

1 it happens for infinitely many j.
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As in the statement of Lemma 2.19, we consider a sequence (nk)
∞
k=0 such

that n0 = 0 and nk − nk−1 ≥ ak for all k ≥ 1. Also recall the definition of

the compositions

gk = Fnk−1+1 ◦ · · · ◦ Fnk
.

Using the independence of the maps Fi, condition (2.9) gives

P [gk (B (α, rk)) ⊂ B (α, rk−1)] > 1− qk.

Since the sequence (ak) is increasing, we have (for each positive integer j)

P [gj+k (B (α, rk)) ⊂ B (α, rk−1)] > 1− qk .

Since the maps Fi are i. i. d. , the compositions gk are independent. Therefore

for any m ∈ N we have

P [(∀k ≥ m) gj+k (B (α, rk)) ⊂ B (α, rk−1)] >
∞∏

k=m

(1− qk) > 0.

Now by independence of the maps Fn we obtain

P

∃j ≥ b such that
Fnj

= f1 and for all 1 ≤ k < m

gj+k (B (α, rk)) ⊂ B (α, rk−1)

 = 1.

Combining the last two equations gives

P

∃j ≥ b such that
Fnj

= f1 and for all 1 ≤ k < m

gj+k (B (α, rk)) ⊂ B (α, rk−1)

 > ∞∏
k=m

(1− qk) .

But m was arbitrary and
∏∞

k=m (1− qk)↗ 1 as m→∞, so we find

P

∃j ≥ b such that
Fnj

= f1 and for all k ≥ 1

gj+k (B (α, rk)) ⊂ B (α, rk−1)

 = 1.
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It remains to show that we can construct the sequences nk and rk as

required; we choose the rk first, and then show that the condition describing

which sequences nk we can use is of the form nk+1 − nk ≥ ak, as in the

statement of the theorem.

Let us choose the radii rk, for k ≥ 0. We know that Fn
∗ (δα)→ µ weakly,

so we also have
1

n

n−1∑
i=0

F i
∗ (δα)→ µ as n→∞.

Therefore we can choose radii rk and integers mk such that for each k ≥ 1,

m ≥ mk−1 implies both

Fm
∗ (δα) (B (α, rk−1 − 1)) > 1− qk

3
(2.10)

and
1

m

m−1∑
i=0

F i
∗ (δα) (B (α, rk−1 − 1)) > 1− p1qk

6
. (2.11)

At the same time we make sure that ri →∞ as i→∞.

From (2.11) it follows that

(∀n ≥ mk−1) P

Fi ◦ · · · ◦ F1(α) ∈ B (α, rk−1 − 1) for

at least n
(
1− p1

2

)
values 0 ≤ i < n

 > 1− qk
3
.

(2.12)

Let Xn be the number of maps F1, . . . , Fn that take the value f1. Let En

be the event that both

Xn ≥
2np1

3

and

Fi ◦ · · · ◦ F1(α) ∈ B (α, rk−1 − 1)

for at least n(1− p1/2) of the values 0 ≤ i < n. (2.13)
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When En occurs, there must be at least
(

2np1

3
− np1

2

)
values 0 ≤ i < n such

that both

Fi ◦ · · · ◦ F1(α) ∈ B (α, rk−1 − 1) and Fi+1 = f1 . (2.14)

It follows from (2.12) that

P (En) ≥ 1− qk
3
− P

(
Xn ≤

2np1

3

)
.

Xn is binomially distributed with parameters (n, p1), so for n sufficiently

large,

P
(
Xn ≤

2np1

3

)
<
qk
3
.

Consider the compact sets

Li = Fi ◦ · · · ◦ F1 (B (α, rk)) .

When En occurs, there is a subsequence of the Li of length at least np1

6
satisfy-

ing the conditions of Lemma 2.20, with f = f1 and K = B (α, rk + rk−1 − 1).

Supposing that n is sufficiently large, we can conclude that the event En im-

plies

diam (Fn ◦ · · · ◦ F1 (B (α, rk))) < 1 . (2.15)

Putting this together, we find (for n large enough ) that with probability at

least 1 − qk, we have both (2.15) and the following, which is a consequence

of (2.10):

Fn ◦ · · · ◦ F1(α) ∈ B (α, rk−1 − 1) ,

and therefore

Fn ◦ · · · ◦ F1 (B (α, rk)) ⊂ B (α, rk−1) .
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The n-tuples (F1, . . . , Fn) and (Fn, . . . , F1) are identically distributed. Choose

ak sufficiently large that n ≥ ak is sufficiently large for all of the above con-

ditions on n to apply, and (except when k = 1) also large enough that

ak > ak−1. Then if n ≥ ak we have

P [F1 ◦ · · · ◦ Fm (B (α, rk)) ⊂ B (α, rk−1)] > 1− qk.

We have established that (2.9) is satisfied. This completes the proof of

Lemma 2.19.

2.5.3 The natural extension of the skew product

The reader may have wondered why we defined the skew product τ as an

extension of the unilateral shift rather than the bilateral shift. In this section

we treat the skew product τ̂ over the bilateral shift that arises from a stable

non-uniformly contracting N -map IFS F . Using Theorem 2.18, we will show

that there is a unique τ̂ -invariant law that makes τ̂ into an extension of the

bilateral shift with a given Bernoulli measure, and that this extension is in

fact an isomorphism; both m. p. d. s. are isomorphic to the natural extension

of the original skew product τ . The invertibility of τ̂ as an m. p. d. s. will

enable us in section §2.5.4 to apply the Birkhoff ergodic theorem to study

the sequence of reverse iterates. The idea of using the natural extension of

the skew product to obtain ergodic theorems about the reverse iterates has

been appeared elsewhere, e.g. [30].

The bilateral shift space is

Ω̂ = {1, . . . , N}Z ,
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with the σ-algebra M̂ which is the completion of the product σ-algebra with

respect to the Bernoulli measure Bp that corresponds to the probability

vector p = (p1, . . . , pN). The left-shift map σ̂ acts on a symbol sequence

ω = (ωi)
∞
i=−∞ thus:

(σ̂ω)i = ωi+1 .

There is a homomorphism φ from
(
Ω̂, M̂ , B̂p, σ̂

)
to (Ω,M, Bp, σ), given by

restriction:

φ
(
(ωi)i∈Z

)
= (ωi)i∈N .

Suppose that (W, C, ν, T ) is an invertible m. p. d. s. with a homomorphism

α to (Ω,M, Bp, σ). Then there is an essentially unique homomorphism α̂ :

W → Ω̂ such that α = φ ◦ α̂. We can construct α̂ by setting

(α̂(w))i =
(
α(T iw)

)
0
, for i ∈ Z.

It follows that
(
Ω̂, M̂ , B̂p, σ̂

)
is the natural extension of (Ω,M, Bp, σ).

Now suppose that (X, d) is a proper metric space with Borel σ-algebra B.

Suppose that F is a stable non-uniformly contracting N -map IFS on (X, d),

with probability vector p and invariant law µ. Recall the skew-product map

τ : X × Ω → X × Ω defined in §2.1.1. We denote the Cartesian projections

by

πΩ : X × Ω→ Ω ,

πX : X × Ω→ X .

πΩ is a homomorphism from (X × Ω,B ×M, µ×Bp, τ) to the unilateral

shift (Ω,M, Bp, σ).
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We now define the skew product over the bilateral shift:

τ̂ : X × Ω̂→ X × Ω̂ , (x, ω) 7→ (fω1(x), σ̂ω) ,

and the Cartesian projection πΩ̂ : X × Ω̂→ Ω̂.

The following diagram commutes:

X × Ω̂
(id, φ)

- X × Ω

X × Ω̂
(id, φ)

-

τ̂

-

πΩ

X × Ω

τ

-

Ω̂

πΩ̂

?
φ

- Ω
?

Ω̂

πΩ̂

?
φ

-

σ̂

-

Ω

πΩ

?

σ

-

We wish to put a probability measure on X × Ω̂ so as to make the left,

right, top and bottom faces of this diagram into extensions of m. p. d. s.,

when Ω and Ω̂ are given the Bernoulli measures Bp and B̂p respectively and

X × Ω is given the probability measure µ×Bp.
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Lemma 2.21.

There exists a unique Borel probability measure Q on X×Ω̂ such that πΩ̂ is a

homomorphism of m. p. d. s. from
(
X × Ω̂,B × M̂,Q, τ̂

)
to
(
Ω̂, M̂ , B̂p, σ̂

)
,

where B × M̂ is the completion of the σ-algebra B × M̂ with respect to

Q. Moreover, πΩ̂ is then an isomorphism between natural extensions of

(X × Ω,B ×M, µ×Bp, τ).

Proof. We begin by constructing a suitable measure Q using Theorem 2.18.

Now that we are working with a bilateral shift, it is convenient to connect

the reverse iterates with the skew product. To do this, we will discard our

original definition of Gn in terms of the maps F1, . . . , Fn and instead model

the reverse iterates Gn on the probability space (Ω̂,M̂, B̂p) by extending the

definition

Fn = fωn for each n ∈ Z ,

and then for n ∈ N setting

Gn = F0 ◦ F−1 · · · ◦ F1−n

= fω0 ◦ fω−1 ◦ · · · ◦ fω1−n .

We have not changed the distribution of the sequence (Gn)∞1 , so Theorem

2.18 still applies to the sequence (Gn). Here is the connection of our new

reverse iterates with the skew product:

τn(x, σ̂−nω) = (Gn(ω)(x), ω) . (2.16)

Let (nk) be any suitable sequence for Theorem 2.18. Then we define L(ω) to

be the random constant limit in Theorem 2.18, i.e.

L(ω) = lim
k→∞

Gnk
(α) .
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L(ω) is a Bp-a.e. defined function of ω. For all i ∈ Z and n ∈ N, we have

Gn+1(σ̂
iω) = fωi

◦Gn(σ̂i−1ω). (2.17)

Since the sequence (1 + nk) is also admissible for Theorem 2.18, taking the

limit in (2.17) as k →∞ yields

L(σ̂iω) = fωi
◦ L(σ̂i−1ω) . (2.18)

Consider the map

L# = (L, id) : Ω̂→ X × ω̂ .

L# is Borel-measurable because L is Borel-measurable, being a Bp-a.e. limit

of continuous functions. We define Q using as the push-forward by L# of the

Bernoulli measure:

Q = (L#)∗ B̂p .

To show that Q is a τ̂ -invariant probability measure, it suffices to check that

L# ◦ σ̂ = τ ◦ L# ,

which is the content of (2.18). Since πΩ̂ ◦ L# = id, we have

(πΩ̂)∗ Q = Bp , and also

L# ◦ πΩ̂ = id , Q-a.e. ,

so πΩ̂ is an isomorphism as required.

The uniqueness of Q will follow once we show that (id, φ) is a homomor-

phism that makes τ̂ into the natural extension of τ . To this end, let α be a

homomorphism from (W, C, ν, T ) to (X × Ω,B ×M, µ×Bp, τ). Then πΩ◦α
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is a homomorphism, so is essentially uniquely expressible as α = φ◦β, where

β is a homomorphism from (W, C, ν, T ) to
(
Ω̂, M̂ , B̂p, σ̂

)
. We wish to prove

that

α(w) = (L(β(w)), φ(β(w))) , for ν-a.e. w ∈ W (2.19)

for then α factors in an essentially unique way through β as

α = (id, φ) ◦ L# ◦ β = (L, φ) ◦ β .

To prove (2.19) we use the locally uniform convergence of the reverse iterates

Gnk
given by Theorem 2.18. Let ε > 0. Since (X, d) is proper, we can choose

a compact set K ⊂ X such that

1− ε < µ(K) = ν(K × Ω) .

Let (nk)
∞
k=1 be a suitable sequence in Theorem 2.18. Because ν is T−1-

invariant, we have

ν
({
w ∈ W : α

(
T−nk(w)

)
∈ K for infinitely many k ∈ N

})
> 1− ε .

On the other hand, Bp-a.s. Gnk
converges uniformly onK to L(ω) as k →∞.

It follows that

ν ({w ∈ W : πX(α(w)) = L(β(w))}) > 1− ε ,

which proves (2.19) since ε was arbitrary.

The reader should note that the τ̂ -invariant measure Q is in general not

a product measure, i.e. the X and Ω̂ co-ordinates are not independent.

Lemma 2.21 genuinely relies on fact that the maps are non-expanding.

For a counterexample, consider the 1-map IFS given by the doubling map



CHAPTER 2. ITERATED FUNCTION SYSTEMS 53

modulo 1, with µ being Lebesgue measure. In this case the skew product

m. p. d. s. is isomorphic to the unilateral Bernoulli shift on two symbols

with probabilities
(

1
2
, 1

2

)
, although the underlying shift is the Bernoulli shift

on one symbol, i.e. the trivial m. p. d. s. . The natural extensions are the

corresponding bilateral shifts, which are not isomorphic.

We can use L to construct the isomorphism from σ̂ to the standard con-

struction of the natural extension of τ that was explained in §1.4. To do

this, we must associate to Bp-almost every symbol sequence ω = (ωn)∞−∞ a

bi-infinite orbit (xi) (ω), satisfying

(∀i ∈ Z) xi = fωi
(xi−1) = Fi (xi−1) . (2.20)

For every i ∈ Z, the distribution of the i-th co-ordinate xi must be µ. These

conditions are satisfied when we set

xi(ω) := L
(
σ̂iω
)

= πX

(
τ̂ i (x0, ω)

)
.

τ̂−1 is ergodic, since it is isomorphic to σ̂. This is useful because the

random backwards orbit (x−n)∞n=0 is a projection of the forward orbit of τ̂−1.

In particular we can apply the Birkhoff Pointwise Ergodic Theorem to τ̂−1 to

obtain information about averages of functions along the sequence (x−n)∞n=0.

Since Gn (x−n) = x0, we can use this to obtain information about the com-

plete sequence of reverse iterates, where previously we only had information

about sparse subsequences.
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Lemma 2.22.

For Bp-a.e. ω ∈ Ω, the backward orbit (x−n)∞n=0 (ω) constructed above is

uniquely determined by (2.20) together with the following property: for any

compact set K ⊂ X,

1

n

n−1∑
j=0

χK (x−j)→ µ(K) as n→∞ ,

where χK is the characteristic function of K.

Proof. To see that the property is satisfied Bp-almost surely, we apply the

Birkhoff Pointwise Ergodic Theorem to the m. p. d. s.
(
X × Ω̂,B × M̂,Q, τ̂

)
and the L1 function χK ◦ πX , using

χK (x−n) = χK ◦ πX ◦ τ̂−n (x0, ω) and∫
χK ◦ πX dQ =

∫
χK dµ̂ = µ(K) .

For the uniqueness, suppose that for some symbol sequence ω there are

two orbits (xn) and (yn), both satisfying this criterion for every compact

K ⊂ X. We may choose a compact set K such that µ(K) > 1
2
. Then

lim inf
n→∞

1

n

n−1∑
j=0

χK (x−j)χK (y−j) ≥ 2µ(K)− 1 > 0, Bp-a.s.,

so at infinitely many negative times we must have d (x−j, y−j) ≤ diam(K).

Because the maps fi do not increase distance, we have d (x−j, y−j) ≤ diam(K)

for all j ∈ Z. As was shown in the last part of the proof of Lemma 2.21,

Bp-a.s. there is a compact K ′ ⊂ X such that x−nk
∈ K ′ for infinitely

many k ∈ N. For these values of k, y−nk
is in K ′′, the closed diam(K)-

neighbourhood of K ′, which is compact because X is proper. Meanwhile,
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Gnk
converges uniformly on K ′′ to x0, so

y0 = Gnk
(y−nk

)→ x0 as k →∞,

i.e. y0 = x0, Bp-a.s.

The criterion of the lemma is unchanged if we make the index of sum-

mation run from some fixed m instead of 0; the above argument then yields

xm = ym, Bp-a.s.

2.5.4 Strong converse for metrically taut spaces

Definition (Iancu and Williams). A metric space (X, d) is taut if for every

x, y ∈ X and every ε > 0 there exists a sequence x = z0, z1, z2, . . . , zn = y of

points such that

d (zi−1, zi) ≤ ε for all i = 1, . . . , n, and

n∑
i=1

d (zi−1, zi) ≤ d(x, y) + ε .

For example, every Riemannian manifold is a taut metric space.

Lemma 2.23. Suppose that (X, d) is proper. Then (X, d) is taut if and

only if for every x 6= y ∈ X and 0 < t < d(x, y), there exists z ∈ X with

d(x, z) = t and d(z, y) = d(x, y)− t.

Proof. The ‘if’ direction is trivial. For ‘only if’, suppose we are given x 6= y

in a taut metric space (X, d) and 0 < t < d(x, y). Then for any ε > 0 we

obtain a chain of points zi as in the definition of tautness, and we choose zε

to be the first of these such that

d(x, zε) ≥ t
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Then

d(x, zε) ≤ t+ ε

and

d(zε) ≤ d(x, y)− t+ ε .

Since (X, d) is proper, the ball B(x, d(x, y)) is compact, so we can choose a

sequence εi → 0 as i → ∞ such that zεi
converges; take z in the lemma to

be the limit of this sequence.

We will in fact only use the equivalent condition given by Lemma 2.23.

Various properties of general taut metric spaces are developed in [43].

Theorem 2.24.

Suppose that (X, d) is proper and metrically taut. Let

F = (f1, . . . , fN : X → X; p1, . . . pN)

be a non-uniformly contracting IFS, on (X, d) and suppose that F has an

invariant law µ. Then the sequence (Gk) of reverse iterates almost surely

converges locally uniformly to a (random) constant.

Corollary 2.25. Suppose that F is an N-map analytic IFS on D with an

invariant law µ. Then the sequence of reverse iterates almost surely converges

locally uniformly to a random constant, whose distribution is µ.

Proof. The condition of metric tautness only comes into play in Lemma 2.27,

near the end of the proof.

Firstly we rephrase the conclusion of the theorem as a large deviations

statement. The sequence of maps Gn converges locally uniformly to the
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constant x0 if and only if for every neighbourhood U of x0 and every compact

set K ⊂ X we have K ⊂ G−1
n (U) for n sufficiently large.

We know that x−n ∈ G−1
n ({x0}). Also, there is a non-decreasing sequence

(sn)∞n=0 such that d (x−n, y) ≤ sn =⇒ Gn(y) ∈ U . So the question is whether

the sequence (sn) grows rapidly enough that for sufficiently large n this will

be satisfied for all y ∈ K. Thus we need

1. a statement about the large deviations of d (α, x−n) and

2. a statement about the growth of sn = d (x−n, X\G−1
n (U)).

It is for the second of these that we will use the metric tautness property.

We will deal first with the common building blocks for the two statements

above.

The next step in the proof of Theorem 2.24 is to use the natural extension

of the skew product map τ associated with F , as in 2.5.3.

We assume that f1 is strictly distance-decreasing. Let K ⊂ X be com-

pact. Now apply the Birkhoff Pointwise Ergodic Theorem in the same way

as in the proof of Lemma 2.22 to the indicator function for the event

(x0 ∈ K and ω1 = 1) .

Since the co-ordinate x0 is a function purely of the ωi : i ≤ 0, and ω1 is

independent of these, we have∫
χ {x0 ∈ K and ω1 = 1} dµ̂ = p1 µ(K).

Hence

lim
n→∞

1

n

n−1∑
j=0

χ {x−j ∈ K and ω1−j = 1} = p1µ(K) Bp-a.s.
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So with probability 1, the random backwards orbit reasonably often lands in

K when the next map is f1.

We are now in a position to prove a suitable large deviations result for

d (α, x−n).

Lemma 2.26.

Fix any positive distance t. Then Bp-almost surely, d (α, x−n) < nt for all

sufficiently large n.

Proof. The proof is by contradiction. The statement “d (α, x−n) > nt for

infinitely many positive n” in itself does not violate the ergodic properties

established above. However, if d (α, x−n) > nt then d (α, x−m) > mt/2 for

n ≤ m ≤ n(1 + c), for some c > 0 which depends on t but not on n. The

reason is that

d (α, x−j) ≤ d (α, F−j(α)) + d
(
F−j(α), F−j

(
x−(1+j)

) )
≤ max

i=1,2,...,N
d (α, fi(α)) + d

(
α, x−(1+j)

)
.

Define

R = max
i=1,2,...,N

d (α, fi(α)) <∞ .

If

d (α, x−n) > nt

then

d (α, x−j) > jt/2

whenever

n ≤ j ≤ n

(
R + t

R + t/2

)
.
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We may choose a large compact set K ⊂ X such that

µ(K) >
R + t

2

R + t
.

Suppose now that for infinitely many positive n we have d (α, x−n) > nt.

Then for infinitely many positive n we have

1

n

n−1∑
j=0

χK (x−j) <
R + t

2

R + t
,

contrary to Lemma 2.22.

Next we use the metric tautness property to give a lower bound on the

growth of the pre-images of an arbitrary neighbourhood U of x0.

Lemma 2.27.

There is a distance t′ > 0 such that

sn = d
(
x−n, X\G−1

n (U)
)
≥ nt′

for all sufficiently large n, Bp-a.s.

Proof. Choose ε > 0 so that B (x0, ε) ⊂ U . Define, for a ≤ b,

r(x, a, b) = sup {r : Fa ◦ · · · ◦ Fb(B(x, r)) ⊂ B (Fa ◦ · · · ◦ Fb(x), ε)}

= d
(
x,X\ (Fa ◦ · · · ◦ Fb)

−1 (B(Fa ◦ · · · ◦ Fb(x), ε)
)
.

We now show that (r(x, a, b) − ε) is superadditive in the sense that for

a ≤ b ≤ c we have

(r(x, a, c)−ε) ≥ (r(x, b+1, c)−ε) + (r (Fb+1 ◦ · · · ◦ Fc(x), a, b)− ε) . (2.21)

To see this, let y be any point in the closed ball B(x, S) where S is the

right-hand side of (2.21). We have to show that Fa ◦ · · · ◦ Fc(y) lies in
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B (Fa ◦ · · · ◦ Fc(x), ε). The metric tautness condition tells us that there is

a point z such that

d(x, z) ≤ r(x, b+ 1, c) and

d(z, y) ≤ r (Fb+1 ◦ · · · ◦ Fc(x), a, b)− ε .

Then, by definition,

d (Fb+1 ◦ · · · ◦ Fc(x), Fb+1 ◦ · · · ◦ Fc(z)) ≤ ε.

Because the maps do not increase distance,

d (Fb+1 ◦ · · · ◦ Fc(z), Fb+1 ◦ · · · ◦ Fc(y)) ≤ d(z, y) ,

so by the triangle inequality,

d (Fb+1 ◦ · · · ◦ Fc(x), Fb+1 ◦ · · · ◦ Fc(y)) ≤ ε+ d(z, y)

≤ r (Fb+1 ◦ · · · ◦ Fc(x), a, b) .

Therefore we have

d (Fa ◦ · · · ◦ Fc(x), Fa ◦ · · · ◦ Fc(y)) ≤ ε ,

which establishes (2.21).

Now we apply the superadditivity repeatedly to obtain

r (x−n, 1− n, 0)− ε ≥
n∑

j=1

r (x−j, 1− j, 1− j)− ε.

Next, we show that when Fk = f1, then r(x, k, k)−ε > 0 for every x ∈ X.

Suppose not, then there is a point x ∈ X and a sequence of points (zn) such

that d (zn, x) → ε as n → ∞ and d (f1 (zn) , f1(x)) > ε. Because X is



CHAPTER 2. ITERATED FUNCTION SYSTEMS 61

proper, there is a convergent subsequence with limit z, say. Then d(z, x) = ε

but d (f1(z), f1(x)) ≥ ε. Since f1 is strictly distance-decreasing, this is a

contradiction.

We now apply the Birkhoff Pointwise Ergodic Theorem to the the averages

of the positive function r(ω) = r (x−1, 0, 0) along the forward orbits of the

ergodic transformation σ̂−1. We find that Bp-a.s.,

lim inf
n→∞

1

n

n∑
j=1

r (x−j, j − 1, j − 1)− ε ≥
∫

E(r(ω)− ε) dµ > 0.

(We do not know that the function r is in L1 (Bp), so we have to apply the

Birkhoff Pointwise Ergodic Theorem to truncations of the function in order

to get this, which is why we have a lim inf rather than a limit). Hence

lim inf
n→∞

r (x−n, 0, n− 1)− ε
n

> 0, Bp-a.s.

Therefore the conclusion of the lemma is satisfied by taking

t′ =

∫
E(r(ω)− ε) dµ .

At the cost of using a less well-known result, we could shorten this proof

slightly by applying Kingman’s Subadditive Ergodic Theorem instead of

Birkhoff’s Pointwise Ergodic Theorem.

Finally we combine Lemma 2.26 and Lemma 2.27 to complete the proof

of the theorem. Choose t = 2t′, so that for sufficiently large n we have

d
(
x−n, X\G−1

n (U)
)
≥ d (α, x−n) + nt′,

and K ⊂ B(α, nt′) for sufficiently large n. Therefore

K ⊂ G−1
n (U) for sufficiently large n, Bp-a.s.



Chapter 3

Holomorphic correspondences

3.1 Introduction

In this chapter we will study the geometry and dynamics of holomorphic cor-

respondences on compact Riemann surfaces. Polynomials and rational maps

on the Riemann sphere are objects belonging to complex algebraic geometry,

yet in studying their dynamics, complex analysis must be applied in ways

that do not belong to algebraic geometry. This is because we are interested

in describing asymptotic behaviour with respect to the usual topology rather

than the Zariski topology. We will do the same with holomorphic correspon-

dences, introducing them as objects of algebraic geometry then switching to

the point of view of geometric function theory to obtain conclusions about

the invariant probability measures of the associated Markov chains. In doing

this we will make use of some of the results and techniques of Chapter 2.

62
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3.1.1 Correspondences – the algebraic viewpoint

The following definitions mostly follow the exposition given in [37, §2.5],

although some of the notation follows [21]. Let C and C ′ be (smooth, pro-

jective) algebraic curves over C, which we may also think of as compact

Riemann surfaces. The dth symmetric product (C ′)(d) is a compact complex

manifold [37, p. 236]. A correspondence T : C → C ′ of degree d associates

to every point p ∈ C an effective divisor T (p) of degree d on C ′, varying

holomorphically with p, in the sense that it is a holomorphic map from C to

(C ′)(d). Equivalently we can specify T by its curve of correspondence

D = {(p, q) : q ∈ T (p)} ⊂ C × C ′ .

Then T (p) is obtained by pullback of divisors, as T (p) = i∗p(D), where ip

is the inclusion map C ′ → C × C ′ such that ip(q) = (p, q). When D is

irreducible then we call the correspondence T irreducible. Note that D need

not be a smooth curve in C×C ′, but nevertheless there is a compact Riemann

surface D̃ (the desingularization of D), with analytic maps π1 : D̃ → C and

π2 : D̃ → C ′ such that

T (p) =
∑

z ∈ D̃ : π1(z) = p

vπ1(z) . π2(z) = π2 ◦ π∗1(p) ,

where vπ1(z) is the valency of π1 at z. We will sometimes think of the

correspondence as a multivalued map T = π2 ◦ π−1
1 .

The inverse of the correspondence T is the correspondence T−1 given by

π1◦π∗2. (We have reversed the roles of C and C ′ while keeping the same curve

of correspondence.) The degree d′ of T−1 need not be the same as that of T .



CHAPTER 3. HOLOMORPHIC CORRESPONDENCES 64

The pair (d′, d) is called the bidegree of T . A point z ∈ D̃ is called forward-

singular if vπ1(z) > 1 and backward-singular if vπ2(z) > 1. Accordingly a

point p ∈ C is called forward-singular if T (p) is supported on fewer than

d points, which happens if and only if p = π1(z) for some forward-singular

point z ∈ D̃. Similarly q ∈ C ′ is called backward-singular if and only if

T−1(q) is supported on fewer than d′ points. In [37], the point (p, q) ∈ D

is called a coincident point if q appears in T (p) with multiplicity greater

than 1. If D has a node at (p, q), then (p, q) is a coincident point but need

not be forward-singular. Coincident points are important in enumerative

algebraic geometry, but do not have much connection with dynamics; in

contrast forward-singular and backward-singular points turn out to be very

important in studying the dynamics of a correspondence.

Suppose that R : Ĉ → Ĉ is a rational map of degree n. Then we may

considerR as a correspondence of bidegree (n, 1) andR−1 as a correspondence

of bidegree (1, n). Note that a critical point of R is not a singular point, but

a critical value is both a backward-singular point for the correspondence R

and a forward-singular point of the correspondence R−1.

Given two correspondences T : C → C ′ and S : C ′ → C ′′, we may

compose them as follows. Expressing T (p) =
∑

q∈C′ m(q).q, we define S ◦

T (p) =
∑

q∈C′ m(q)T (q) , an effective divisor on C ′′. Note that unless the

correspondence T has bidegree (1, 1), then the composite T−1 ◦T will not be

the identity. If d′ = 1 then T−1 ◦ T will be the correspondence p 7→ d.p.

From the point of view of dynamics, we will wish to consider two corre-

spondences T : C → C and T ′ : C ′ → C ′ as equivalent when there exists an

isomorphism of algebraic curves φ : C → C ′ such that φ−1 ◦ T ′ ◦ φ = T as



CHAPTER 3. HOLOMORPHIC CORRESPONDENCES 65

divisors. When this happens, we say that T and T ′ are conjugate.

3.1.2 The geometric function theory viewpoint

A holomorphic correspondence is a multivalued analytic map between com-

pact Riemann surfaces which is locally defined except at a discrete set of

singular points by a finite set of of analytic branches. Each connected com-

ponent of the graph of the correspondence in the neighbourhood of a singular

point is given analytically by a Puiseux expansion, i. e. a power series in some

fractional power of a local co-ordinate.

3.1.3 Dynamics on the Jacobian

In order to iterate the correspondence T , we must have C ′ = C. To carry

out iteration using only the constructions of algebraic geometry, we must

extend T linearly to T : Div(C) → Div(C); then T n will associate to each

point of C a divisor of degree dn. This does not constitute an interesting

dynamical system because the degree of the divisors varies with time, so it is

not very meaningful to compare distinct points of an orbit. A natural way to

surmount this difficulty is to consider the action of T on Div0(C). Consider

a principal divisor (g) on C. We have

T ((g)) = (π2)∗ ◦ π∗1((g)) = (π2)∗((g ◦ π1)) = (h) ,

where h is the meromorphic function on C such that h(z) is the product of the

values of g ◦ π1 over the points of π−1
2 (z), repeated according to multiplicity.

h is a non-zero meromorphic function. Thus T maps principal divisors to
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principal divisors. Hence T descends to a linear map on the Jacobian of C,

which we write as T : Pic0(C)→ Pic0(C).

When C has positive genus, a correspondence T : C → C is said to have

valence k ∈ Z if the linear equivalence class of the divisor T (p) + k.p does

not depend on p. This happens if and only if T : Pic0(C) → Pic0(C) is

multiplication by −k.

Not every correspondence has valency, but on a generic Riemann surface

there are no correspondences without valency, since the Jacobian is a com-

plex torus which typically has no endomorphisms other than multiplication

by elements of Z. For example, an elliptic curve (which is isomorphic to its

Jacobian) has a correspondence without valency if and only if it has complex

multiplication: in this case the map T : Pic0(C)→ Pic0(C) is a non-integer

endomorphism. Conversely any non-integer endomorphism is itself a cor-

respondence without valency. In §3.5.2 we will construct some irreducible

correspondences of bidegree (2, 2) without valency.

3.1.4 Separable correspondences

A holomorphic correspondence T : C → C ′ of bidegree (d′, d) is said to be

separable if

T = π−1
3 ◦ π4

for some analytic maps

π3 : C ′ → C ′′ and π4 : C → C ′′ .

If T is separable and the divisors T (p) and T (q) have a point in common, then

T (p) = T (q). In the dynamical case C = C ′, we can understand everything
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about the dynamics of a separable correspondence by studying the associated

correspondence π4 ◦ π−1
3 : C ′′ → C ′′. This correspondence will sometimes be

simpler to study because the genus of C ′′ is less than or equal to the genus

of C.

Lemma 3.1.

If T : C → C is separable with C ′′ = Ĉ, then T has valence 0.

Proof. In this case π3 and π4 are meromorphic functions and T (p)− T (q) =

π∗3(π4(p)−π4(q)), which is a principal divisor since π4(p)−π4(q) is principal.

3.1.5 Correspondences as Markov chains

Given a correspondence T : C → C of degree d > 0, we will consider an

associated Markov chain taking values in C, defined as follows. Let X0 be a

C-valued random variable, possibly constant. Express

T (Xn) =
k∑

i=1

mi . pi ,

for distinct points pi ∈ C, then set

P(Xn+1 = pi) = mi/d .

We also insist that the transitions at distinct times are mutually independent

and independent of X0.

In general this Markov chain cannot be expressed as an IFS of continu-

ous (single-valued) maps. We could make finitely many branch cuts along

smooth arcs. Then the orbits (Xn)∞1 would be those of an IFS F of finitely
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many functions, each one analytic except on the chosen arcs. However the

choice of arcs is rather arbitrary and because the individual functions are not

continuous at the cuts we cannot apply any of the theory of continuous IFS.

We consider the curve C with the usual topology (inherited from a pro-

jective embedding), not the Zariski topology. This makes C compact. For a

continuous function f on C, we define the pull-back T ∗(f) to be the function

given by

T ∗(f)(p) =
∑ mi

d
f(pi) ,

where T (p) =
∑
mipi. Observe that T ∗ acts on C(C). This is easily checked

locally. In fact T ∗ is the Perron–Frobenius operator of the IFS F , which is

therefore good in the sense of §2.1.2. Furthermore T ∗ : C(C) → C(C) is a

bounded linear operator. We can also describe the Markov operator of F

purely in terms of T , as follows. Given a Borel set A, let n(T, z, A) denote

the number of points of T (z) in A, counted according to multiplicity. Then,

given a law µ on C, we define its push-forward by

T∗(µ)(A) =
1

d

∫
C

n(T, z, A) dµ(z) .

We will call T∗ the push-forward operator and recall that it is adjoint to T ∗.

We will be interested in invariant laws, those for which T∗(µ) = µ. Lemma

2.1 tells us that there exists at least one invariant probability measure for

T .1 Note that T∗ acts continuously onM(C) (with the weak topology) and

in particular acts continuously on P(C).

1 We warn the reader that an invariant measure for T need not be invariant for T−1.
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3.2 Background results

3.2.1 Invariant measures for rational maps, rational

semigroups and Kleinian groups

Let T : Ĉ → Ĉ be a rational map of degree d ≥ 2. As a correspondence, T

has bidegree (d, 1). A T−1-invariant measure is necessarily T -invariant (see

footnote 1). In the context of T -invariant measures, the standard terminology

is to say that a T -invariant measure is balanced when it is also T−1-invariant.

T may have a finite backward-invariant set E, called the exceptional

set, consisting of at most two points. Choose any point z0 /∈ E and use

it as the initial state of the Markov chain (zn) associated to the inverse

correspondence T−1. What can be said about the statistical behaviour of

the sequence (zn)∞n=0? This question was answered for a polynomial map

by Brolin in the 1960s and then for an arbitrary rational map in the early

1980s by Lyubich [49], and at the same time by Mañé et al. [32, 52]. Write

µn for the distribution of zn. The laws µn converge weakly to a doubly-

invariant law µ whose support is J , the Julia set of T . Moreover, for every

Borel set B on which T is injective, we have µ(T (B)) = d · µ(B); in other

words, the Jacobian of T with respect to µ is d everywhere. µ is the unique

invariant measure of maximal entropy for T , with entropy log d. Also, T is

an exact endomorphism with respect to the measure µ, which means that

for any Borel set A ⊂ Ĉ with µ(A) > 0, we have µ(T n(A)) → 1 as n → ∞.

(Exactness is the measure-theoretic analogue of the topological transitivity

of T on J ). It follows that T is strong-mixing, hence also ergodic, with

respect to µ. The natural extension of the system (T, µ) is also ergodic,
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so if z0 is chosen randomly according to µ then with probability one the

random backward orbit (zn)∞n=0 approximates µ in the following sense: for

any continuous function f on Ĉ,

lim
n→∞

1

n

n−1∑
i=0

f(zi) =

∫
f dµ.

Put another way, the sequence of empirical measures

µ̂n =
1

n

n−1∑
i=0

δzi

almost surely converges weakly to µ.

Let G be a finitely generated (but not finite) Kleinian group, with a given

set H of generators. Construct an iterated function system F using these

generators and their inverses, acting on Ĉ. G also acts on hyperbolic 3-space

H3. Suppose x ∈ H3 is not fixed by any element of G, then the sequence

of images of x under the reverse iterates is a random walk on the Cayley

graph of (G,H) embedded in H3. This random walk almost surely converges

to a unique point in ∂H3 = Ĉ, and the distribution µ of this limit point is

an invariant measure for F supported on the limit set of G.2 In fact if G is

non-elementary then F is asymptotically stable.

The topological dynamics of semigroups of rational maps have been stud-

ied by Hinkkanen and Martin [41] and others. To make sense of the notion

of an invariant measure for a semigroup of rational maps, one needs to con-

sider an iterated function system defined by rational maps f1, . . . , fN and

probability vector p = (p1, . . . , pN). For such an IFS, Sumi [71] proved that

2Of course the measure µ depends on the probability vector of F , unlike the Patterson–

Sullivan measure, which only depends on G.
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among all invariant measures for the skew product, there is a unique one that

maximises the relative metric entropy of the skew product over the unilateral

Bernoulli shift. This maximal measure is in fact obtained by iterating the

Perron-Frobenius operator for the inverse of the skew product, which involves

the inverse correspondences of the fi. The maximal relative metric entropy

is
N∑

i=1

pi log (deg fi) ;

the topological entropy of the skew product itself is the maximum of the

entropies of these invariant measures equal to log
∑

deg fi.

Many direct analogies can be drawn between concepts and results in the

theory of iteration of rational maps and in the theory of Kleinian groups. This

relationship, called Sullivan’s dictionary, has substantial predictive power.

Hopes have been expressed that it can be extended to include results about

certain classes of holomorphic correspondences. It is not immediately obvious

how to define such objects as the Julia set or limit set for a general corre-

spondence; [21] describes how one might try to generalise the topological-

dynamical descriptions of Julia set and limit set. On the other hand, since

Julia sets of rational maps and limit sets of Kleinian groups both arise as the

supports of maximal entropy invariant measures of correspondences, it makes

sense to study invariant measures for general holomorphic correspondences.

In the light of Sumi’s results, the next step should be to study invariant mea-

sures and stability for the iteration of an irreducible correspondence. In this

thesis we obtain stability and entropy results about invariant measures for

certain special classes of irreducible correspondences, namely critically finite

correspondences and forward critically finite correspondences.
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3.2.2 Example: the AGM correspondence

Let a0 ≥ b0 > 0. For n ≥ 0

an+1 =
an + bn

2
and bn+1 =

√
anbn.

Consider the canonical definite elliptic integral

G (a0, b0) =

∫ π/2

0

dθ

a2
0 sin2 θ + b20 cos2 θ

, a ≥ b > 0

Gauss observed that

G (ai, bi) = G (ai+1, bi+1) ,

and that the sequences an and bn converge rapidly to a common limitM(a0, b0).

This enabled him to evaluate definite elliptic integrals with unprecedented

precision, since

G(a0, b0) =
π

2M(a0, b0))
.

M(a0, b0) is called the arithmetic-geometric mean of a and b. Like Newton’s

method for finding a root of a polynomial, this method displays quadratic

convergence: the error, once small enough, is roughly squared at each step of

the iteration. If we try to extend the transformation (a, b) 7→
(
a+ b

2 ,
√
ab
)

to complex values of a and b, we immediately encounter the problem of which

square root to choose. One solution is to choose both! Let us simplify the

transformation by projectivizing it, to obtain

T : z =
an

bn
7→ an+1

bn+1

=
z + 1

2
√
z
.

This is the AGM correspondence. It is an irreducible correspondence of

bidegree (2, 2) on P1(C) = Ĉ, as we may check by exhibiting D̃ = Ĉ and the

maps

π1 : z 7→ z2 and π2 : z 7→ z2 + 1

2z
.
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3.2.3 Critically finite correspondences

The results of this chapter were inspired by [20] and [19]. In §3.2.3–3.2.4 we

summarise the statement and proof of [19, Prop. 1] and its application to

the AGM correspondence. In doing so we will set up the notation that we

need for later sections.

Definition.

A holomorphic correspondence T : C → C is critically finite if all forward-

singular and backward-singular points have finite grand orbits, i. e. there is

a finite completely invariant set of points of C containing all the singular

points.

Suppose that a correspondence T : C → C is critically finite, and that

A ⊂ C is the smallest completely invariant set containing all the singular

points. Then π−1
1 (A) = π−1

2 (A), a finite subset of D̃. Set U = D̃ \ π−1
1 (A).

Then the restrictions π1|U and π2|U are unbranched covering maps of X.

For the moment we will not consider the cases where C = P1 and T has a

complete critical orbit consting of at most two points, or C has genus 1 and

T has no singular points. In all remaining cases, X and U are hyperbolic

Riemann surfaces, so we may uniformise U via an unbranched covering map

πU : H → U , which is the quotient map for some Fuchsian group G0 <

PSL2(R). Then π1 ◦ πU and π2 ◦ πU are two different unbranched covering

maps of X; they are the quotient maps for Fuchsian groups G1 and G2

respectively, both containing G0. Because H is simply-connected, we can lift

π2 ◦ πU to an analytic map M : H → H. Because π2 ◦ πU is an unbranched

covering map, the lift M is a Möbius automorphism of H, i. e. an element of
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PSL2(R). The following diagram commutes:

H
M

- H

U

πU

? f
- U

πU

?

X

π1

? T
- X

π1

?

π
2

-

It follows that

G2 = M−1G1M .

Irreducibility implies that π1 and π2 do not simultaneously factor through

any quotient of U , so

G0 = G1 ∩G2 .

If the bidegree of T is (m,n) then G0 has index n = deg π1 in G1 and index

m = deg π2 in G2. When the intersection of two subgroups of PSL2(R) or of

PSL2(C) is of finite index in each, they are said to be commensurable.

The hyperbolic area of U is n times that of X because π1 is an unbranched

covering map; similarly it is m times the area of X. These areas are finite,

so m = n.

Conversely, suppose we are given a finitely generated Fuchsian group of

the first kind, i.e. G1 < PSL2(R) such that V = H/G1 is a compact surface
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minus finitely many punctures. Also suppose that M ∈ PSL2(R) is such that

G0 = M−1G1M ∩G1

has finite index both in G1 and in G2 = M−1G1M . Let the quotient map for

G1 be q1 : H→ V . Then

q2 = q1 ◦M : H→ H/G1

is a quotient map for G2. Define U = H/G0. Both q1 and q2 factor through

the quotient map πU : H → U , so there exists unique unbranched covering

maps

πi : U → V , i = 1, 2,

such that

πi ◦ πU = qi .

Now we have a correspondence

T : π2 ◦ π−1
1 : V → V .

Now fill in the punctures of U and V to obtain compact surfaces U ′ and V ′.

Apply the Removable Singularity Theorem for punctured Riemann surfaces

to extend the maps π1 and π2 to branched coverings from U ′ to V ′, thereby

extending T to a correspondence T : V ′ → V ′. Such correspondences (and

formal sums of them) are called modular 3. The above working shows that a

correspondence on a compact Riemann surface is modular if and only if it is

3In [26], correspondances modulaires are defined in a similar fashion beginning with a

more general simply-connected non-compact algebraic group in place of PSL2(R)
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critically finite with a finite invariant set of at least three points; this is the

content of [19, Prop. 1].

One useful consequence of the above analysis is that we can easily describe

the nth iterate of T . For n ≥ 0 define

S[n] = {gn ◦M ◦ gn−1 ◦M ◦ · · · ◦M ◦ g1 ◦M ◦ g0 : all gi ∈ G1} .

S[n] is the set of lifts of branches of T n to H, (w. r. t. the quotient map

q1 = π1 ◦ πU). The branches themselves are of the form q1 ◦ γ ◦ q−1
1 , where

γ ∈ S[n]. We will also need a notation for the semigroup of all lifts of

branches of iterates of T , so we define

S =
∞⋃

n=0

S[n] .

Finally we must decide when the pairs (G1,M) and (G′
1,M

′) give rise to

conjugate correspondences. There are two choices to be made to recover such

a pair from a correspondence, namely the choice of the covering group from

a family of conjugate subgroups of PSL2(R) and the choice of the lift M .

Thus the pairs (G1,M) and (G′
1,M

′) give rise to conjugate correspondences

precisely when there exist h ∈ PSL2(R) and g ∈ G1 such that G′
1 = h−1G1 h

and M ′ = h−1 gM h. Bullett remarks that composing M with an element

of the normaliser of G1 in PSL2(R) leaves G2 unchanged, but may alter the

correspondence. So it is not enough merely to specify the groups G1 and G2;

we really need to know the conjugating element M .

3.2.4 Lifting the AGM correspondence

The AGM correspondence z 7→ z+1
2
√

z
is critically finite: the set {0, 1,−1,∞}

is completely invariant. The point 1 is a critical point for both branches, the
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values being 1 and −1. The two branches at −1 are analytic but happen

both to take the value 0 there. 0 maps to ∞ in a forward-singular fashion

and ∞ maps to itself in a forward-singular fashion. The covering group of

Ĉ \ {0, 1,−1,∞} is

G1 = Γ0(4, 2) =


 a b

c d

 ∈ SL2(Z) :
c ≡ 0 (mod 4)

b ≡ 0 (mod 2)


/
± I .

The map M is z 7→ z/2, represented by

 1/
√

2 0

0
√

2

, so that

G0 = Γ(4) =


 a b

c d

 ≡
 1 0

0 1

 (mod 4)


/
± I .

Notice that the AGM is conjugate to its own inverse via the automorphism

z 7→ z+1
z−1

of Ĉ. This automorphism lifts to h : z 7→ −1/z on H. Note that h

conjugates G1 to G2 = Γ0(2, 4), conjugates G2 to G1 and conjugates M to

M−1.

3.3 Invariant measures of critically finite cor-

respondences

Let T : C → C be a critically finite correspondence. The restriction of T to

the complete critical orbit A gives a Markov chain with finitely many states,

so there is at least one invariant measure supported on A; this need not also

be invariant for T−1. More interestingly we can restrict T to the complement

X = C \ A, which has finite hyperbolic area 2π(2g − 2 + n), where g is



CHAPTER 3. HOLOMORPHIC CORRESPONDENCES 78

the genus of C and n = |A|. Observe that the hyperbolic area measure is

invariant for both T and T−1, because the lift M is a hyperbolic isometry.

Dividing the hyperbolic area measure by its total mass, we obtain a doubly

invariant probability measure µh on X.

Let T be a holomorphic correspondence on a quasi-projective curve C,

i.e. a compact Riemann surface punctured at finitely many points. In [26]

it is shown that if T∗ preserves the hyperbolic area measure associated to a

punctured surface C\{z1, . . . , zn} then T is in fact a modular correspondence.

3.3.1 Lattès rational maps

Before proving any theorems, let us draw an analogy between critically finite

correspondences and certain special rational maps, originally constructed by

Lattès. Let ℘ be the Weierstrass function of the elliptic curve E = C/Λ,

where Λ is a lattice in C. Then ℘ is a degree 2 branched cover of Ĉ, with

four critical points at the half-lattice points. ℘ is an even function. Now let

z 7→ az induce an endomorphism ϕ : E → E (for which we need aΛ ⊂ Λ).

Suppose that |a| > 1 so that deg φ > 1. Then for any x ∈ Ĉ, ℘−1(x) consists

of two points ±t ∈ E, and ℘(at) = ℘(−at) = R(x) defines a rational map R.

The Lyubich measure for R is the ℘-image of the normalised Euclidean area

measure on E; in particular its support, the Julia set of R, is Ĉ. The best

way to think about the action of the Perron–Frobenius operator for R−1 is

in terms of the Perron-Frobenius operator associated to the correspondence

z 7→ a−1z on E.



CHAPTER 3. HOLOMORPHIC CORRESPONDENCES 79

3.3.2 Galois correspondences

There is an easy way to produce examples of critically finite correspondences.

Let R : C → C ′ be any branched covering map between compact Riemann

surfaces and define the Galois correspondence of R by TR : p 7→ R∗(R(p)),

a correspondence on C. The images of p under TR are all the points that

map to the same point as does p under R. Since R has only finitely many

critical points and each grand orbit of TR is a fibre of R (hence finite), TR is

critically finite. TR will generally not be irreducible (it has the identity cor-

respondence as a component), but each irreducible component T of TR will

also be a critically finite correspondence. In the terminology of [26], these are

interior modular correspondences, while all other irreducible modular corre-

spondences are exterior. A modular correspondence specified by (G,M) (as

in §3.2.3) is interior if and only if the group generated by G and M is discrete.

Thus an interior correspondence T has finite dynamics, meaning that the set

of irreducible correspondences that arise as Zariski components of the graphs

of iterates of T is finite. There are at most deg(R) such components; indeed

at each point there are at most deg(R) branches of iterates of T .

To avoid confusion, let us mention that R need not be a Galois covering

(also called a regular or a normal covering, meaning that R is the quotient

map for a group of automorphisms of C). It is such a covering if and only

if the components of TR are all single-valued. So from the point of view of

correspondences, the situation is most interesting when R is not a Galois

covering.
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3.3.3 A dynamical dichotomy

Theorem 3.2.

Let T : C → C be an irreducible critically finite correspondence with complete

critical orbit A. Suppose that the Riemann surface X = C \A is hyperbolic.

Then exactly one of the following holds.

1. M and G1 generate a dense subgroup of PSL2(R). In this case the

the semigroup generated by M and G1 is also dense in PSL2(R). In

particular T has an infinite forward orbit, and if A 6= ∅ then each point

of X has a forward orbit under T whose closure in C meets A.

2. M and G1 generate a discrete subgroup of PSL2(R). In this case, T is

a component of a Galois correspondence, arising from a map of degree

at most 42(2g − 2 + |A|).

The basic dichotomy in Theorem 3.2 that 〈G1,M〉 is either discrete or dense

is not new. [19] points out that the existence of an infinite orbit of T implies

that the group generated by M and G1 is dense in PSL2(R) and hence by a

deep theorem of Margulis that G1 is a weakly arithmetic group, i. e. some

conjugate of G1 is commensurable with PSL2(Z). It follows that G1 contains

parabolic elements, and hence that A 6=, so in fact the last part of item 1

always applies. However, we did not wish to rely on Margulis’ result in what

is otherwise a fairly elementary theorem. The parts of Theorem 3.2 that may

be new are the result that the semigroup generated by G1 and M is dense

and the result that shows that the existence of a grand orbit with more than

42(2g − 2 + |A|) points guarantees the existence of an infinite orbit.
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Proof. Consider the semigroup S generated by G1 and M , and its closure

S. We will prove below that S is in fact a subgroup of PSL2(R), and hence

is also the closure of the subgroup 〈G1,M〉 of PSL2(R) generated by G1

and M . Since S is closed, it is in fact a Lie subgroup of PSL2(R) [66,

Theorem VII.2.5]. Furthermore, S is invariant under conjugation by any

element of G1. In particular there are two hyperbolic elements of G1 with

disjoint fixed point sets in Ĉ that both conjugate S to itself. The connected

component of S containing the identity is invariant under conjugation by

the same elements. The connected Lie subgroups of PSLn(R) were classified

in [36]; in the simple case of PSL2(R), the only possibilities are the trivial

subgroup, the one-parameter groups with either a fixed point in H or a fixed

geodesic in H, and PSL2(R) itself. Of these, only the trivial subgroup and

PSL2(R) are invariant under conjugation by two hyperbolic elements that

have disjoint fixed point sets. Hence S is either discrete or all of PSL2(R).

In the discrete case, we must have S = 〈G1,M〉. Hurwitz’s Theorem tells

us that the hyperbolic area of a fundamental domain for this group is at least

π/21, so

[〈G1,M〉 : G1] ≤ 42(2g − 2 + |A|) .

The correspondence T is a component of the Galois correspondence arising

from the map

R : H/G1 → H/〈G1,M〉 .

It remains to prove that S is a subgroup of PSL2(R). Using continuity of

right-multiplication, Lemma 3.3 below implies that the inverse of any element

of S lies in S. Since taking the inverse in PSL2(R) is continuous, S is also

closed under inversion.
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Remark. [25] gives a proof that if a closed monoid in a simply-connected semi-

simple Lie group of rank one contains a lattice then it is in fact a subgroup.

This result could be used in place of Lemma 3.3 in the proof of Theorem

3.2. On the other hand the proof below of Lemma 3.3 would also provide a

proof of the above-mentioned result about closed monoids that makes direct

use of the finite volume of the quotient by the lattice, whereas [25] uses the

hyperbolic metric, the classification of isometries and some clever conjugation

arguments.

Lemma 3.3 (Recurrence for critically finite correspondences).

For any g ∈ S, the identity element I of PSL2(R) is in the closure of S ◦ g.

Remark: This lemma has consequences for the Markov chain (Xn)∞n=0 as-

sociated to T . In particular, for any ε > 0, and any finite orbit segment

x0, x1, . . . , xn (satisfying xi+1 ∈ T (xi) for i = 0, . . . n− 1) we have

P(∃ k > n : d(Xk, X0) < ε |X0 = x0, X1 = x1, . . . , Xn = xn) > 0 .

Proof. Make geodesic branch cuts on X = C \ A to leave a connected and

simply-connected domain U . On U , the correspondence T is described by m

branches f1, . . . , fm, each of which is a local isometry from U into X. Because

the branch cuts have total hyperbolic area 0, the branches fi are well-defined

modulo 0 as Borel-measurable maps from U to U , (where modulo 0 refers to

the normalised hyperbolic area measure µh). The individual maps fi need

not preserve µh, but nevertheless µh is an invariant probability measure for

the Borel-measurable IFS F , whose maps are these m branches of T on

U , assigned equal probabilities. Let T1U be the unit tangent bundle of U

(where U has the Riemannian metric inherited from the hyperbolic metric
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on X). Let f̃i be the map (fi, Dfi) induced by fi on T1U , and let F̃ be the

associated measurable IFS. Write λ for the normalised Lebesgue measure on

each fibre of T1U , and λ× µh for the product measure on T1U . Let B1/m be

the Bernoulli measure associated to the probability vector (1/m, . . . , 1/m).

Then B1/m×(λ×µh) is an invariant measure for the associated skew-product

map

τ : {1, . . . ,m}N × T1U → {1, . . . ,m}N × T1U .

Let Ṽ be any neighbourhood of the identity in PSL2(R). Identify PSL2(R)

with T1H by fixing some base point (x̃0, ṽ0) ∈ T1H and making the identifi-

cation

γ ∈ PSL2(R) ↔ (γ(x̃0), Dγ(ṽ0)) .

We may assume that x̃0 covers a point x0 ∈ U which is not mapped onto

any of our branch cuts under any branch of any iterate of T . The covering

map π1 : T1H→ T1C maps Ṽ homeomorphically onto a neighbourhood V of

a point (x0, v0) in T1U .

The element g ∈ S may be represented as

g = γn ◦M ◦ γn−1 ◦M ◦ · · · ◦M ◦ γ0 ,

for some (not necessarily unique) elements γ0, . . . , γn ∈ G1. Choose one

such representation. Making V smaller if necessary, this representation cor-

responds to applying the composition of some particular sequence of n of

the maps f̃i to the neighbourhood V . That sequence defines a cylinder set

Cyl(g) ⊂ {1, . . . ,m}N with Bernoulli measure m−n. Making V smaller if

necessary we may assume that V is an open neighbourhood of (x0, v0). Then
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V is measurable and λ× µh(V ) > 0. It follows that

B1/m × (λ× µh) (Cyl(g)× V ) > 0 .

We now apply Poincaré’s Recurrence Theorem to the skew-product map τ for

F̃ . It says that there exists a point in Cyl(g)×V that returns to Cyl(g)×V

after some positive number of iterations of the skew-product map τ . In

particular, there is an element h ∈ S such that h ◦ g ∈ Ṽ . The lemma

follows.

3.3.4 Asymptotic stability

If T : C → C is an interior correspondence then it has infinitely many invari-

ant probability measures. On the other hand if T : C → C is an irreducible

critically finite correspondence with an infinite orbit, then Theorem 3.2 and

Lemma 3.3 give us some topological information about the possible orbits of

the Markov chain of T , but we can use them to prove more.

Theorem 3.4.

Let T : C → C be a critically finite correspondence with complete critical

orbit A, such that the Riemann surface X = C \ A is hyperbolic. Suppose

that T is not a Galois correspondence, or equivalently that T has an infinite

orbit. Then the normalised hyperbolic area measure is the unique invariant

probability measure for the restriction of T to X. Furthermore the restriction

of T to X is asymptotically stable: for any Borel probability measure ν on

X, we have T n
∗ ν → µh as n→∞.

This theorem has now appeared in a preprint by Clozel and Otal [25], of

which we became aware only after producing the proof below. Although we
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cannot claim priority for the result, we have kept it in this thesis because

our proof is quite different from theirs, at least on the surface. The proof in

[25] proves the locally uniform convergence of the sequence fn = (T ∗)n f to

a constant function, for each bounded and uniformly continuous function f

on C. A simple coupling argument is used to show that the fn are uniformly

continuous, and hence have a convergent subsequence. Then the density of

〈G1,M〉 in PSL2(R) and some inequalities between L2 norms are used to

show that any subsequential limit of the fn must be constant.

As remarked after the statement of Theorem 3.2, there cannot exist a

correspondence with an infinite orbit but without singular points on a com-

pact hyperbolic Riemann surface. So A is non-empty and X has at least one

cusp. Since we do not know an elementary proof of this, we give two versions

of our proof of Theorem 3.4. The simpler of the two makes the assumption

that A is non-empty.

Proof of Theorem 3.4. We use the method of the Kantorovich metric to ob-

tain the asymptotic stability of T , which of course implies uniqueness of the

invariant measure. The method of proof is almost identical to the argument

of §2.3.1. Let ν 6= µh be a Borel probability measure on X. Let d be the hy-

perbolic metric on X, and consider a modified metric c = ϕ(d), as provided

by Lemma 1.8, such that µ, ν ∈ Pc and (X, c) is a proper metric space. We

will show that

Kc (T∗(ν), T∗ (µh)) ≤ Kc (ν, µh) , (3.1)

∃n ∈ N such that Kc (T n
∗ (ν), T n

∗ (µh)) < Kc (ν, µh) . (3.2)

This plays the rôle of Lemma 2.7. After this, the argument given in §2.3.1
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works almost word-for-word, subject to replacing F∗ by T∗ and changing the

hypotheses of Lemma 2.8 in an obvious way. The variable n in equation (3.2)

does not interfere with the proof.

Let us prove (3.1). The infimum in the definition of Kc (ν, µh) is attained

by some measure m on X ×X, whose marginals are ν and µh. To each pair

(x, y) ∈ X×X we associate a shortest directed geodesic segment γ(x, y) from

x to y in the hyperbolic metric on X. We can do this in a measurable fashion.

Pushing forward by this map takes m to a measure m′ on the space GX of

directed geodesic segments in X.4 The branches of T map geodesic segments

to geodesic segments, so by weighting the branches each with probability 1
m

(where the bidegree of T is (m,m)), we obtain a Markov operator P acting

on the space of measures M(GX). Project P (m′) back to a measure P (m)

on X ×X, whose marginals are T∗(ν) and T∗(µh). We have

Kc (T∗(ν), t∗ (µh)) ≤
∫
c(x, y) d(P (m)(x, y))

=

∫
c(x, y) dm(x, y) = Kc (ν, µh) .

Now we prove (3.2), assuming that A is non-empty. Because S is dense in

PSL2(R), at least one of the images of any given minimal geodesic segment

under some iterate of T must fail to be a minimal geodesic segment because it

winds around a puncture and intersects itself. We produce a modifed Markov

operator Q by mapping each geodesic segment to the weighted formal sum

of minimal geodesic segments that join the endpoints of each of its images

4Of course GX is essentially the tangent bundle of X, but it is better here to think of

geodesic segments than of tangent vectors.
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under T . Then a countable additivity argument shows that for some n ∈ N,∫
c(x, y) d (Qn(m)) (x, y) <

∫
c(x, y) d (P n(m)) (x, y) ,

which implies (3.2).

Finally we prove (3.2) without assuming that A is non-empty. This proof

involves a more substantial modification of the operator P . Since ν 6= µh,

the measure m is not supported on the diagonal in X ×X. By a countable

covering argument, there exists (x0, y0) ∈ X ×X such that

m (B(x0, ε), B(y0, ε)) = η > 0 , where ε = d(x0, y0)/6 .

Recall that we defined S[n] to be the set of lifts of branches of T n. Now we

define

R[n] = {K−1 ◦K ′ : K,K ′ ∈ S[n]} ,

and

R = ∪∞n=0R[n] .

We may think of R[n] as the set of all geometrical relationships between lifts

of different branches of T n with respect to q1.

Lemma 3.5.

Under the hypotheses of Theorem 3.4, R is dense in PSL2(R).

Because R is dense in PSL2(R), there exist K ′, K ∈ S[n] for some n ∈ N,

such that

d
(
K−1 ◦K ′(x0), y0

)
< ε and d

(
K−1 ◦K ′(y0), x0

)
< ε .

Hence

(K(x0), K
′(y0)) < ε and d (K(y0), K

′(x0)) < ε . (3.3)
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Let A be the set of minimal geodesics that begin in B(x0, ε) and end in

B(y0, ε). Let s ∈ A. The images of s under the branches of T n corresponding

to K and K ′ are geodesic segments s1 and s2, both of the same length as s,

which is at least 4ε. Let s′1 be the minimal geodesic segment from the start

point of s1 to the end point of s2 and let s′2 be the minimal geodesic segment

from the start point of s2 to the end point of s1. Both s′1 and s′2 have length

at most 3ε, because of (3.3) and the triangle inequality. Replacing s1 and s2

by s′1 and s′2 whenever they arise in this way yields a probability measure on

GX whose endpoint projections are the same as those of P n(m′). However,

the integral of the length of its segments (in the c-metric) is strictly smaller

than the corresponding integral for P n(m′). This suffices to prove (3.2) and

completes the proof of Theorem 3.4.

Proof of Lemma 3.5. Note that R[n] is closed under taking of inverses in

PSL2(R). We will show that R is a subgroup of PSL2(R). For this it suffices

to prove that for any F ∈ R[m] and G ∈ R[n], G◦F is in R. To this end, let

U be any neighbourhood of G ◦ F in PSL2(R). From the definition of S[n]

we see that for any H ∈ S[m] and G = L−1 ◦ L′ ∈ R[n], we have

H−1 ◦G ◦H = (L ◦H)−1 ◦ (L′ ◦H ′) ∈ R[n+m] . (3.4)

Given the neighbourhood U ◦F−1 of G in PSL2(R), there exists a neighbour-

hood V of the identity such that for all H ∈ V we have H−1◦G◦H ∈ U ◦F−1.

Indeed, the function H 7→ H−1 ◦G ◦H is continuous and maps the identity

to G. Now suppose F = K−1 ◦K ′, where K,K ′ ∈ S[m]. We can write

F = (J ◦K)−1 ◦ (J ◦K ′) ,
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where J ∈ S[N ] for some large N and J ◦K ∈ V . This is possible because S

is dense in PSL2(R); we just have to choose J ∈ V ◦K−1. Then U contains

(J ◦K)−1 ◦G ◦ (J ◦K) ◦ F = (L ◦ J ◦K)−1 ◦ (L′ ◦ J ◦K) ,

which is in R[n+m+N ]. Since U was arbitrary, we see that G ◦ F ∈ R.

We now know that R is a closed (hence Lie) subgroup of PSL2(R), and

that it is invariant under conjugation by any element of S, hence also by

any element of S = PSL2(R). Therefore R = PSL2(R) as required. This

completes the proof of Lemma 3.5.

3.4 Forward critically finite correspondences

3.4.1 The inverse of a hyperbolic rational map

Consider a rational map T of degree d ≥ 2 acting on Ĉ. Let C be the

set of critical points of T and let PC = ∪∞n=1T
n(C) be the postcritical set.

Suppose for convenience that the Julia set J of T does not contain the point

∞ (replace T by a conjugate if necessary). When PC ∩ J = ∅, we say

that T is hyperbolic. [23, §V.2] gives basic results about hyperbolic rational

maps, in particular that T is hyperbolic if and only if every critical point

lies in the basin of an attracting periodic orbit of T . We will exclude from

the present discussion the simple cases when T is conjugate to z 7→ zd or

to z 7→ z−d. Then PC contains at least three points, so U = Ĉ\PC is a

hyperbolic domain. Since U contains no critical values of T , near any point

of U there are d distinct analytic branches of T−1, which can be analytically

continued along any path in U , although they cannot be defined as single-
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valued maps right around any postcritical point. However, we can choose

a single-valued lift of each of these branches to D, obtaining analytic maps

f1, . . . , fd : D→ D that make the following diagram commute:

D fi−−−→ fi(D)
inclusion−−−−−→ D

π

y π

y π

y
U

T←−−− T−1(U)
inclusion−−−−−→ U

Because the iterated pre-images of any point not in the exceptional set

E accumulate on J , there must be points in T−1(PC) \ PC. Since fi(D)

omits every lift of any such point, fi is not an isometry, so the Schwarz–Pick

Lemma tells us that fi is strictly distance-decreasing. It follows that T is

locally expanding w. r. t. the hyperbolic metric on U . In particular, on the

compact and T -invariant set J ⊂ U , we find that the hyperbolic derivative

satisfies T# ≥ ρ > 1. Since J is compact, the Euclidean metric on C is

comparable on J to the hyperbolic metric on U . Hence T is expanding

on J in the sense that there are constants α > 0 and A > 1 such that

|(T n)′(z)| > aAn for all z ∈ J and all n ∈ N. In fact this only happens

when T is hyperbolic, so hyperbolic rational maps are also called expanding

rational maps.

At this point we depart from the treatment given in [23], by considering

the iterated function system F associated to the lifts fi. Let F1, F2, F3, . . .

be a sequence of i. i. d. random maps from D to itself, with P(Fn = fi) = 1
d
.
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Choose x0 ∈ D with z0 = π(x0). Now for each n ∈ N, set

xn = Fn ◦ · · · ◦ F1(x0).

Then zn = π(xn) reconstructs the Markov chain (zn) described in 3.1.5.

As remarked above, it is known that the distributions µn of zn = π(xn)

converge weakly to a probability distribution on U . We now ask whether the

distributions νn of xn necessarily converge to a probability distribution on

D. It is not obviously so. Indeed, D covers U with infinitely many sheets, so

the space of measures that project via π to the limit measure µ is not even

compact. However, as a corollary of Theorem 2.16, we will prove that in fact

the νn do converge weakly to a probability measure ν on D:

Proposition 3.6.

Let F be any IFS on D which is a lift of the restriction of T−1 to Ĉ \ PC.

Then F is asymptotically stable.

The maps fi all avoid all the lifts of points in T−1(PC) \ PC. Unfortu-

nately it is not true that the complement of these points is a Bloch domain

in D, because in U there are points of U (near the postcritical set) that in

the hyperbolic metric on U are arbitrarily far from all such points. Claim:

there is a subdomain V ⊂ U such that T−1(V ) is relatively compact in V .

It follows that π−1(T−1(V )) is a Bloch subdomain of π−1(V ) (although not

relatively compact in π−1(V ), and is forward-invariant for each of the maps

f1, . . . , fd. Theorem 2.16 now tells us that the restriction of F to π−1(V ) is

asymptotically stable. Of course its invariant probability measure is also an

invariant probability measure for F , so F itself is asymptotically stable, by

Ambroladze’s Theorem.
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To prove the claim, we will construct the domain V by specifying its

complement, a closed forward-invariant neighbourhood of the postcritical set.

There are two types of critical point to consider: the periodic ones and the

non-periodic ones. For any periodic cycle of T , say z1, z2, . . . , zk, containing

at least one critical point of T , there exist small closed discs Bi about zi such

that T (Bi) is contained in the interior of Bi+1 (subscripts modulo k). Any

non-periodic critical point is attracted under iteration of T to some attracting

cycle [23, §V]. Fix such a cycle. Again we can find a cycle of closed discs Bi

about the points of the cycle, each mapping strictly inside the next. Now for

each critical point z attracted to that cycle, we have Tm(z) in the interior of

Bj, for some m and j. Then we can find a sequence of closed discs about the

points T (z), T 2(z), . . . Tm−1(z), each mapping strictly inside the next and the

last mapping strictly inside Bj. Do this for all the critical points. There are

only finitely many critical points (at most 2d − 2), so we have now chosen

a finite collection of closed discs, whose union contains the closure of the

postcritical set. The domain V is now defined to be the complement of the

union of all these discs; by construction T−1(V ) is relatively compact in V ,

as required.

3.4.2 Forward critical finiteness

In §3.4.1 we were able to prove asymptotic stability of a certain correspon-

dence by lifting its branches to the universal cover of a suitable subdomain

and applying iterated function system results. We will try to extend this

method to apply to a larger class of correspondences T : C → C. We need

to find a closed proper subset of C that is forward-invariant under T and
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contains all the backward-singular points.

Definition.

The correspondence T is forward critically finite when the union of the for-

ward orbits of the backward-singular points is finite.

We will denote by PC the postcritical set, i.e. the union of the backward-

singular points and their forward orbits. Note that every postcritically finite

rational map is forward critically finite, although it is only be critically finite

as a correspondence if it is conjugate to z 7→ zn or z 7→ z−n.

For a forward critically finite correspondence T of bidegree (m,n) on a

curve C, we may delete the set PC from C. The punctured Riemann surface

X = C \PC is typically hyperbolic, uniformised by the unit disc D, in which

case we can choose lifts of the m branches of T−1 to m analytic maps D→ D.

If we prove that the corresponding IFS is asymptotically stable, then as a

corollary the restriction of T−1 to C \PC is asymptotically stable. If we can

also show that any T−1-invariant probability measure must assign mass zero

to PC, it will follow that T−1 is asymptotically stable.

3.4.3 The tangential correspondence on a quartic

Let C be a smooth curve of degree 4 in P2(C). Every such curve is the

canonical curve of its underlying Riemann surface. In particular a compact

Riemann surface of genus 3 has a unique embedding of this form, up to

automorphisms of P2(C). For each point p ∈ C, the tangent line to C at

p cuts out a divisor S(p) of degree 4 on C, and T (p) = S(p) − 2p is an

effective divisor of degree 2. The correspondence T is called the tangential
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correspondence on C. It has bidegree (10, 2), which is computed using the

Riemann-Hurwitz formula in [37, p. 290].

A point p ∈ C is a flex of C when p ∈ T (p). A point at which the tangent

to C meets C with multiplicity 4 is called a hyperflex. At a simple flex p, one

branch of T has a fixed point at p, while the other branch has a critical point

at p. These are the only critical points of T . Thus the backward-singular

points of T are the points q such that T (p) = p+ q, where p is a simple flex.

If p is a hyperflex of C then the graph of T has an ordinary double point at

(p, p); thus p is a fixed-point for both branches of T in a neighbourhood of p.

In fact it is a repelling fixed point of each branch: by putting the curve C in

a suitable normal form at p, we compute that the multipliers are −1±
√
−2.

The forward-singular points of T are the points whose tangent line is a

bitangent to C. We do not count the tangent at a hyperflex as a bitangent.

Note that the set of forward-singular points of T is forward-closed under T .

In fact they form super-repelling cycles of length 2.

Let B be the number of bitangent lines to C, H the number of hyperflexes,

and F the number of simple flexes. We always have F + 2H = 24 and

B + H = 28 (see [37, p. 549]). Since H ≤ 12, we have B ≥ 16. Let D be

the desingularised graph of T . Then T = π2 ◦ π−1
1 , where π1 : D → C has

degree 2 and is branched over 2B points, and π2 : D → C has degree 10 and

is branched over F points. The fact that π1 has degree 2 and is branched

shows that D is irreducible. The genus of D is gD = (F + 42)/2 = B + 5.

If C is a generic smooth plane quartic, then C has no hyperflexes, 24

simple flexes and 28 bitangent lines. In this case, T has 56 forward-singular

points and 24 backward-singular points and the genus of its graph is 33.
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The tangential correspondence on a smooth plane curve of degree at least

4 is never separable. Indeed, if T (p) and T (q) have two points in common

(or a common multiple point) then the tangent lines are p and q are equal,

so p and q are either equal or lie on a bitangent.

To ask for the tangential correspondence on a smooth plane quartic to

be forward critically finite is to ask a great deal: the forward orbit of each of

the simple flexes must be finite. One way to achieve this is dicussed in the

next section.

3.4.4 The Fermat quartic

The Fermat quartic is the smooth plane curve C given in homogeneous co-

ordinates by X4 + Y 4 + Z4 = 0. The Fermat quartic has 12 hyperflexes,

namely those points described by homogeneous co-ordinates consisting of one

zero and two eighth roots of unity. C has 16 other bitangent lines, meeting

C in 32 distinct points. Note that all the flexes of C are hyperflexes, so T

has no backward-singular points. Hence T is forward critically finite.

Because π2 is unbranched, there is no obstruction to analytic continuation

of any branch of T−1 along any path on C. Let πD : D → D be an analytic

universal covering map. Then πC = π2 ◦πD is a universal covering map for C

with deck transformation group ΓC isomorphic to the fundamental group of

C based at p = πC(0). ΓD is a subgroup of ΓC of index 10. ΓC and ΓD both

act freely and properly discontinuously on D. Because it has degree 2, π1 is

a normal covering, so there is a group GC containing ΓD with index 2 such

that the quotient map for GC is π1 ◦πD. However, GC does not act freely on

D; it is a so-called Belyi uniformisation of C.
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Consider the ten distinct branches of T−1 in a simply-connected neigh-

bourhood of p in C. Choose lifts of each of these branches and analytically

continue them to obtain analytic maps f1, . . . , f10 : D → D. We study the

IFS F obtained from these maps with p1 = · · · = p10 = 1/10.

Lemma 3.7.

The maps f1, . . . , f10 are all Lipschitz with some constant ρ < 1, with respect

to the hyperbolic metric on D.

Proof. Each map fi has critical points at each point of 32 orbits of ΓD in

the unit disc (These orbits depend on i.) Since D is compact, it has finite

diameter in the hyperbolic metric. Thus each point z ∈ D is within distance

diam(D) of a critical point of fi. The present lemma now follows from the

branched Schwarz lemma (Lemma 1.14).

The monodromy action of the fundamental group of C based at p per-

mutes the set of ten branches transitively because D is irreducible. Thus

the maps fi are related to each other by many relations of the form fi =

gij ◦ fj ◦ γij, where γij ∈ ΓC and gij ∈ GC .

Proposition 3.8.

The inverse of the tangential correspondence on the Fermat quartic is asymp-

totically stable, with exponential convergence with respect to either the Kan-

torovich or Prohorov metrics associated to the hyperbolic metric on C.

Proof. Let ν be any Borel probability measure on C. Then we can find a

measure ν̃ supported on a compact fundamental domain L for the group ΓC ,

such that (πC)∗ ν̃ = ν. From lemma 3.7, there is a compact set L′ ⊃ L that
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is forward-invariant under the IFS F . It is now a standard result that there

is an invariant law µ for F and that Fn
∗ ν̃ → µ exponentially as n → ∞,

with respect to either the Kantorovich metric or the Prohorov metric on the

hyperbolic plane. The projection to C does not increase hyperbolic distances

and therefore does not increase the Kantorovich or Prohorov metrics.

For an alternative proof not involving the lifts fi, we could argue as

follows. T−1 has at least one invariant probability measure µ, as explained

in §3.1.5. Carry out the a coupling argument as in our proof of Theorem

3.4, using the Kantorovich metric Kd associated to the hyperbolic metric d

on C. Lemma 3.7 leads easily to exponential convergence in the Kantorovich

metric. Because the diameter of C is finite, the Kantorovich metric Kd is

bi-Lipschitz equivalent to the Prohorov metric by Lemma 1.10.

Let us point out that the Fermat quartic example is rather surprising.

One might conclude that there should be many correspondences on hyper-

bolic surfaces with no singular points in one direction, by reasoning along

the following lines. If R is a Riemann surface of genus g ≥ 2, then R has

many unbranched covers from surfaces of higher genus. If one of these sur-

faces also has a branched cover of R, then we may compose the inverse of

the unbranched cover with the branched cover to obtain an irreducible cor-

respondence T with no forward-singular points. Perhaps we could find such

surfaces R by variation within the moduli space of marked surfaces? Un-

fortunately a dimension count shows that we should not expect to find such

surfaces for dimensional reasons alone. Some extra symmetry seems to be

required. The Fermat curve has a large automorphism group, of order 96.

According to [51], there is only one other smooth plane quartic that has 12
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Figure 3.1: A Maple plot of the image under the map ψ : (X : Y : Z) 7→ X/Y

of a random orbit segment of length 7000 for the inverse of the tangential

correspondence on the Fermat quarticX4+Y 4+Z4 = 0. The map ψ : C → Ĉ

is the quotient map for a subgroup of order 4 of the automorphism group of

the Fermat quartic, branched with index 4 over each of the fourth roots of

−1, which explains why the empirical measure looks dense at those points.
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hyperflexes and no simple flexes, namely the curve with 24 automorphisms

given by

X4 + Y 4 + Z4 + 3
(
X2Y 2 +X2Z2 + Y 2Z2

)
= 0 .

We might also try looking for pairs of Fuchsian groups such that D/Γ ∼= D/∆,

where Γ is free, ∆ is not free, and Γ and ∆ are commensurable.

3.4.5 Asymptotic stability of the inverse

Theorem 3.9.

Let the correspondence T : C → C be forward critically finite but not crit-

ically finite, and let A be the union of the forward orbits of all backward-

singular points. Suppose that the Riemann surface X = C \ A is hyperbolic.

Then the restriction of T−1 to X is asymptotically stable.

Proof. If T has no backward-singular points but there are forward-singular

points then the proof is just like the proof we used for the tangential corre-

spondence on the Fermat quartic. If there are no singular points at all but

there is an infinite orbit, then C cannot be hyperbolic, because it would have

to be weakly arithmetic.

Now assume that there are some backward-singular points. Restrict T−1

to X. Lift all branches to the universal cover of X. These give analytic maps

which do not increase the hyperbolic distance. There is an invariant measure

for T−1, as explained in §3.1.5.

We use the Kantorovich metric coupling argument on X, as in our proof

of Theorem 3.4. We need to prove that the Kantorovich distance with respect

to modifications of the hyperbolic metric on X is strictly decreased at each
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step. All we need to prove is that the branches of T−1 are not all local

hyperbolic isometries. If they were all local isometries then there could be

no deficient points for T−1 : X → X (i.e. points in X with at least one

T -image in A). From the construction of A, this would imply that A was

completely invariant. As X would also contain no forward-singular points,

it would follow that the correspondence was critically finite, contrary to the

hypothesis.

3.5 Correspondences on elliptic curves

In this section we consider irreducible correspondences on compact Riemann

surfaces of genus 1. We begin by applying the Riemann-Hurwitz formula to

relate the numbers of singular points to the bidegree. Let C be any Riemann

surface of genus 1, which we will think of also as an elliptic curve. Let T

be a correspondence of bidegree (m,n) on C. As usual we write D for the

desingularised graph of T and gD for the genus of D. The forward-singular

points of T are the v1 critical points of the degree n analytic map π1 : D → C,

and the backward-singular points of T are the v2 critical points of the degree

m map π2 : D → C (all counted with multiplicity). The Riemann-Hurwitz

formula tells us that

v1 = 2(gD − 1) = v2 .

As remarked earlier, if T is separable to Ĉ then the dynamics of T are best

studied on Ĉ, so in this section we will only consider such correspondences

when they arise in families of non-separable ones. However, we will need to

consider correspondences which are separable to other surfaces of genus 1.
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3.5.1 Correspondences with no singular points

Suppose that T is an irreducible correspondence with no singular points on

a genus 1 surface C, of bidegree (m,n). Then the desingularised graph D of

T is an unbranched cover of C, so is also a compact surface of genus 1. Make

C and D into elliptic curves by giving them a marked point (called 0), in

such a way that π1 : D → C satisfies π1(0) = 0, where T = π2 ◦ π−1
1 . Then

π1 is an isogeny, i.e. both an analytic map and a group homomorphism.

We may represent D as C/Λ0, where Λ0 is a lattice in C. The analysis of

section 3.2.3 applies, with the commensurable Fuchsian groups G1 and G2

replaced by commensurable lattices Λ1 and Λ2 in C. 5 The map M is now

an automorphism of C rather than H, so it is of the form M : z 7→ az + b. If

M is a translation, then it commutes with the translations in Λ1, so Λ2 = Λ1

and T is merely an automorphism of C. Henceforth suppose that M is not

a translation. After conjugating everything by a suitable translation, (which

does not change the groups Λi), we may assume thatM is of the form z 7→ az.

Thinking of the lattices as subsets of C we have

aΛ2 = Λ1 .

It need not be the case that m = n (the area argument that we used in the

hyperbolic case does not apply because branches of the correspondence need

not be local Euclidean isometries, merely similarities).

Note that all the covering groups are subgroups of the abelian group of

translations of C, which we will write as C. This allows us to carry the

algebra further than we could in the hyperbolic case. Indeed, the quotient

5This application is implicit in [19].
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map πD : C → D = C/Λ0 is actually a homomorphism of abelian groups;

we may identify Λ0 = kerπD. Now πD(Λ1) and πD(Λ2) are subgroups of D

of orders n and m respectively, with trivial intersection. These subgroups

therefore generate a subgroup K < D of order mn, isomorphic to their direct

product.6 The group generated by Λ1 and Λ2 is also a lattice, Λ3 = π−1
D (K),

and it follows that the correspondence T is separable to the quotient surface

C/Λ3. Nevertheless, T need not have valency – for example it could be a

non-integer endomorphism of the elliptic curve. Thus we see that Lemma

3.1 no longer applies when Ĉ is replaced by an elliptic curve. In this case,

passing to the associated correspondence on C/Λ3 would not help us to study

the dynamics because it reduces neither the genus nor the bidegree.

Let π∗1 : C → D be the dual isogeny, so that π∗1 ◦ π1 is multiplication by

n = deg (π1) on D and π1 ◦ π∗1 is multiplication by n on C. Then

T = (π2 ◦ π∗1) ◦ (π1 ◦ π∗1)
−1 .

The factor on the right is the inverse of the isogeny C → C given by multi-

plication by n. The factor on the left may be expressed z 7→ α(z) + t, where

α : C → C is an isogeny, t is a point of C and addition is in the group

C. In the case when C does not have complex multiplication, α must be

multiplication by an integer m′. Thus we may express T as multiplication by

a rational m′/n followed by a translation. By changing the choice of 0 ∈ C

to a fixed point of T , we can dispense with the translation. Put m′/n in its

6In contrast, two commensurable Fuchsian groups may together generate a non-discrete

subgroup of PSL2(R). For example, Jørgensen’s inequality shows that the commensurable

groups corresponding to the third power of the AGM correspondence generate a non-

discrete group.
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lowest form p/q. Then the bidegree of T is actually (p2, q2). It follows that

if either m or n is not square then C does have complex multiplication.

In the special case of bidegree (2, 2), we must have an isogeny of C of

degree 4 which is not simply the composition of an automorphism of C with

multiplication by 2. We can analyse these in terms of Λ0 = 〈1, τ〉, where

|τ | ≥ 1 and −1/2 < Re(τ) ≤ 1/2. In terms of these generators, there are only

three possibilities for the unordered pair of lattices Λ1 and Λ2. They must be

two of 〈1, τ/2〉, 〈1/2, τ〉 and 1, (1+ τ)/2. On the other hand they are related

by Λ1 = aΛ2, where we may assume that |a| = 1 and Im(a) > 0. Since 1 ∈ Λ2,

we have a ∈ Λ1, so 2a ∈ Λ0 so 2a ∈ {τ − 2, τ − 1, τ, τ + 1, τ + 2}. Each of

these possibilities gives us a quadratic equation for a with integer coefficients,

and we find after some calculation that a must be i or (1+
√
−3)/2, and that

aΛ0 = Λ0. The elliptic curves involved are C = C/〈1, 2i〉 or C = C/〈1,
√
−3〉

respectively. Since we can dispense with the translation by choosing the zero

in C to be a fixed point of T , we get finite dynamics in both cases.

3.5.2 Correspondences of bidegree (2,2) on a torus with

two singular points in each direction

We want π1 and π2 to be branched covers of degree 2 from a compact Riemann

surface R to a torus S, with precisely two critical values each, and therefore

precisely two critical points each. The Riemann-Hurwitz formula tells us

that R must have genus 2. Then π1 and π2 are quotient maps associated

to involutions I1 and I2 of R, with precisely two fixed points each. Since

we want f = π2 ◦ π−1
1 to be a genuine (2, 2) correspondence and not an

automorphism of the torus S, the involutions must be distinct. Now I1 and
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I2 generate a group G = 〈I1, I2〉 of automorphisms of R, a subgroup of the

finite automorphism group Aut(R), of order at least 4.

Lemma 3.10.

Any two distinct involutions a, b of any compact Riemann surface R generate

a dihedral group of automorphisms.

Proof. Every element of 〈a, b〉 can be expressed as an alternating word in the

letters a and b. The alternating words of odd length are all conjugate either

to a or to b, hence are not the identity. However, Aut(R) is finite so some

even-length word is the identity. Now ab and its inverse ba have the same

order, say m. We know m ≥ 2 since a−1 = a 6= b. Then 〈a, b〉 is the dihedral

group of order 2m.

We may view the quotient map πG : R → R/G as an analytic branched

cover of degree |G| ≥ 4, branched at the (finitely many) fixed points of

G. This makes R/G into a Riemann surface, which the Riemann-Hurwitz

formula tells us must have genus 0. Now the quotient map πG factors through

S in two ways:

πG = π3 ◦ π1 = π4 ◦ π2,

where π3 and π4 are analytic branched covers of degree |G|/2.

If |G| = 4, i. e. if I1 and I2 commute, then π3 and π4 are of degree 2, and

in fact f = π−1
4 ◦ π3, so f is separable.

This construction gives us the family of (2, 2) correspondences on the

sphere with four forward-singular and four backward-singular points. Every

one of these is Möbius conjugate to some correspondence given by M ◦℘◦T ◦

℘−1, where ℘ is the Weierstrass ℘-function for the (unique) torus branched
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over the four forward singular points, T is a torus automorphism (which we

may always take to be a translation), and M is a Möbius map. Composing

the same maps but starting instead at the torus, we get a separable (2, 2)

correspondence on the torus: ℘−1 ◦M ◦ ℘ ◦ T . When this is non-degenerate,

its graph is a genus 2 surface, and separability tells us that the induced

involutions do commute.

The reader may wonder at this point whether are there any non-separable

(2, 2) correspondences on any torus. We will show that there are, and attempt

to classify all such correspondences.

To show that a correspondence f is non-separable, it suffices to exhibit

distinct points x, y ∈ S such that f(x) and f(y) have distinct but not disjoint

sets of values. We have seen above that a non-separable (2, 2) correspondence

on a torus S is π2 ◦ π−1
1 , where for j = 1, 2, πj is the quotient map for an

involution Ij, and where I1 and I2 do not commute.

Lemma 3.11.

Let R be a compact genus 2 Riemann surface and I a non-trivial involution

of R with precisely two fixed points. Write S for the torus R/I obtained by

identifying z with I(z) for each z ∈ R, and choose 0 ∈ S so that the branch

points of the quotient map πI : R → S are α and −α. Then the involution

w 7→ −w on S has two single-valued lifts to R, say J and K. Both are

involutions commuting with I, and IJ = JI = K. We can label the lifts so

that J has two fixed points and K has six fixed points.

Proof. The involution of S induces an involution of the fundamental group

of S \ {α,−α} which necessarily preserves the holonomy of the cover by R

(this could fail if the cover had more than two sheets); hence the involution
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lifts, and the two lifts are related by the sheet-swapping involution I. One of

the lifts has two fixed points over 0 ∈ S while the other swaps the two points

over 0. Their squares are both lifts of the identity map on S, with fixed

points, and therefore both lifts are involutions. An involution of a genus 2

surface has either 2 or 6 fixed points. The quotient by the group {1, I, J,K}

is the Riemann sphere and the Riemann-Hurwitz formula tells us that the

quotient map has 10 critical points. Each of those critical points is a fixed

point of just one of I, J or K (since they cannot share any fixed points).

Thus without loss of generality we may take J to have two fixed points and

K to have 6.

Since {1, I, J,K} is a subgroup of order four of Aut(R), we find that

whenever Aut(R) contains an involution with two fixed points, then 4 divides

|Aut(R)|. In particular in order for R to be the graph of a non-separable (2, 2)

correspondence on a torus, we must have |Aut(R)| ≥ 8.

An involution of a compact Riemann surface R of genus g ≥ 2 is called

hyperelliptic if it induces a branched covering map of degree 2 to Ĉ, which

happens if and only if it has 2g + 2 fixed points. When g = 2 then R

necessarily has a hyperelliptic involution. The following lemma is standard.

Lemma 3.12.

Let R be a compact Riemann surface of genus g ≥ 2. Then R has at most

one hyperelliptic involution.

Proof. A hyperelliptic involution presents R as a curve w2 = f(z) where f is

a polynomial of degree 2g + 2 with simple roots. The ratios of holomorphic

differentials on R generate the subfield of meromorphic functions C(z) ⊂
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C(R), which in turn determines the hyperelliptic involution: two points x, y ∈

R are related by the involution if and only if every function in this subfield

takes the same value at x and y.

Corollary 3.13.

Let R be a compact genus 2 Riemann surface, and suppose that I1, I2 are

two non-commuting involutions of R with precisely two fixed points each. For

m = 1, 2, construct Jm, Km associated to Im as in Lemma 3.11, so that K1,

K2 have six fixed points each. Then K1 = K2, and I1 and I2 descend to give

involutions A1, A2 of R/K1 = Ĉ.

Note that I1I2 is not the identity, nor is it K, since then we would have

I2 = I1K = J1, which commutes with I1. Thus A1A2 does not descend to

the identity map on R/K, so A1 6= A2. Now A1 and A2 may or may not

commute, so we have two cases to consider:

Lemma 3.14.

Assume the conditions of Corollary 3.13.

1. If A1A2 = A2A1 then 〈I1, I2〉 = D8. The space of conformal classes of

compact genus 2 Riemann surfaces with D8 symmetry is one-complex

dimensional, and there are just three examples in which the quotient

tori R/I1 and R/I2 are isomorphic, the j-invariants being (20)3 in one

example and −(15)3 in the other two (complex conjugate) examples.

2. If A1A2 6= A2A1 then 〈I1, I2〉 = D12. The space of conformal classes of

compact genus 2 Riemann surfaces with D12 symmetry is one-dimensional

(over C), and there are just five examples in which the quotient tori
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R/I1 and R/I2 are isomorphic, the j-invariants being 2.(2.3.5)3 in one

example, and also −(25)3 and (20)3, there being two complex conjugate

cases of each.

Here j is the j-invariant of an elliptic curve, with the normalisation com-

mon in number theory, namely j = 28 (λ2−λ+1)3

λ2(λ−1)2
for an elliptic curve branched

over {0, 1,∞, λ}. Note that this is 1728 times Klein’s elliptic modular func-

tion.

Proof. We treat the two cases separately.

1. Suppose A1 and A2 commute. Since I1 and I2 do not commute, we

must have I1I2 = I2I1K. Note that K commutes with I1 and with

I2, so I1I2I1I2 = K = I2I1I2I1, hence ord(I1I2) = 4, and we have D8

as required. The conformal type of R is determined by the conformal

type of the orbifold quotient R/〈I1, I2〉, which is Ĉ with four branch

points marked. In fact by a Möbius conjugation we may assume that

A1 acts on Ĉ as z 7→ −z and that A2 acts as z 7→ 1/z. We still have a

choice of which lift of A1 to call I1 and which to call J1, and of how to

label the lifts of A2 as I2 and J2. Since we may conjugate by A1 and

A2 we lose no generality by taking I1 to fix the two points of R lying

over 0 ∈ R/K = Ĉ, and I2 to fix the two points lying over 1.

The quotient map R 7→ R/K = Ĉ is branched over six points, which

are permuted with no fixed points by A1 and permuted with no fixed

points by A2 (because I1 and I2 share no fixed points with K). Since

an automorphism of Ĉ is determined by its action on three points,

A1 and A2 must act by different but commuting fixed-point-free in-
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volutions of the set of six branch points. These two involutions have

one common two-cycle, consisting of the solutions of z = −1/z, i.

e. ±i. The remaining four branch points are x,−x, 1/x,−1/x for

some x ∈ Ĉ \ {0,∞, 1,−1, i,−i}. We may write the quotient map

R/K → R/〈I1, I2〉 as φ : z 7→ 1
4
(z + 1/z)2, which is a degree 4 map

with critical points {0,∞,±1,±i}, and critical values 0, 1,∞. Now

the torus R/I1 is determined by the four critical values of the degree

2 quotient map R/I1 → R/〈I1, K〉 = (R/K)/A1. The quotient map

R/K → (R/K)/A1 is realised by z 7→ z2. Now, I1 fixes the two

points over 0 ∈ R/K, so these two points are critical for R → R/I1.

Hence they are critical for the degree 4 quotient map R→ R/〈I1, K〉 =

(R/K)/A1 = Ĉ, whose critical values are 0,∞,−1, x2, 1/x2. Thus

R/I1 is the torus obtained as a degree 2 branched cover of the sphere

branched over ∞,−1, x2, 1/x2. Similar considerations apply to R/I2.

This time the quotient map (R/K) → (R/K)/A2 is represented by

z 7→ 1
2
(z+1/z) and then the critical values for the degree 4 quotient map

R→ R/〈I2, K〉 = (R/K)/A2 = Ĉ are 1,−1, 0, 1
2
(x+ 1/x), −1

2
(x+ 1/x).

However 1 is accounted for by the fact that R→ R/I2 is critical at the

two points over 1 ∈ R/K.

We obtain a non-separable dynamical correspondence of bidegree (2, 2)

when R/I1 and R/I2 are isomorphic. This happens precisely when their

j-invariants are equal, i. e. when the cross-ratios

[
∞,−1, x2, 1/x2

]
,

[
−1, 0,

1

2
(x+ 1/x),

−1

2
(x+ 1/x)

]
lie in the same orbit of the action of S3 on Ĉ generated by z 7→ 1 − z
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and z 7→ 1/z. We write w = 1
4
(x + 1/x)2 for the co-ordinate on the

quotient sphere R/〈I1, I2〉. Then

j(R/I1) =
64(4w − 3)3

(w − 1)

and

j(R/I2) =
64(3 + w)3

(w − 1)2
.

Comparing these shows that j(R/I1) = j(R/I2) if and only if

64w3 − 209w2 + 243w − 162 = 0 .

The roots of this polynomial are

w = 2, w =
9(9± 5

√
−7)

128
.

The corresponding tori have j-invariants (20)3 and (−15)3 respectively.

The torus with j-invariant (20)3 is

C
/〈

1, i/
√

2
〉
.

The torus with j-invariant (−15)3 is

C
/〈

1,
1 + i

√
7

2

〉
.

2. Consider the action of A1 and A2 permuting the six branch points of

the quotient map R → R/K. Neither fixes any of those points (since

I1 and K share no fixed points, for example). We assume now that A1

and A2 do not commute; in particular A1A2 cannot fix all six points

since it is a non-identity Möbius map. The only possibility is that A1A2

has order 3 with no fixed points; hence (I1I2)
3 is either 1 or K. It can

be 1, but then we may replace I2 with I2K, which also has two fixed

points and does not commute with I1, so as to get K.
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The elliptic curves arising here are rather special, being five of the 13 el-

liptic curves that have complex multiplication and integer j-invariant. These

are the elliptic curves whose ring of endomorphisms is bigger than Z but

is nevertheless a principal ideal domain. They arise from quadratic number

fields with class number equal to 1. The fact that these curves have com-

plex multiplication may be explained by the action on the Jacobian, if we

can check that the correspondences do not have valency. Perhaps an anal-

ysis of the actions of I1 and I2 on the Jacobian of R would lead to a more

conceptual explanation of why we get these particular curves. At the mo-

ment we can only remark that it is no surprise because these are in some

sense the simplest elliptic curves. The affine linear examples of irreducible

(2, 2) correspondences with no singular points also had complex multiplica-

tion with integer j-invariants: the lattice 〈1, 2i〉 gives j = (66)3, while the

lattice 〈1,
√
−3〉 gives j = 2.(30)3.

3.6 Dynamics of a D8 example

This section contains the preparatory work for a numerical exploration of

one of the examples computed in the previous section. To study the dy-

namics numerically we need a fairly precise and rapid means of calculation –

repeated calls to functions that evaluate elliptic integrals or theta functions

are to be avoided. Instead we represent the genus 2 surface as a hyperelliptic

curve, find the involutions I1 and I2 explicitly, and represent their quotients

and quotient maps explicitly as hyperelliptic curves and algebraic maps. Fi-
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nally we must represent algebraically the isomorphism between the two tori,

using the known Möbius map sending the branch points of one to the branch

points of the other. To compose with a translation of the torus we need

the elliptic curve addition formula, which again is an algebraic map. For a

(2, 2) correspondence one should be able to get the hard computational work

down to finding one square root per iteration. Of course, the validity of any

iterative computations depends on the stability of the system, which is one

reason for being interested in results such as Theorem 3.9.

3.6.1 Algebraic equations for the (2, 2) correspondences

on the torus C/
〈
1, i/
√

2
〉

We follow the notation and normalisation from the proof of Lemma 3.14. The

genus 2 surface R has hyperelliptic involution K, with R → R/K branched

over the six points ±i,±1±
√

2, i. e. R is the compactification of the curve

in C2 given by

y2 = (x2 + 1)(x2 − 2x− 1)(x2 + 2x− 1).

We have involutions

I1 : (x, y) 7→ (−x, y) ,

I2 : (x, y) 7→ (1/x, y/x3)

inducing the involutions A1 and A2 on R/K = Ĉ by forgetting the second

co-ordinate. The quotient map R→ R/I1 is represented as

(x, y) 7→ (x2, y),
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mapping onto the torus R/I1 represented as the curve

t2 = (z + 1)(z2 − 6z + 1),

i. e. a double cover of the z-plane branched over z = −1, 3 ± 2
√

2,∞. The

quotient map R→ R/I2 is represented as

(x, y) 7→
(

1

2
(x+ 1/x),

1

4
(y/x+ y/x2)

)
,

mapping onto the torus R/I2 represented as the curve

t2 = z(z2 − 2)(z + 1),

i. e. a double cover of the z-plane branched over z = 0,±
√

2,−1.

The Möbius map that sends the latter set of branch points to the former

is z 7→ z−1
z+1

, which induces a map R/I2 → R/I1 given by

(z, t) 7→
(
z − 1

z + 1
,
t
√
−8

(z + 1)2

)
n. b. The choice of a value for

√
−8 corresponds to a choice of one of the

two isomorphisms R/I2 → R/I1 covering the Möbius map z 7→ z−1
z+1

. It will

be convenient to take the (unique) point of R/I1 over z =∞ to be the zero

for the group law on R/I1, because then ζ 7→ −ζ on the torus is represented

by (z, t) 7→ (z,−t), i. e. by the induced action of K on R/I1. Then the two

isomorphisms are each other’s negative.

Now we compose these maps to get a (2, 2) correspondence f0 : R/I1 →

R/I1, given by

(z, t) 7→

((
1−
√
z

1 +
√
z

)2

,
t
√
−8

(1 +
√
z)3

)
.
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The correspondence f0 has two forward singular points, (0,±1). Each

of these has only one image, namely (0, 1) 7→ (1,
√
−8) and (0,−1) 7→

(1,−
√
−8). The point over z =∞ is not forward-singular since R 7→ R/I1 is

branched over ∞. The two points (0, 1) and (0,−1) are also the two critical

values of f0 (i.e backward-singular points). They are one of the images of

each of (1,
√
−8) and (1,−

√
−8), the other image of each of these being the

point over z = ∞, which itself maps back to those two points. The two

branches of f0 take the same value at (−1, 0), which is in fact a fixed point.

Thus there are three points in the torus where f0 has only one value.

Finally we make explicit the group law on R/I1, having chosen the point

over z =∞ as the zero. Three points sum to zero if they are collinear. Thus

we get the addition law

(z0, t0)⊕ (z1, t1) = (z2, t2),

where

z2 = 5 +

(
t1 − t0
z1 − z0

)2

− z1 − z0,

t2 = −t0 − (z2 − z0)

(
t1 − t0
z1 − z0

)
.

We will use Greek letters to denote points of R/I1.

We now have a family of correspondences fζ , one for each ζ ∈ R/I1. If

ζ = (z0, t0), we have

fζ : (z, t) 7→

((
1−
√
z

1 +
√
z

)2

,
t
√
−8

(1 +
√
z)3

)
⊕ (z0, t0).

We had two choices for the isomorphism R/I2 → R/I1; let’s call the

resulting families fζ (taking
√
−8 = i

√
8) and gζ (taking

√
−8 = −i

√
8).
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Then fζ = −g−ζ . The correspondence f0 is odd with respect to the group

law, so

fζ(−θ) = ζ − f0(θ) = −f−ζ(θ),

(by which we mean they have the same pairs of values). Thus fζ and f−ζ are

conjugate (via K). The same holds for the family gζ , so fζ = gζ◦K = K◦g−ζ ,

and

fζ ◦ fζ = gζ ◦ g−ζ .

3.6.2 Dynamics of f0

As is evident from its algebraic formula, f0 has a factor correspondence ob-

tained by ignoring the second co-ordinate. The factor is the (2, 2) correspon-

dence on Ĉ given by

z 7→
(

1−
√
z

1 +
√
z

)2

.

This correspondence is separable; in fact it has the Möbius involution w 7→
w+3
w−1

as a factor via the map z 7→ 1
2
(z+ 1/z). The correspondence f 2

0 has two

algebraic components:

(z, t) 7→ (z,−t),

occurring in two ways, and

(z, t) 7→ (1/z,±t/z
√
z).

So even iterates of (z, t) eventually take just four values, and odd iterates

eventually take just four values (possibly fewer for certain points (z, t)). This

is rather similar to the situation in §3.5.1. However, inserting a generic

translation of the torus destroys the factor, and allows the dynamics to be

much more complicated.
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Note that f0 is a critically finite correspondence, so after removing the

complete critical orbit we could lift to the hyperbolic plane H and describe

the correspondence by means of a discrete subgroup G of SL2(R) and a

commensurate conjugate group A−1GA (as Bullett did for critically finite

correspondences on Ĉ [19]). It would be interesting to describe these groups

explicitly.

As a result of numerical experiments we discovered a rather nice geomet-

rical way to describe the action of f0. Slit the torus by removing all the

points (z, t) with z ∈ [0,∞]. This corresponds to cutting along the bound-

ary of a certain rectangular fundamental domain in the covering plane, then

making two short slits part of the way in towards the centre of the rectan-

gle from the midpoints of the long sides. The vertices of this rectangle all

correspond to the same point of the curve, namely (3 + 2
√

2, 0). The centre

of the rectangle is the coincident fixed point (−1, 0). The short slits end at

the forward-singular points of f0, which are (0,−1) and (0, 1), and meet the

long sides of the rectangle at (3 − 2
√

2, 0). Now each branch of f0 consists

of an automorphism of this slit-rectangle, conjugate to a rotation of the unit

disc; both branches fix the central point of the rectangle, and they rotate by

π/4 or 3π/4 about that point. The two short sides of the rectangle and each

half of each long side represent one eighth of the boundary of the domain

(in terms of harmonic measure with respect to the central point), and both

sides of a slit together represent a further one eighth. It is rather amusing

to see how the two branches fit with each other when we cross a boundary

segment of the slit fundamental domain.

Consider the equivalence relation whose equivalence classes are grand
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orbits of f0. The quotient map for this relation is a degree 8 meromorphic

function. In fact it is a Belyi map: we can arrange for it to be branched only

over 0, 1,∞ and for the slits in the previous paragraph to form some of the

edges of the associated dessin d’enfant on the elliptic curve.

f0 has a coincident fixed point, i.e. a point which is fixed for both branches

of f0; taking this to be the zero of the elliptic curve, we can easily compute

that the action on the Jacobian (which is naturally identified the elliptic

curve itself) is multiplication by i
√

2. In particular f0 does not have valency.

The topological description of f0 in terms of the Belyi map defined above

does in fact determine uniquely the complex analytic structure of the ellip-

tic curve. Likewise a topological description of the correspondence f0 allows

us to compute the action on the Jacobian (which is a homological invari-

ant) and this again determines the complex analytic structure uniquely. It

is possible to describe topological correspondences in terms of pairs of topo-

logical branched covering maps. However, these need not always be realised

by any holomorphic correspondence. It would be interesting to understand

the obstruction.

Now choose the zero in the elliptic curve to be the midpoint of the long

side of the slit, which is the point (3 − 2
√

2, 0) in our algebraic description.

The composition of f0 followed by multiplication by i
√

2 gives us a forward-

critically finite correspondence. This is our first explicit example for Theorem

3.9 in which there are singular points in both directions.



Chapter 4

Area distortion of polynomial

mappings

This chapter has been accepted for publication in the Bulletin of the London

Mathematical Society under the title ‘The area of polynomial images and

pre-images’.

4.1 Introduction

A lemniscate is the level set of a complex polynomial, i.e.

E(p, r) = {z ∈ C : |p(z)| = rn} ,

where p is a polynomial of degree n over C. A well-known example is

Bernoulli’s lemniscate, the degree 4 plane curve |z2 − 1| = 1. The region

enclosed by a lemniscate is a sublevel set for the modulus of a polynomial,

and it is natural to ask how large this set can be. To take account of scaling,

118
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we take p to be monic. With this normalisation, Pólya proved in [59] that

the area (two-dimensional Lebesgue measure dA) enclosed by the lemniscate

E(p, 1) is bounded by a constant that does not depend on the choice of p.

Theorem 4.1 ((Pólya’s inequality)). Let p be a monic complex polyno-

mial of degree n and let D be a closed disc in C. Then the Euclidean area of

p−1(D) is at most π
(

Area(D)
π

)1/n

, with equality only when p : z 7→ a(z−b)n+c

and the centre of D is the point c, which is the unique critical value of p.

Here we have made a slight reformulation of Pólya’s original statement,

intended to suggest a generalisation to an arbitrary measurable set of finite

area, in place of the disc D. This generalisation is the main result of this

chapter.

Theorem 4.2. Let p be a monic polynomial of degree n over C. Let K be

any measurable subset of the plane. Then

Area(p−1(K)) ≤ π

(
Area(K)

π

)1/n

,

with equality if and only if K is a disc, up to a set of measure zero, and p

has a unique critical value at the centre of that disc.

In fact we will establish the following bound on the area of the image of

a set under a monic polynomial mapping.

Theorem 4.3. Let p be a monic polynomial of degree n over C, and L be

any measurable subset of the plane. Define the multiplicity n(z, p, L) to be

the number of p-pre-images of z in L, counted according to their valency.

Then the area of p(L) counted with multiplicity satisfies∫
C
n(z, p, L) dA(z) =

∫
L

|p′(z)|2 dA(z) ≥ nπ

(
Area(L)

π

)n

,
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with equality if and only if L is a disc (up to a set of measure zero) and p

has a unique critical value at the centre of that disc.

To deduce Theorem 4.2 from Theorem 4.3, take L = p−1(K), which maps

onto K with multiplicity n everywhere, so that

Area(K) =
1

n

∫
p−1(K)

|p′(w)|2 dA(w) .

A survey of area estimates for lemniscates has recently been given by

Lubinsky [48], with a view towards applications in the convergence theory

of Padé approximation. In [31], Eremenko and Hayman address the related

problem of bounding the length of E(p, r). Fryntov and Rossi [33] have

obtained a hyperbolic analogue of Pólya’s inequality, giving a sharp upper

bound for the hyperbolic area of the pre-image of a hyperbolic disc under

a finite Blaschke product. This raises the question of finding analogues for

finite Blaschke products of theorems 4.2 and 4.3.

4.2 Logarithmic capacity

In this section and the next we outline the machinery that we will use to prove

Theorem 4.3. Logarithmic capacity and condenser capacity are powerful

tools of potential theory with many alternative descriptions. In order to

make this paper as accessible as possible, we describe them only in terms

of polynomials and rational functions. The results in this section are all

classical, but the author does not know of one comprehensive reference. For a

clear introduction to potential theory in C, including proofs of our statements

about logarithmic capacity, see [62]. Further information about the capacity
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and modulus of a condenser may be found in [4, 5, 39, 65], and the appendix

of [67]. Ahlfors [2, Ch. 4] casts condenser capacity as a conformal invariant

of extremal length type, called extremal distance.

Given a compact subset K ⊂ C and a polynomial q, we write

‖q‖K = max
z∈K
|q(z)| .

LetM be the set of all monic complex polynomials. The logarithmic capacity

of K is

cap (K) = inf{(‖q‖K)1/ deg q : q ∈M}

Logarithmic capacity may also be characterised as the unique non-negative

real function of compact sets satisfying the following four conditions.

1. cap
(
D
)

= 1, where D is the closed unit disc in C.

2. (monotonicity) If K1 ⊂ K2 then cap (K1) ≤ cap (K2).

3. (outer continuity) If Kn ↓ K then cap (Kn) ↓ cap (K).

4. If p(z) = anz
n + . . . a0 is a complex polynomial with an 6= 0, then

cap (p−1(K)) =

(
cap (K)

|an|

)1/n

.

Thus for any monic polynomial p, the capacity of the lemniscate E(p, r) is

r. Using a linear polynomial in condition (4) we see that

cap (aK + b) = a cap (K) ,

so logarithmic capacity is a one-dimensional measurement of the size of K.

If d is the diameter of K then cap (K) ≤ d/2, and if K is connected then
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cap (K) ≥ d/4. Thus it is not surprising that there is an ‘isoperimetric’

inequality comparing logarithmic capacity and area. A compact set K ⊂ C

is called polar when cap (K) = 0.

Theorem 4.4. For any compact set K ⊂ C,

Area(K) ≤ π cap (K)2 ,

with equality if and only if K is the union of a closed disc and a polar set.

For a proof using a simple kind of symmetrization, see [62, Thm. 5.3.5].

Because of condition (4) above, Theorem 4.1 is the special case of this isoperi-

metric inequality in which K is restricted to be a lemniscate. In fact Pólya

first proved Theorem 4.1 by a clever use of Gronwall’s area formula then

used it to deduce Theorem 4.4 [48, 59]. To make this deduction, consider the

filled-in set K̃ = C \U , where U is the unbounded component of C \K. The

maximum modulus theorem shows that cap (K̃) = cap (K). On the other

hand the following result shows that we can estimate cap (K̃) by approximat-

ing K̃ from outside by filled-in lemniscates, whose areas are bounded above

in Theorem 4.1.

Theorem 4.5 ((Hilbert’s Lemniscate Theorem)). Let K be a compact

subset of C such that C\K is connected, and let V be any open neighbourhood

of K. Then there exists a complex polynomial q such that

|q(z)|
‖q‖K

> 1 for all z ∈ C \ V .

We can use the scaling properties of logarithmic capacity to formulate

a scale-invariant version of Theorem 4.2. For a non-polar compact set K,
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define

ρ(K) =
Area(K)

π cap (K)2
.

Then ρ(K) is a measure of the roundness of K: from Theorem 4.4 we find

that ρ(K) ∈ [0, 1] and that ρ(K) = 1 if and only if K is a full-measure

subset of a disc. Divide both sides of the inequality of Theorem 4.2 by

cap (K)2/n = cap (p−1(K))2 to obtain the following theorem.

Theorem 4.6. If p is any complex polynomial of degree n, not necessarily

monic, and K is any non-polar compact subset of the plane, then

ρ(p−1(K)) ≤ ρ(K)1/n .

This is sharp for each value of ρ(K). Indeed, any value of ρ(K) in [0, 1]

can be achieved by taking K = [0, 1] ∪ {z ∈ C : |z| ≤ α} and p : z 7→ zn.

This gives equality in Theorem 4.2 and hence also in Theorem 4.6.

4.3 Condenser capacity

Definition. A plane condenser is a pair (K,L) of disjoint compact subsets

of the Riemann sphere Ĉ.

We call a continuous function f : Ĉ → R admissible for the condenser

(K,L) if f = 0 on K, f = 1 on L and f is continuously diffferentiable on

Ĉ\(K∪L). The condenser capacity cap (K,L) is the infimum over admissible

f of the Dirichlet integral

D(f) =
1

2π

∫
C
|∇f(z)|2dA(z) .

Caveat: in some works the condenser capacity is given as half of this. Con-

denser capacity has the following properties:
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1. cap (D(0, R), Ĉ \D(0, S)) = 1/(logS − logR),

where D(0, R) is the open disc of radius R about 0.

2. (monotonicity) IfK1 ⊂ K2 and L1 ⊂ L2 then cap (K1, L1) ≤ cap (K2, L2).

3. (outer continuity) If (Kn, Ln) is a sequence of condensers such that

Kn ↓ K and Ln ↓ L as n→∞, then cap (Kn, Ln)→ cap (K,L).

4. (conformal invariance) Suppose that (E,F ) and (K,L) are condensers,

with U = Ĉ\ (E∪F ) and V = Ĉ\ (K ∪L). Suppose that ϕ : U → V is

analytic and n-valent, i.e. every point in V has precisely n pre-images

in U (counted with multiplicity). Finally suppose that ϕ(z) → K as

z → E in U and ϕ(z)→ L as z → F in U . Then

cap (E,F ) = n cap (K,L) .

To prove (4), approximate K and L by their closed ε-neighbourhoods Kε

and Lε, whose boundaries are regular for the Dirichlet problem. Then there

is a unique extremal function f in the definition of cap (Kε, Lε). It is the

unique admissible function that is harmonic on Ĉ \ (Kε ∪ Lε). Consider the

pulled-back condenser (E ′, F ′) = (E ∪ ϕ−1(Kε), F ∪ ϕ−1(Lε)). The pullback

f ◦ ϕ extended by 0 on E and by 1 on F is admissible for (E ′, F ′) and

harmonic on Ĉ \ (E ′ ∪ F ′). Therefore it is the unique extremal function for

(E ′, F ′). We have

D(f ◦ ϕ) =

∫
Ĉ\(E′∪F ′)

|∇(f ◦ ϕ)(z)|2 dA(z)

=

∫
Ĉ\(E′∪F ′)

|(∇f)(ϕ(z))|2 |ϕ′(z)|2 dA(z)

= n

∫
Ĉ\(Kε∪Lε)

|∇f(w)|2dA(w) = nD(f) .
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Finally take the limit as ε ↘ 0 and apply outer continuity of condenser

capacity.

An easy consequence of the conformal invariance is that for any rational

function R of degree n, we have(
minL |R|
maxK |R|

)1/n

≤ exp(1/cap (K,L)) .

In fact the right-hand side is the supremum of the left-hand side as R ranges

over all rational functions (see [34]). This is the analogue for condensers of

our initial definition of logarithmic capacity.

Whereas logarithmic capacity scales one-dimensionally, the condenser ca-

pacity is invariant under scaling, so we cannot use it to estimate the area of

K or L. However, in the case that ∞ ∈ L we can estimate the ratio of the

Euclidean areas of K and Ĉ \ L:

Theorem 4.7. [Carleman, 1918] Let (K,L) be a condenser with ∞ ∈ L.

Then
2

cap (K,L)
≤ log

(
Area(Ĉ \ L)

Area(K)

)
,

with equality if and only if Ĉ \L and K are concentric discs in the plane, up

to the addition of closed sets of logarithmic capacity zero to K and L.

The proof of Carleman’s inequality uses the fact that the Dirichlet integral

D(f) does not increase when f is replaced by its Schwarz symmetrization.

This is the function S(f) whose superlevel sets are concentric discs with the

same Euclidean area as the corresponding superlevel sets of f . For details,

see the classic book of Pólya and Szegö, [60], or [5] for a more recent account

and a generalisation to variable metrics.
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The logarithmic capacity can be recovered from condenser capacities:

− log cap (K) = lim
R→∞

[
1

cap (K, Ĉ \D(0, R))
− logR

]
.

This is easy to prove using the characterisations of logarithmic capacity and

condenser capacity in terms of minimal energy of Borel measures. It re-

veals the isoperimetric theorem for logarithmic capacity as a limiting case of

Carleman’s isoperimetric inequality for condenser capacity.

4.4 Proof of Theorem 4.2

Lemma 4.8. For any complex polynomial g of degree d,∫
C
|g(w)|1{|g(w)|≤x} dA(w) ≥ 2x

d+ 2
Area({w ∈ C : |g(w)| ≤ x}) .

Proof. By conformal invariance of condenser capacity, we have

cap
(
g−1

(
Ĉ \B(0, x)

)
, g−1(B(0, s))

)
=

d

(log x− log s)
.

Theorem 4.7 gives

Area ({w ∈ C : s ≤ |g(w)| ≤ x})
Area ({w ∈ C : |g(w)| ≤ x})

≥ 1−
( s
x

)2/d

,

so∫
C
|g(w)|1{|g(w)|≤x} dA(w) =

∫ x

0

Area ({w ∈ C : s ≤ |g(w)| ≤ x}) ds

≥ Area ({w ∈ C : |g(w)| ≤ x})
∫ x

0

(
1−

( s
x

)2/d
)
ds

=
2x

d+ 2
Area({w ∈ C : |g(w)| ≤ x}) .
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Now fix a monic polynomial p and A > 0. Among all measurable sets K

satisfying Area(K) = A, the Dirichlet integral∫
K

|p′(w)|2dA(w)

is minimised when K is the sublevel set

Kt = {w ∈ C : |p′(w)|2 ≤ t}.

Here t is determined uniquely by the condition Area(Kt) = A. The polyno-

mial z 7→ (p′(z)/n)2 is monic, with degree 2n− 2, so Theorem 4.1 gives

A = Area(Kt) ≤ π

(
π(t/n2)2

π

)1/(2n−2)

.

Rearranging this we have

t ≥ n2

(
A

π

)n−1

.

Now we apply Lemma 4.8 to the polynomial g = (p′)2 to obtain∫
Kt

|p′(w)|2dA(w) =

∫
C
|p′(w)|21{|p′(w)|2≤t} dA(w)

≥ 2t

2n
Area (Kt) =

tA

n

≥ nπ

(
A

π

)n

.

For equality, we must have equality in our application of Pólya’s inequality,

so p must be p : z 7→ (z − b)n + c, and K can differ from disc Kt at most by

a set of 2–dimensional Lebesgue measure zero. This completes the proof of

Theorem 4.3.



Chapter 5

Smale’s Mean Value Conjecture

Smale’s mean value conjecture is a well-known inequality constraining the

location of critical points and critical values of a polynomial mapping the

complex plane into itself. We give an algebraic proof that for any isolated

local extremum for Smale’s mean value conjecture, all the objective values

are equal. We also generalise Smale’s conjecture to rational maps of the

Riemann sphere, proving a version which only fails to be best possible by a

constant multiplicative factor. We also discuss the special case of rational

maps all of whose critical points are fixed, giving a construction based on the

Newton–Raphson method.

5.1 Smale’s Mean Value Conjecture

Let p be any polynomial with coefficients in C. We say that ζ ∈ C is a

critical point of p if p′(ζ) = 0. Then p(ζ) is the corresponding critical value.

In 1981 Stephen Smale proved the following result about critical points and

128



CHAPTER 5. SMALE’S MEAN VALUE CONJECTURE 129

critical values of polynomials.

Theorem 5.1.

Let p be a non-linear polynomial and z any given complex number. Then

there exists a critical point ζ of p such that∣∣∣∣p(ζ)− p(z)ζ − z

∣∣∣∣ ≤ 4 |p′(z)| .

The values of
∣∣∣ p(ζ)−p(z)
(ζ−z)p′(z)

∣∣∣ as ζ ranges over all critical points of p are called

the objective values, and any critical point ζ which minimises
∣∣∣p(ζ)−p(z)

ζ−z

∣∣∣
among all critical points is called an essential critical point with respect

to z.

Smale asked whether the constant 4 could be reduced to 1, or in the case

of a polynomial of degree n, to 1−1/n, which would be best possible in view

of the example p(z) = zn + z. Thus Smale’s mean value conjecture is the

statement that

min

∣∣∣∣ p(ζi)− p(z)(ζi − z)p′(z)

∣∣∣∣ ≤ n− 1

n
.

Various special cases have been solved, but at present the best known result

that applies to all polynomials replaces 4 by 4(n−2)/(n−1) [15]. It is widely

assumed that for each n ≥ 2 there exists at least one polynomial of degree n

that achieves the best possible constant for polynomials of degree n. We will

refer to such extremal polynomials as globally maximal polynomials. In fact

it is conjectured that the polynomial p(z) = zn + z is (after normalisation)

the unique globally maximal polynomial. David Tischler has shown that this

polynomial is an isolated local maximum (see [72] and [73]).
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5.1.1 Algebraic results on Smale’s Conjecture

We will work in the family

Gn = {monic polynomials p of degree n with p(0) = 0 and p′(0) = 1}.

Each such polynomial is of the form

p(z) = zn + an−1z
n−1 + · · ·+ a2z

2 + z,

and the vector (a2, . . . , an−1) ∈ Cn−2 gives co-ordinates for the parameter

space. Note that by pre- and post-composition with affine maps, every poly-

nomial of degree n can be put into a unique such form, and that these

transformations do not change the objective values in Smale’s mean value

conjecture.

Proposition 5.2.

For each n ≥ 2 there exists a polynomial Qn such that (λ1, . . . , λn−1) is the

vector of objective values

λi =
p(ζi)

ζi p′(0)

for some polynomial p of degree n if and only if

(λ1, . . . , λn−1) ∈ X \ T ,

where X is the affine hypersurface in Cn−1 defined by Qn = 0 and T is some

proper subvariety of X. In particular the set of possible vectors of objective

values is an open subset of X in the usual topology.

Remark: the related problems of constructing a polynomial with given

critical points or with given critical values do not have this feature: in those

problems, every vector of objective values is possible (see [14]).
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Proof. Let q be the polynomial given by q(z) = p(z)
z

, where p ∈ Gn. The

objective values λi = p(ζi)
ζi

are the values of t for which q(z)− t and p′(z) have

a common root in z, so they are the roots of the resultant

R(t) = Res

(
q(z)− t, p

′(z)

n

)
=

n−1∏
i=1

n−1∏
j=1

(αi − ζj),

where the αi are the roots of q(z) = t as a polynomial in z, and the ζj

are the roots of p′(z) = 0, both repeated according to multiplicity. Note

that the multiplicity of roots of R(t) counts the λi appropriately. We can

calculate the resultant R(t) from Bezout’s or Sylvester’s determinant, so the

coefficients of R(t) are polynomials in the coefficients ai. One can easily check

that the leading term of R(t) is (−1)n−1tn−1, independent of the choice of p.

(This is a useful consequence of our normalisation of p). Let sk be the sum

of the products of the λi taken k at a time (repeating the λi according to

their multiplicity). These elementary symmetric functions are given by the

coefficients of R(t) taken with appropriate signs. Thus for k = 1, . . . , n − 1

there are polynomials σk in n− 2 variables such that

sk = σk(a2, . . . , an−1).

Now there must be an algebraic relation Rn(σ1, . . . , σn−1) = 0 between the

polynomials σk in the polynomial ring C[a2, . . . an−1], since there are n− 1 of

them. (If not, the polynomials σi would generate a subring of C[a2, . . . , an−1]

of (Krull) dimension n − 1, which is impossible.) In fact we can choose

Rn to be irreducible; later we will check that this implies that the map

ϕ : (a2, . . . , an−1) 7→ (σ1(a2, . . . an−1), . . . , σn−1(a2, . . . , an−1) is a dominant

morphism. On the other hand there is no non-trivial algebraic relation be-

tween the sk in the polynomial ring generated by the variables λi. Therefore
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substituting the expansions of the sk gives the required non-trivial algebraic

relation between the λi, say

Qn(λ1, . . . λn−1) = 0.

For the converse, we will show in Lemma 5.3 that the image of ϕ is (n− 2)-

dimensional, then the irreducibility of Rn implies that ϕ is dominant. There-

fore the image of ϕ is W \ S, where W is the affine hypersurface defined by

Rn = 0 and S is some proper subvariety of W . In particular the image of ϕ

is an open subset of W in the usual topology (as well as in the Zariski topol-

ogy). Now the map that sends the vector of roots of a monic polynomial of

degree (n−1) to the corresponding vector of elementary symmetric functions

is a finite surjective morphism ψ : Cn−1 → Cn−1, of degree (n − 1)!, so the

quasi-affine variety ψ−1(W \ S) = X \ T has the properties described by the

theorem.

We may also wish to include in S the image under ϕ of the vectors

(a2, . . . , an−1) corresponding to polynomials with repeated roots; this is con-

tained in the subvariety of W defined by
∏n−1

i=1 λi = 0.

Lemma 5.3.

The image of ϕ is (n− 2)-dimensional.

Proof. We consider the vector of values ci = p(ζi)/ζi as functions of the

critical points ζ1, . . . , ζn−1, after dropping the requirement that p′(0) = 1.

We claim that the mapping χ : (ζ1, . . . , ζn−1) → (c1, . . . , cn−1) is a domi-

nant morphism from Cn−1 to Cn−1. In fact we will show that there exists

a polynomial p0 at which the derivative of χ has rank (n − 1), such that

the product function π : (ζ1, . . . , ζn−1) 7→
∏n−1

i=1 ζi takes the value 1 and has
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non-zero derivative at p0. The image of ϕ is the image of χ restricted to the

level set (π = 1), so the implicit function theorem yields the lemma.

Let rk be the k-th elementary symmetric function of the critical points.

We may take p to be monic, so that

p′(z) = n

n−1∏
i=1

(z − ζi) = n
(
zn−1 − r1zn−2 + r2z

n−3 − · · ·+ (−1)n−1rn−1

)
,

p(z)

nz
=
zn−1

n
− r1

zn−2

n− 1
+ · · ·+ (−1)n−1rn−1

z0

1
.

In particular, p(ζi)/(nζi) is a polynomial function of the critical points. At

the point Z0 = (1, 1, , . . . , 1) we can compute the derivative matrix of χ as

follows.

For i 6= j,

∂

∂ζj

(
p(ζi)

nζi

)
= −

(
n−2

0

)
n− 1

+

(
n−2

1

)
n− 2

−
(

n−2
2

)
n− 3

+ · · ·+ (−1)n−1

(
n−2
n−2

)
1

=
(−1)n−1

n− 1
.

For i = j,

∂

∂ζi

(
p(ζi)

nζi

)
=

[
−
(

n−2
0

)
n− 1

+

(
n−2

1

)
n− 2

−
(

n−2
2

)
n− 3

+ · · ·+ (−1)n−1

(
n−2
n−2

)
1

]
+[(

1− 1

n

) (
n− 1

0

)
−
(

1− 1

n− 1

) (
n− 1

1

)
+ . . .

· · ·+ (−1)n−1

(
1− 1

1

) (
n− 1

n− 1

)]
=

(−1)n−1

n− 1
+

(−1)n−1

n
.

It follows that the determinant of the derivative of χ at Z0 is non-zero (be-

cause 1−n
n

is not a root of the characteristic polynomial of the (n − 1) by

(n− 1) matrix each of whose entries is 1.
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As a consequence of Proposition 5.2, we obtain are able to obtain Theorem

5.4, which may be a useful step towards a proof of Smale’s conjecture. Bear

in mind that Tischler has shown that for each degree n there is at least

one polynomial locally strictly maximal in Gn for Smale’s conjecture, namely

zn+z, (see [72] and [73]) (i. e. it is an isolated local maximum for min
∣∣∣ p(ζi)
ζip′(0)

∣∣∣).
We know that the vector of objective values for any polynomial p lies inside a

relatively open subset of the analytic set X \T . Recall that we call a critical

point ζ of p essential when
∣∣∣p(ζ)

ζ

∣∣∣ is minimal among all critical points of p.

We are not aware of any proof in the literature of the following highly

plausible conjecture, although it is likely that the quasiconformal deformation

method of Tischler could be adapted to prove it, if it were known that the best

possible constant for Smale’s mean value conjecture is a strictly increasing

function of the degree.

Conjecture 2.

The (globally) maximal polynomials of degree n are contained in a compact

region of the parameter space Gn.

Theorem 5.4.

For any isolated local maximal polynomial of degree n, all the objective values

in Smale’s mean value conjecture have equal modulus, i. e. every critical point

is essential. If conjecture 2 is true then the same applies to any globally max-

imal polynomial. Even without conjecture 2, if there exists a globally maximal

polynomial of degree n, then there exists a globally maximal polynomial for

which all the objective values have equal modulus.

The usefulness of this theorem is that (subject to proving conjecture 2) it

reduces proving Smale’s mean value conjecture to proving it for the special
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case where all the objective values are equal in modulus. This is a condition

that might be suitable for attack by results of geometric function theory.

Proof. Suppose that p̂ is a maximal polynomial for which the moduli of the

objective values λ̂i are not all equal; in fact suppose that the essential critical

points are ζ1, . . . ζk, (repeated according to multiplicity), where k ≤ n − 2.

Write v0 = (λ̂1, . . . λ̂n−1) ∈ Cn−1. Consider the complex line L in Cn−1

given by x1 = λ̂1, . . . , xn−2 = λ̂2. Suppose that L were contained in X, (the

analytic hypersurface Qn = 0). Then L ∩ T must be finite since v0 ∈ L \ T .

But L∩ (X \T ) cannot be all of L\T because then all points of L\T outside

a disc in L (and including v0) would come from polynomials achieving the

same minimum objective modulus in Smale’s conjecture as v0, contrary to

the hypothesis that p̂ is a locally maximal polynomial. If conjecture 2 is true,

then because ϕ is continuous and ψ is proper, this implies that the vectors

of objective values for globally maximal polynomials of degree n are also

contained in a compact set, which again shows the impossibility of L ⊂ X.

The Weierstrass Preparation Theorem has the following consequence.

The zero locus of an analytic function f(z1, . . . , zn−2, w), not van-

ishing identically on the w-axis, projects locally onto the hyper-

plane (w = 0) as a finite-sheeted cover branched over the zero

locus of an analytic function.

(See [37], chapter 0.1, for details).

Applying this to f = Qn, it follows that there is an subset U ⊂ X, open in

the usual topology, close to v0, on which |x1| > |λ̂1|, |x2| > |λ̂2|, . . . , |xn−2| >

|λ̂n−2|, but |xn| is as close as we like to |λ̂n−1|. In U there must be a point v1
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of X ⊂ T because T is a proper subvariety of X. Then v1 shows that v0 was

not maximal for Smale’s mean value conjecture after all. This contradiction

shows that it is not possible for the objective values of a locally maximal

polynomial not to be all equal.

Finally, if conjecture 2 is false and p̂ is a globally maximal polynomial

then we cannot use the Weierstrass Preparation Theorem, but we can find

a point of the complex line L with |xn−1| = |λ̂1|; indeed we can choose such

a point to avoid T because T cannot contain a circle in L. By permuting

the co-ordinates and repeating the argument we eventually obtain a globally

maximal polynomial all of whose objective values are equal in modulus.

Lemma 5.5.

For any p in Gn, we have

n∏
i=1

|λi| =
disc(p)

nn−1
.

In particular for a maximal polynomial p in Gn, we have for all i

(n− 1)/n ≤ min
i
|λi| =

(disc(p))1/(n−1)

n
=

(disc(q))1/(n−1)

n
.

Hence any maximal polynomial p satisfies disc(p) ≥ (n− 1)(n−1).

Proof. Suppose that p is a maximal polynomial in Gn. Let z0 = 0, z1, . . . , zn−1

be the (distinct) roots of p, let q(z) = p(z)/z and let ζ1, . . . ζn−1 be the roots

of p′, repeated according to multiplicity. Then the constant coefficient of
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R(t) is

Res(q,
p′

n
) =

n−1∏
j=1

n−1∏
i=1

(zj − ζi) =
n−1∏
j=1

p′(zj)

n

= n
n−1∏
j=0

p′(zj)

n
= n

n−1∏
j=0

1

n

∏
i6=j

(zj − zi)

=
(−1)n(n−1)/2

nn−1
disc(p),

where disc(p) stands for the discriminant of p. The condition p′(0) = 1

tells us that disc(p) = ±disc(q). The leading term of R(t) is (−1)n−1tn−1.

Recalling that the λi are the roots of R(t), we find that

n−1∏
i=1

|λi| =
disc(p)

nn−1
.

Since p is maximal for Smale’s mean value conjecture, we know from Theorem

5.4 that the |λi| are all equal, which gives the first part of the corollary. The

second part arises from the fact that we know |λi| ≥ n−1
n

for a maximal

polynomial, because of the example zn + z.

This immediately gives us as a corollary a result originally proved by

Tischler using a different method.

Theorem 5.6 (Tischler).

Among polynomials p in Fn such that the roots of q(z) = p(z)/z all lie on

the unit circle, p(z) = zn + z is maximal for Smale’s mean value conjecture.

Proof. It is well-known that among all monic polynomials q whose roots all

lie on the unit circle, the modulus of the discriminant is maximised uniquely

when those roots are equally spaced. Observe that the minimum of the |λi|
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is at most their geometric mean, with equality only if they are all equal. The

further condition that q(0) = p′(0) = 1 leaves us with a unique polynomial

maximal among those whose roots lie on the unit circle, namely q(z) =

zn−1 + 1.

Any explicit information that we can obtain about the polynomial Qn

may help us to pin down the extremal polynomials. For example, in the case

n = 3 we have

Q3(λ1, λ2) = (λ1 − 1/2)(λ2 − 1/2)− 1/36.

Setting Q3 = 0 forces either λ1 or λ2 to lie in the closed disc of radius 1/4 cen-

tred on 1/2, therefore to have modulus at most 3/4. The only case of equality

here is λ1 = λ2 = 3/4, which corresponds (uniquely, after normalisation) to

the polynomial p(z) = z3 + z.

The relation Q4 is already formidable: Let u = 4(λ1 − 1/2), v = 4(λ2 −

1/2), and w = 4(λ3 − 1/2). Then

Q4(λ1, λ2, λ3) =

3− 4 (u+ v + w)− 4 (uv + vw + wu)

+ 8 (u2v + v2u+ v2w + w2v + w2u+ u2w) + 33uvw

+ 4uvw(u+ v + w)− 16uvw(u2 + v2 + w2)

− 52uvw(uv + vw + wu)− 3u2v2w2

+ 72u2v2w2(u+ v + w)− 81u3v3w3.

Unfortunately it is not possible to separate the variables to rewrite the

equation Q4 = 0 as

R(λ1) ·R(λ2) ·R(λ3) = constant,
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where R is any rational function.

As for Q5, a crude estimate to bound its degree shows that the degree is

at most 3420; it is probably rather smaller, but nevertheless Q5 is likely to

be impossible to calculate explicitly.

One further thing we can do is apply calculus to variation of the arguments

of λi. This gives the condition for a maximal polynomial that arg(λi
∂Qn

∂λi
)

must be equal for all i = 1, .., n − 1. Together with the condition that the

λi have equal moduli and satisfy Qn, this gives in theory enough constraints

to leave only a finite set of candidate maxima to examine. However since we

are unable to make effective use of this information, we omit the details.

5.2 The mean value conjecture for rational

maps

In Smale’s original proof (to obtain the constant 4), the only fact about

polynomials as special examples of rational maps that is used is that P (∞) =

∞. The proof does not use the fact that ∞ is a critical point for P or that

there are no other pre-images of ∞. This allows us to use the Smale’s proof

to prove a version of the mean value conjecture for rational maps:

Theorem 5.7.

Let R be any rational map of degree at least 2, and let x, y be points of

Ĉ with R(x) 6= R(y), such that x is not a critical point of R. Then there

exists a critical point ζ of R and a Möbius map M such that M ◦ R fixes

each of x, y and ζ, and with respect to any local co-ordinate at x we have

|(M ◦R)′(x)| ≥ 1/4.
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Remark: The special case with y = ∞ and R a polynomial is a simple

reformulation of Smale’s result. Because x is fixed by M ◦ R, the derivative

at x of M ◦R does not depend on the choice of local co-ordinate.

Proof. The statement is certainly true for R if it is true for R̂ = T ◦ R ◦

S, where T and S are Möbius maps. Choose a Möbius map S such that

S(∞) = y and S(0) = x, and a Möbius map T such that T (R(y)) =∞ and

T (R(x)) = 0. Then R̂ = T ◦ R ◦ S is a rational map fixing 0 and ∞. Let

D be the largest open disc centred on 0 that carries a single-valued branch

β of R̂−1 mapping 0 to 0; let D̃ be the image of β, i. e. the component of

R̂−1(D) containing 0. There is a critical point ζ of R̂ on the boundary ∂D̃,

with R̂(ζ) ∈ ∂D. Now β is a univalent map from the disc about 0 of radius

|R̂(ζ)| to the domain D̃, which omits ζ, so Koebe’s 1
4
-Theorem gives

|(R̂−1)′(0)| ≤ 4
|ζ|
|R̂(ζ)|

.

We now ask what is the best possible constant in Theorem 5.7 to replace

1/4, (perhaps in terms of the degree of R). The example R(z) = zn + z,

y =∞ shows that n/(n−1) would be best possible. The proof precludes the

case of equality, because then the branch β of R−1 would cover the whole of

the Riemann sphere except for a slit, and the complement of D could not

be covered by R. A degree 2 rational map must have exactly two simple

critical points; after Möbius maps at both ends we may assume that the map

is z 7→ z2, and that x = 1 in the theorem; in this case the derivative at x is

2. So the situation for degree 2 is no different from the polynomial case.
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The reader may think that this generalised mean value conjecture looks

a little unnatural due to the unequal roles of x and y. We can make it more

symmetrical by letting y be a variable critical point, giving it the same status

as ζ. Here is the analogue of Smale’s Theorem:

Theorem 5.8.

Let R be a rational map of degree at least 2, and x ∈ Ĉ be given, such

that R(x) is not a critical value of R. Then there exist two critical points ζ

and κ of R such that if M is the Möbius map that makes x, ζ and κ fixed

points of M ◦ R, then with respect to any local co-ordinate at x we have

|(M ◦R)′(x)| ≥ 1/2.

Proof. The conclusion is unchanged if we replace R by M ◦R ◦N , where M

and N are any Möbius maps, so w. l. o. g. we may assume x = ∞ = R(x);

then all the critical values of R are finite and there are at least two of them.

Let K be the convex hull of the critical values. Then there exist two critical

points ζ and κ such that diam(K) = |R(ζ) − R(κ)| > 0. Now there exists

a single-valued branch β of R−1 defined on Ĉ \ K, taking ∞ to ∞, and

omitting ζ and κ. Let f : Ĉ \ D→ Ĉ \K be a Riemann map fixing ∞. The

logarithmic capacity of a compact subset of C of diameter d is at most d/2

[62, Theorem 5.3.4] so f#(∞) ≥ 2/|R(ζ)−R(κ)|. The Koebe 1
4
-Theorem tells

us that (β ◦ f)#(∞) ≤ 4/|ζ − κ|, so we have 1
R#(∞)

= β#(∞) ≤ 2 |R(ζ)−R(κ)|
|ζ−κ| .

Take M to be the affine map that makes M ◦ R fix ζ, κ and ∞. Then

M#(∞) = |R(ζ)−R(κ)|
|ζ−κ| , which gives the result.

As before, we ask what is the best possible constant to replace 1/2 in

Theorem 5.8. Taking R(z) = (zn − nz)/(1 − n), for which zero and all the
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critical points including ∞ are fixed, there is only one choice for M , namely

the identity map; in this case we have (M ◦ R)′(0) = (n/n − 1). So the

constant n/(n − 1) to replace 1/2 in Theorem 5.8 would be best possible,

and the constant 1 would be the best possible bound independent of the

degree of R.

5.2.1 Rational maps with all critical points fixed

If we can arrange for every critical point to be fixed and for there to be

at least one non-critical fixed point left over, then we get an example for

Theorem 5.8 in which there is only one choice of Möbius map M , making

it easy to compute an upper bound on the best possible constant for that

theorem. A rational map of degree n ≥ 2 has 2n − 2 critical points and

n + 1 fixed points, both counted with multiplicity, so there will have to be

some multiple critical points. In this section we will present a method of

constructing rational maps all of whose critical points are fixed, and which

have only one further fixed point (which after conjugation we may take to

be ∞). Note that there are rational maps all of whose critical points are

fixed but which do not have this additional property, for example z 7→ zn for

n ≥ 3.

Suppose that g is a polynomial of degree n with no repeated roots, such

that all the roots of g′′ are also roots of g; it follows that g′ has no multiple

roots. Then let Rg be the associated Newton-Raphson map

Rg(z) = z − g(z)

g′(z)
.

Rg has a superattracting fixed point (i. e. a critical fixed point) at each of
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the roots of g. In fact

R′
g(z) =

g(z)g′′(z)

g′(z)2
,

so the only critical points of Rg are the roots of g. Observe that Rg has

no multiple poles since g′ has no multiple roots. In particular, every critical

point of Rg is a fixed point. Note that Rg has a fixed point at ∞ with

multiplier R#(∞) = n
n−1

. Any such Rg will show that the best possible

constant for Theorem 5.8 is at most n/(n−1), just as the polynomial p(z) =

(zn + nz)/(n − 1) does. In fact, when we take h(z) = a(z − c)n + b(z − c),

we find that Rh is Möbius-conjugate to p, via z 7→ 1/z; moreover, this is the

only case of this construction for which Rg can be conjugate to a polynomial!

Here is an example of an Rg which is not conjugate to a polynomial, but

all of whose critical points are fixed. Take

h(z) = z4 + 2z3 + 6z2 + 5z + 4 = (z2 + z + 4)(z2 + z + 1) .

For this h, we have

Rh(z) =
3z4 + 4z3 + 6z2 − 4

4z3 + 6z2 + 12z + 5

h′′(z) = 12(z2 + z + 1) .

Since h has no repeated roots, the roots of h′′ are roots of h but not of h′.

Thus Rh has two finite fixed points of valency three, two finite fixed points of

valency two, and no other critical points. Rh is not conjugate to a polynomial

because it does not have a fixed point of valency equal to its degree.

In Theorem 5.8, it seems likely that there are several extremal rational

maps for each degree. This would be interesting for the following reason: any

method that solves Smale’s mean value conjecture might be expected also
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to apply to give the best possible constant for Theorem 5.8, so it should not

rely on the uniqueness of the extremum!

The following lemma characterises those rational maps that occur as

Newton-Raphson maps of rational functions in terms of their fixed points

and the multipliers at those fixed points. Buff and Henriksen [22] charac-

terise the rational maps that occur as König’s methods for polynomials, and

this includes Newton’s method for polynomials as a special case for which

they give priority to [40, Prop. 2.1.2]. The extension here to Newton maps

of rational functions may possibly be new.

Lemma 5.9 (Characterisation of Newton-Raphson maps of rational

functions).

A rational map R is the Newton-Raphson map associated to some non-linear

rational function g if and only if all the fixed points of R are simple and each

finite fixed point χ of R satisfies 1
1−R′(χ)

∈ Z. Moreover, g is a polynomial if

and only if these integers are all positive.

The condition that all fixed points be simple applies even to any fixed

point at ∞.

Proof. Suppose that g(z) = p(z)/q(z) in lowest terms is a rational function

of degree n ≥ 2 and R = Rg(z) := z − g(z)
g′(z)

. The fixed points of R are

precisely the roots and poles χ of g. If g has order m 6= 0 at χ ∈ C then

1−R′(χ) =
d

dz

(
g(z)

g′(z)

)∣∣∣∣
z=χ

=
1

m
.

For the converse, consider

g(z) := exp

∫ z dz

z −R(z)
.
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This function is certainly locally defined away from fixed points of R and

satisfies the Newton-Raphson equation R(z) = z− g(z)
g′(z)

. The integrand 1
z−R(z)

has no multiple poles since at each fixed point of R we are told d
dz

(z−R(z)) 6=

0. We can therefore express the integrand in partial fractions as

1

z −R(z)
= q(z) +

∑
i

Ai

z − χi

,

where q is a polynomial. R does not have a multiple fixed point at ∞, so

z − R(z)→∞ as z →∞, hence q = 0. Near a fixed point χi of R we know

that z − R(z) = (z − χi)/m + O((z − χi)
2) for some positive integer mi, so

Ai = mi. Now we can perform the integration explicitly:∫ z dz

z −R(z)
=
∑

i

mi log(z − χi) + c ,

so

g(z) = exp(c).
∏

i

(z − χi)
mi ,

which is a rational function; it is a polynomial when all mi ≥ 1.

The following special case is also a special case of [22, Prop. 4].

Corollary 5.10 (Characterisation of Newton-Raphson maps associ-

ated to polynomials without repeated roots).

The following are equivalent for a rational map R:

1. R has a simple fixed point at ∞ and all the finite fixed points of R are

also critical points of R;

2. R(z) = z − g(z)
g′(z)

for some non-linear polynomial g with no repeated

roots.
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In this situation, the fixed point of R at∞ is not critical; indeed its multiplier

is n/(n− 1), where n = deg g = degR.

If a Newton-Raphson map Rg associated to a polynomial g has all its

critical points fixed, then all of its finite fixed points must be critical, and

hence g cannot have any repeated root. Indeed, Rg would otherwise have

a non-critical fixed point of multiplier less than 1 in modulus, and then a

suitable iterate of Rg would violate Theorem 5.8.

Note that for a Newton-Raphson map associated to a rational function

g of degree n, we could have repelling fixed points associated to poles of g,

but the multiplier would be k/(k− 1) for a pole of g of order k. It is possible

for the degree of Rg to be less than the degree of g, so we might still hope

to produce better examples for Theorem 5.8 using the present construction.

However in the next section we will show that the multiplier n/(n− 1) is the

smallest possible multiplier of a non-critical fixed point of any Rg of degree

n whose critical points are all fixed.

A final observation: R has a simple non-critical fixed point at∞ precisely

when

lim
z→∞

R(z)

z
∈ Ĉ \ {0, 1,∞}.

5.2.2 Forbidden multipliers

The special case of Smale’s mean value conjecture for polynomials in which

the critical points are all fixed is often referred to as Kostrikin’s conjecture.

It was observed by Shub that if the critical points of a polynomial are all

fixed, then the multiplier at each remaining fixed point must be greater than

or equal to 1 in modulus (just plug a suitable iterate of the given map into
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Smale’s Theorem). We will give a different argument which in fact applies in

general to rational maps whose critical points are all fixed, and shows that

the multiplier must be strictly greater than 1 in modulus.

To see this, consider first the case in which R has only two critical values.

Then R pulls back a complete Euclidean metric from Ĉ \ {critical values} to

Ĉ \ R−1({critical values}), so there can only be two critical points, and the

map is Möbius-conjugate to z 7→ zn, in which the multiplier at the remaining

fixed points is n. Otherwise, there are at least three critical values, and the

multivalued map R−1 : Ĉ\{critical values} → Ĉ\R−1({critical values}) lifts

to a conformal isomorphism between the universal covers of these two do-

mains. Thus any branch of R−1 is locally a hyperbolic isometry between the

natural hyperbolic metrics on Ĉ\{critical values} to Ĉ\R−1({critical values}).

However, the inclusion map I : Ĉ\{critical values} → Ĉ\R−1({critical values})

omits some points because it is impossible for each of the critical values to

have only one pre-image. Therefore the inclusion map is everywhere a strict

contraction between the hyperbolic metrics. At any non-critical fixed point

this shows that the multiplier is greater than 1 in modulus.

The following theorem excludes further values of the multiplier at any

non-critical fixed point, thus making a small amount of progress on Kostrikin’s

Conjecture.

Theorem 5.11.

Suppose that R is a rational map all of whose critical points are fixed. Suppose

that R has degree n and has m critical points (not counting multiplicity).

Then R has exactly n + 1 fixed points, of which n + 1 −m are non-critical.

The multiplier at any non-critical point does not lie in the closed disc whose
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diameter is the interval [1, 1+ 2
n+m−2

], except in the case where m = n and the

multiplier of the remaining fixed point is n/(n−1), which is on the boundary

of this disc.

Proof. We use the notion of residue fixed point index for holomorphic maps.

If f : U → C is holomorphic on an open set U ⊂ C and z0 is an isolated fixed

point of f , then the residue fixed point index of f at z0 is defined as

ι(f, z0) =
1

2πi

∫
dz

z − f(z)
,

where the integral is taken around a positively-oriented circle around z0 so

small that it contains no other fixed points of f . If the multiplier of f at z0

is λ 6= 1 then ι(f, z0) = 1
1−λ

. If the fixed point is simple then the index is

still well-defined and finite, but this formula does not apply.

Theorem 5.12 (Rational Fixed Point Theorem). [54, Theorem 12.4]

For any rational map f : Ĉ→ Ĉ which is not the identity map, the sum over

all the fixed points of the residue fixed point index is 1.

The first part of Theorem 5.11 is a consequence of Shub’s observation that

any non-critical fixed points must be repelling; in particular they are simple,

so there are no multiple fixed points of R. The residue fixed point index of

a fixed critical point is 1. For a non-critical fixed point, the multiplier has

modulus strictly greater than one, so the residue fixed point index has real

part strictly less than 1/2. In fact in the case where there are n critical fixed

points, the rational fixed point theorem shows that the remaining fixed point

must have residue fixed point index 1−n, so must have multiplier n/(n−1).

In the general case, select a particular non-critical fixed point z0. We get a

contribution of less than m+ (n−m)
2

to the real part of the total index from all
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the other fixed points, so the residue fixed point index ι(R, z0) has real part

greater than 1− (m + (n−m)
2

) = 1− m+n
2

, and hence the multiplier does not

lie in the disc whose diameter is the interval [1, 1 + 2
m+n−2

], as required. In

fact, further small regions of excluded values of the multiplier may be found

by considering iterates of R.

Note that in the case m < n, this disc of excluded values contains the

multiplier n
n−1

in its interior. Since the multipliers at the fixed points of a

Newton-Raphson map associated to a rational function are real and non-

negative, Theorem 5.11 implies that one cannot improve on the multiplier

n/(n− 1) by using Newton-Raphson maps associated to rational functions.



Appendix A

Applications of IFS

The motivation in this thesis for studying IFSs arises from conformal dy-

namical systems. To put our results in context, we discuss here various other

applications of IFSs.

An IFS is often used to model a discrete dynamical system perturbed by

random noise, perhaps as a discrete approximation to a stochastic differen-

tial equation. Typically the unperturbed system will be stable, say with a

locally attracting fixed point. The IFS corresponding to a small perturbation

of this system may have an invariant measure concentrated near the origi-

nal fixed point. However, it may also happen for a dynamical system with

many distinct locally attracting fixed points that even small perturbations

are asymptotically stable.

A well-known application of N -map IFSs is in computer graphics, for

generating natural-looking landscapes and textures. Michael Barnsley’s fern

[7] is a famous example. These pictures are produced by plotting the points of

a random orbit of an N-map continuous IFS. In order to be sure that this will

150
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produce the required picture, we would like to know that with probability one

the distribution of the first n points of the orbit will converge (as n→∞) to

some non-random probability measure, which represents the picture. As we

will see (particularly in section 2.3.2), this requirement is closely related to

another property of IFSs called asymptotic stability, which will be of central

importance to us.

For image compression one must solve the inverse problem of finding an

IFS with a reasonably small number of simple maps whose invariant measure

approximates a given probability measure. One approach is to look for an IFS

of affine maps, using moments of the target measure to determine parameters.

Although there are commercial image compression systems which encode

digital images in terms of collections of IFSs, they have not been successful

because they are computationally intensive in comparison to compression

methods based on Fourier or wavelet transforms (such as JPEG) yet they do

not typically achieve much better compression ratios.

Another common reason for introducing an IFS is to represent a given

Markov chain. Consider a Markov Chain with state-space Y and transition

probabilities P (x,A), where for each x ∈ Y , P (x, ·) is a Borel probability

measure on Y , and for each Borel set A ⊂ Y , P (·, A) is a Borel-measurable

function. Any such Markov Chain is representable by an IFS (see chapter

1 of [50]). However not every such Markov Chain can be represented by a

continuous IFS. Indeed, for a continuous IFS, the map from Y to P(Y ) (with

the weak topology) given by x 7→ P (x, ·) is necessarily continuous. Blumen-

thal and Corson [17] gave a partial converse: they showed that any Markov

chain on a connected, locally connected and compact space Y such that the
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transition map Y → P(Y ) is continuous, and such that for each x ∈ Y the

support of P (x, ·) is the whole of Y , is representable by an IFS of continuous

maps. Another restrictive condition on a Markov chain is the existence of a

representation by an IFS with finitely many maps (not necessarily continu-

ous). Such a representation exists if and only if the transition probabilities

P (x,A) take only finitely many distinct values. Finally, representability by a

continuous N -map IFS is a more subtle question. For example, consider the

Markov Chain (xi)
∞
i=0 with state space C such that P(x2

n+1 = xn) = 1, where

the two square roots are taken with equal probability when xn 6= 0. The

corresponding map C→ P(C) is continuous and the transition probabilities

take only finitely many values, yet this chain cannot be represented using

any continuous IFS.

The survey article [27] gives an example of the the use of an IFS to rep-

resent the waiting time process in the G/G/1 queue, and gives references to

further applications in queuing theory. The same article describes the recent

method of Propp and Wilson which uses backward iteration of a suitably

contractive IFS to simulate exactly from a distribution on a very large finite

state space, discussing in particular the Ising model on a large but finite grid

in two dimensions. That method is based on Letac’s principle, among other

ideas, and in this connection theorem 2.24 may be of interest.
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Known stability results for IFS

There are many papers in which IFSs are proved to be asymptotically stable

as a consequence of contractivity conditions on the defining maps. [27] is

a very readable recent survey article on applications of contractive IFSs. It

includes a complete proof of the following theorem (which was known before)

and gives references to papers containing stronger results.

Theorem B.1.

Let F be an IFS on a complete separable metric space (Y, d). Suppose that f

is a.s. Lipschitz, with E log Lip(f) < 0, and that there exist α > 0 and β > 0

such that P(Lip(f) > u) < α/uβ for all u > 0. Then F is asymptotically

stable and there exists a point x0 ∈ X and constants a > 0, b > 0 and

0 < r < 1 such that

πd ((F∗)nδx, µ) ≤ (a+ bd(x, x0))r
n ,

where πd is the Prohorov metric and µ is the invariant law of F .

The idea of using the natural extension of the skew product to relate the
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forward and reverse iterates was used by Elton [30] to prove stability results

and ergodic theorems in the situation of the above theorem, but allowing

the sequence of maps (Fn) to be a more general stationary process than a

Bernoulli process. Then the sequence Fn ◦ · · · ◦ F1(Z0) no longer forms a

Markov chain, but what has been called a Markov chain in a random envi-

ronment. This raises the question of whether our results on non-uniformly

contracting IFSs can be extended to deal with stationary sequences of maps.

For IFSs on a complete separable metric space (X, d), Stenflo [70] sup-

poses that there exists c < 1 such that for all x, y ∈ X,

E(d(f(x), f(y)) ≤ cd(x, y) ,

and

E(d(x, f(x)) <∞

He proves that there exists a unique invariant law µ and that for any x ∈ X,

Kd (Fn
∗ (δx), µ) = O(cn) ,

uniformly on bounded subsets. For non-uniformly contracting IFSs, one

cannot hope to give any similar bound on the rate of convergence. In the

same situation, Stenflo proves the continuous dependence of the invariant

law on the parameters defining the IFS.

A more common assumption of average contractivity is a spatially uniform

bound

E (log d(f(x), f(y))− log d(x, y)) < −ε < 0 .

Barnsley and Elton [10] prove asymptotic stability of IFSs using a slightly

extended version of this. [9] shows asymptotic stability using this assump-

tion and allowing place-dependent probabilities ; in the same situation [74]
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proves strong results (including a law of the iterated logarithm) about the

behaviour of the average of a continuous function h over the first n steps

of the orbit, approximating a suitable normalisation of this sequence by a

Brownian motion.

The subject of iterated function systems driven by stationary sequences

of maps was also developed in Romania under the name of dependence with

complete connections; a paper from that school relevant to the present dis-

cussion is [38], which generalises the result of [10].

Define the local Lipschitz constant of a map h : X→ X to be

Dxh = lim sup
y→x

d(f(x), f(y))

d(x, y)
.

Steinsaltz [68] studies IFSs that he calls locally contractive. Here X is a

convex subset of Rn with the Euclidean metric, and it is assumed that there

is a function φ : X → [1,∞) and a constant c < 1 such that for all n ∈ N

and all x ∈ X,

E (Dx(F1 ◦ · · · ◦ Fn)) ≤ φ(x)cn . (B.1)

The main result is that F is asymptotically stable, with an explicit rate of

convergence given for the sequence of reverse iterates. A sufficient condition

for (B.1) to hold is given that does not involve iteration. Note that the brief

literature survey in [68] repeatedly omits the crucial condition of complete-

ness. It would be interesting to see whether Steinsaltz’ results can be applied

to simplify any of the results about analytic IFSs on D in Chapter 2.

There are non-uniformly contracting IFSs which do not fall into any of

the classes discussed above, and of course each of these classes contains IFSs

which are not non-uniformly contracting.
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In the setting of IFSs of maps that do not increase distance, two recent

papers [1, 53] go even beyond non-uniform contractivity. They prove the

stability of the IFS on R+ defined by

fω(x) = |x− ω| ,

where ω ∈ Ω = R+ and the law P of ω is compactly supported but not

supported on any lattice in R. Note that in this case each map is Lipschitz

with constant 1, but none of the maps is strictly distance-decreasing. More-

over, the stability result is very delicate indeed: in the N -map case, stability

fails when P is supported on a lattice, so the unstable IFSs are dense in the

parameter space.
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Dependence of stability on p

In this appendix we give some examples of analytic IFS on D. They show

that no condition on the maps alone can be both necessary and sufficient

for stability. In all three examples, the maps are fixed but the existence

of an invariant probability measure depends on the choice of the associated

positive probability vector. From the point of view of random walks this

is not surprising, but in the context of IFSs it is interesting – Lasota and

Yorke [46] showed that for the closely related class of non-expansive IFSs on

compact metric spaces, stability depends only on the maps and not on the

probabilities. The examples also demonstrate that for a fixed set of maps,

neither the existence nor the absence of an invariant measure is necessarily

a convex condition on the probability vector. In particular the condition for

stability is not necessarily linear.

Example C.1. Define a 2-map IFS F by

f1 : z 7→ z2
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and

f2 : z 7→ z + τ

1 + τz
,

where τ > 0 is chosen so that f2 is the hyperbolic isometry of D that trans-

lates the geodesic along the real axis by hyperbolic distance log 2 towards 1.

The interval [0, 1) is a forward-invariant set for both maps. If F is asymp-

totically stable then its restriction to [0, 1) is asymptotically stable, and con-

versely if the restriction is asymptotically stable then the unrestricted sys-

tem has an invariant probability distribution, so by Ambroladze’s Theorem is

asymptotically stable. The restriction to [0, 1) behaves rather like a random

walk with a reflecting barrier at 0, since on the real axis near 1, z 7→ z2 dis-

places points towards 0 by a hyperbolic distance that approaches log 2. When

p1 >
1
2

we will show how to bound the Markov chain Hn = Fn◦· · ·◦F1(0) be-

tween two simpler random walks with retaining barriers, both coupled to Hn.

Each of these bounding walks has a unique invariant probability distribution,

to which its empirical distribution almost surely converges. Letting δ0 be the

unit mass at 0, it follows that Fn
∗ (δ0) 9 0 weakly; hence by Ambroladze’s

Theorem F has an invariant probability measure and is asymptotically sta-

ble. The invariant measure is supported on [0, 1) because each Fn
∗ (δ0) is

supported on [0, 1).

Lower bound: Consider a random walk Zn on the points xm of [0, 1) such that

d(0, xm) = m log 2, m ∈ N, defined as follows. Z0 = 0; the transition from

Zn−1 to Zn is a step to the right when Fn = f2 and a step to the left when

Fn = f1, with the exception that if Zn−1 = 0 and Fn = f1 then Zn = 0 again.

Since for all x ∈ (0, 1), we have d(x2, x) < log 2, we obtain Zn ≤ Hn for all

n, as required. It is well known that the chain Zn is recurrent (persistent)
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when p1 > p2.

Upper bound: The upper bound is slightly more complicated. Let R ∈ (0, 1).

Consider a random walk Yn on (0, 1) such that Y0 = 0 and the transition

from Yn−1 to Yn is a step to the right by a hyperbolic distance log 2 when

Fn = f2 but is a step to the left by a hyperbolic distance p2+p1

2p1
log 2 when

Fn = f1, except when this would make Yn < R, in which case Yn = Yn−1.

(We have introduced a retaining barrier at R). Except when Yn is close to R,

the expected increment in d(0, Yn) is −p1
p1+p2

2p1
log 2 + p2 log 2 = p2−p1

2
log 2,

so when p1 > p2, the chain (Yn) has an invariant distribution. To ensure that

Yn is an upper bound for Hn, we need only choose R large enough that for

all 1 > t ≥ R, we have d
(
t,
√
t
)
> p2+p1

2p1
log 2, and since d

(
t,
√
t
)
→ log 2 as

t→ 1, there does exist such an R.

When p1 ≥ p2, the chain Zn is still a lower bound for Hn, but it has no

invariant distribution (even though in the case p1 = p2 = 1
2

it is recurrent).

In particular, for any t ∈ (0, 1), P(Zn ∈ [0, t]) → 0 as n → ∞, and since

Zn ≤ Hn, we have P(Hn ∈ [0, t]) ≤ P(Zn ∈ [0, t]). Therefore Fn
∗ (δ0) → 0

weakly, so by Ambroladze’s Theorem F has no invariant measure.

Example C.2. In this example, stability is not a convex condition on the

probability vector. The details are somewhat technical (using hyperbolic

trigonometry) but the basic idea is as in example C.1: we find some Liapunov

function φ on D (i. e. a continuous real-valued function with φ(z) → ∞ as

z → ∂D) and consider the process φ(Fn ◦ · · · ◦ F1(0)). Then we construct a

Markov chain with values in R that is a lower or upper bound for this process

and which we can prove is transient or positively recurrent, respectively. This

general idea appears a great deal in the literature on IFSs.
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The maps for this example will all be conjugate to g : z 7→ z2, so in-

dividually they are easy to understand. Pick two points x1, x2 of D with

d(x1, x2) = t, and fix a large positive integer N . (In due course we will spec-

ify how large N and t must be). For i = 1, 2, let σi be a hyperbolic isometry

that carries xi to 0. Let h be the rotation h : z 7→ e
2πi
N z. Then the maps of

our example are the following, as j runs over {0, . . . , N − 1} and i runs over

{1, 2}:

fi,j = σ−1
i ◦ hj ◦ g ◦ σi.

Note that hj ◦ g is in fact a conjugate of g.

To specify the probabilities associated to these maps, choose α ∈ (0, 1).

Set the probability p1,j associated to each map f1,j equal to α/N , and the

probability p2,j associated to each map f2,j equal to (1−α)/N . We have now

defined an IFS; call it F .

Claim.

1. For α sufficiently close to 0 or to 1, F is asymptotically stable.

2. For α = 1
2
, F has no invariant measure.

Proof. 1. Swapping σ1 and σ2 gives another system satisfying the above

description, but with α and 1− α swapped; thus it suffices to consider

the case where α is close to 0, so that the f1,j occur only rarely. The

maps f2,j have fixed point x2, so we will look at rn = d(x2, Hn), where

Hn := Fn ◦ · · · ◦ F1(x2). When Fn = f1,j for some j, we apply the
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triangle inequality twice to obtain

rn − rn−1 ≤ d(x2, x1) + d(x1, Hn)− d(x2, Hn−1)

≤ d(x2, x1) + d(x1, Hn−1)− d(x2, Hn−1)

≤ d(x1, x2) + d(x1, x2) = 2t.

If Fn = f2,j for some j, and rn−1 is large, then rn−rn−1 is approximately

− log 2. Just as in example 1, we can bound rn above by a random walk

on R with a retaining lower barrier, which has an invariant distribution

when 2αt < (1 − α) log 2. This shows that for sufficiently small α, F

itself is asymptotically stable.

2. To deal with the case α = 1
2
, we introduce the random sequences (in)

and (jn) such that Fn = fin,jn , and define

an = d(Hn, xin), bn = d(Hn, x3−in).

Our aim is to show that with probability 1, rn → ∞ as n → ∞. We

begin with some hyperbolic trigonometry.

cosh d(0, z) =
1

1− |z|2

∴ cosh d(0, z2) =
1

1− |z|4
=

1

1− |z|2
1

1 + |z|2
.

Hence if in = in−1, we have cosh rn ≥ 1
2
cosh rn−1.

Now suppose that in 6= in−1. We shall use the analogue for hyper-

bolic triangles of the cosine rule. Let θ be the angle at x3−in in the

geodesic triangle with vertices at x1, x2 and Hn−1. The side lengths
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are d(x1, x2) = t, d(xin , Hn−1) = sn−1 and d(x3−in , Hn−1) = rn−1. The

hyperbolic cosine rule now gives

cosh sn−1 = cosh t cosh rn−1 − cos θ sinh t sinh rn−1.

Dividing through by cosh rn−1, we have

cosh sn−1

cosh rn−1

= cosh t− cos θ sinh t tanh rn−1.

The angle θ takes one of N possible values evenly spaced around the

circle, and which of those values it takes is independent of rn−1 and

sn−1. So if we require N to be even, with probability at least 1
2
, the

contribution of the final term in the above equation is non-negative, so

cosh sn−1

cosh rn−1
≥ cosh t. When can the ratio cosh sn−1

cosh rn−1
be less than 1? Precisely

when cos θ > cosh t−1
sinh t

= tanh( t
2
). We can require t to be sufficiently

large that cos π
N
< tanh( t

2
), and then the probability that cosh sn−1

cosh rn−1
< 1

is at most 1/N . In this bad case, we resort to the triangle inequality:

sn−1 ≥ rn−1 − t. In the remaining case we content ourselves with

sn−1 ≥ rn−1.

Now, the action of the map Fn does not contract too much: cosh rn ≥
1
2
cosh sn−1, as explained in the proof of part 1. Now let us catalogue

the possible multiplicative increments of the sequence (cosh rn):

• With probability 1
2

we have in = in−1 so cosh rn ≥ 1
2
cosh rn−1.

• With probability 1/4 we have in 6= in−1 and cos θ ≤ 0, so

cosh rn ≥ 1
2
cosh sn−1 ≥ 1

2
cosh t cosh rn−1.

• With probability at most 1/(2N) we have in 6= in−1 and cos θ ≥
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tanh t
2
, in which case we still have (from the triangle inequality)

cosh rn ≥ 1
2
cosh sn−1 ≥ 1

2
cosh(rn−1 − t) ≥ 1

2
e−t cosh rn−1.

• With probability at least 1/4 − 1/(2N) we have in 6= in−1 and

0 < cos θ < tanh t
2
, in which case we have

cosh rn ≥ 1
2
cosh sn−1 ≥ 1

2
cosh rn−1.

The corresponding events for different values of n are independent. We

will now bound log cosh rn below by a transient random walk Wn on

R, coupled to the maps Fn. Start with W0 = 0, and let the increment

Wn−Wn−1 be − log 2 in the first and last cases above, log cosh t− log 2

in the second case, and − log 2− t in the third case. Then

E(Wn −Wn−1) ≥
log cosh t

4
− t

2N
− log 2

≥ t

(
1

4
− 1

2N

)
− 5

4
log 2.

If we take N = 6 and t = 6, then the condition cos π
N
< tanh( t

2
) is

satisfied and the expected increment of (Wn) is positive. (Wn) has

independent increments with finite variance, so a.s. Wn → ∞ as n →

∞ by the law of large numbers. Since Wn ≤ log cosh rn, we also have

rn → ∞ as n → ∞ a.s., so indeed F has no invariant probability

measure when α = 1
2
.

Example C.3. This example shows that the property of not having an

invariant measure may fail to be a convex condition on the probability vector,

for fixed maps. Define an IFS of three analytic self-maps of D:

f1 : z 7→ z3 ;
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f2 : z 7→ z + τ

1 + τz
,

where τ is chosen so that f2 is a hyperbolic isometry that translates the real

axis towards 1 by a distance log 3, and

f3 = f−1
2 .

The real interval (−1, 1) is a forward-invariant set. Now fix 0 < p1 < 1
2

and vary the other two probabilities. Near the extremes, we can bound the

process by a random walk with a drift, so there is no invariant probability

measure, but at the midpoint p2 = p3, we can bound d(0, Hn) above by

a random walk with a drift towards 0 and a retaining lower barrier, just

as in example 1, so with this probability vector, F does have an invariant

probability measure.
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