
Stat
The ISI’s Journal for the Rapid

Dissemination of Statistics Research (wileyonlinelibrary.com) DOI: 10.100X/sta.0000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A test for second-order stationarity of time
series based on unsystematic sub-samples

Haeran Cho a∗

Received 13 September 2016; Accepted 3 October 2016

In this paper, we introduce a new method for testing the stationarity of time series, where the test statistic is
obtained from measuring and maximising the difference in the second-order structure over pairs of randomly
drawn intervals. The asymptotic normality of the test statistic is established for both Gaussian and a range
of non-Gaussian time series, and a bootstrap procedure is proposed for estimating the variance of the main
statistics. Further, we show the consistency of our test under local alternatives. Due to the flexibility inherent
in the random, unsystematic sub-samples used for test statistic construction, the proposed method is able to
identify the intervals of significant departure from the stationarity without any dyadic constraints, which is an
advantage over other tests employing systematic designs. We demonstrate its good finite sample performance
on both simulated and real data, particularly in detecting localised departure from the stationarity. Copyright
c© 2016 John Wiley & Sons, Ltd.
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1. Introduction
The second-order (weak) stationarity assumption is appealing in time series analysis as there are well-established
models, estimation and forecasting tools and accompanying asymptotic theory for statistical inference. In recent years,
however, locally stationary time series models such as those proposed in Dahlhaus (1997), Nason et al. (2000) and
Ombao et al. (2005) have gained considerable attention, since the stationarity assumption is often found unrealistic
for long time series observed in naturally non-stationary environments. Therefore, in order to reduce the risk of fitting
a mis-specified model and generating inaccurate forecasts, testing the validity of the stationarity assumption is an
essential step in modern time series analysis.

Several statistical procedures have been proposed for stationarity testing, since the proposal of one of the earliest tests
in Priestley & Subba Rao (1969). von Sachs & Neumann (2000) considered a sequence of local alternatives to the
stationarity (which converges to a stationary process at a controlled rate as the length of the time series increases),
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and categorised existing stationarity tests into those tailored for detecting global or localised deviations, i.e., alternative
hypotheses of the following forms

HG1,T : g(z) = ḡ + T−δg0(z) and HL1,T : g(z) = ḡ + T−δg0(z/T
−γ), respectively, (1)

where g denotes a function related to the second-order structure of a time series on the rescaled interval [0, 1], g0
satisfies

∫ 1
0 g0(z)2dz > 0, and δ, γ > 0.

Stationarity tests proposed in Paparoditis (2009), Dette et al. (2011) and Preuß et al. (2013) belong to the first
category, with L2-distance or Kolmogorov-Smirnov (KS) distance-type test statistics that measure the quadratic
deviation between the local and global spectral density estimates integrated over frequency. A test belonging to the
second category generally involves maximising over the localised deviations from the stationarity, which are computed
from the estimates of time-evolving second-order structure that are smoothed with a certain bandwidth. For example,
the test investigated in Paparoditis (2010) maximises the L2-distance between the local and global spectral density
estimates over a rolling window. von Sachs & Neumann (2000) and Nason (2013c) proposed to use Haar wavelets in
producing systematic sub-samples over which localised departure from the stationarity is measured, where the length
of a Haar wavelet vector serves the role of a bandwidth. Jin et al. (2014) investigated the discrepancy between the
local and global estimates of autocovariances at multiple lags, adopting the Walsh functions to systematically generate
the local autocovariance estimates.

In this paper, we investigate the use of unsystematic sub-samples for capturing the localised departure from the
stationarity. It is achieved by comparing the second-order behaviour of the data over pairs of randomly drawn, disjoint
intervals. As opposed to adopting any systematic scheme such as Haar wavelets or Walsh functions, it is expected
that through the flexibility inherent in the unsystematic sub-sampling, the proposed test may be better suited for
capturing localised non-stationarities. Without any dyadic constraints on the sub-samples, our method can identify
the intervals of (the most) distinctive second-order structure. Besides, it only requires a lower bound on the size of
random intervals and thus is not encumbered with the challenging choice of window size. As in Nason (2013c), we
adopt the Locally Stationary Wavelet model (Nason et al., 2000) under which the asymptotic normality of the chosen
statistic is established for Gaussian and a broad range of non-Gaussian processes. It is also shown that the proposed
test is consistent under local alternatives converging to the null at a rate slower than T−1/2, attaining the efficiency
comparable to that reported in e.g., Jin et al. (2014).

The rest of the paper is organised as follows. In Section 2, we describe a class of locally stationary time series which
provides a theoretical setting for developing our test. The proposed test statistic is introduced in Section 3, where we
establish its asymptotic normality and theoretical consistency under a sequence of local alternatives. Also, a bootstrap
procedure is introduced for handling the difficult task of estimating the unknown variance of the proposed statistics.
Section 4 illustrates the comparative performance of the proposed test on simulated datasets. Section 5 concludes
the paper. The supporting information contains all the proofs and an application to real data analysis as well as an R
package, unsystation, implementing the proposed test.

2. Locally stationary wavelet model
In this section, we define the Locally Stationary Wavelet (LSW) time series model, first proposed in Nason et al.
(2000). Here, the definition given in Van Bellegem & von Sachs (2008) is presented.
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Definition 1. A sequence of doubly-indexed stochastic processes {Xt,T }T−1t=0 for T = 1, 2, . . . , with mean zero, is in
the class of LSW processes if there exists a representation

Xt,T =

−1∑
j=−∞

∞∑
k=−∞

wj,k:Tψj,t−kξj,k , (2)

where j ∈ J = {−1,−2, . . .} and k ∈ Z are the scale and location parameters, respectively, and {ψj,k}j,k is a family
of discrete, compactly supported, non-decimated wavelets. Further, the following conditions are satisfied.

(a) ξj,k are random orthonormal increments with E(ξj,k) = 0 and cov(ξj,k , ξj ′,k ′) = δj,j ′δk,k ′ for all j, j ′ ∈ J and
k, k ′ ∈ Z, where δa,b = 1 if a = b and δa,b = 0 otherwise.

(b) For each j ≤ −1, there exists a function Wj(z) defined on [0, 1) which possesses the following properties:

(i)
∑

j |Wj(z)|2 <∞ uniformly in z ∈ [0, 1);
(ii) there exists a sequence of constants Cj such that for each T , sup0≤k≤T−1 |wj,k:T −Wj(k/T )| ≤ Cj/T ;
(iii) the total variation of W 2j (z) is bounded by Lj ;
(iv) the constants Cj and Lj satisfy

∑−1
j=−∞ Lj(LjLj + Cj) < L̄ <∞, where Lj = |ψj | = (2−j − 1)(L−1 − 1) + 1

for ψj = (ψj,0, . . . , ψj,Lj−1)
> and | · | denotes the length of the support of a vector.

Comparing the above definition with the spectral representation of stationary processes, Wj(z) is a scale and location-
dependent transfer function, the wavelets ψj,t−k are analogous to the Fourier exponentials, and the innovations ξj,k
correspond to the orthonormal increment process. In what follows, we omit “T ” from the subscripts for brevity when
there is no confusion.

Nason et al. (2000) defined the evolutionary wavelet spectrum (EWS) as Sj(z) = W 2j (z) for all z ∈ [0, 1) and j ∈ J ,
which quantifies the contribution to the variance of the series at scale j and time t = bzT c. For stationary processes,
Sj(z) remains constant for all z . Through the regularity conditions imposed on the total variation of Sj(z), the LSW
model in (2) admits time series with both smooth and abrupt transitions in its second-order structure.

The EWS is estimated using the wavelet-based local periodogram Ij,k = |
∑T−1

t=0 Xtψj,k−t |2 for k = 0, 1, . . . , T − 1,
which is simply a sequence of the squared wavelet coefficients of the series. Asymptotically, E(Ij,k) is “close” to the
function βj(z) =

∑−1
l=−∞ Sl(z)Aj,l in the sense that

|E(Ij,k)− βj(k/T )| = O(T−1) (Proposition 3.3, Nason et al. (2000)) (3)

at all fixed scales j , where the definition of the wavelet operator matrix A = (Aj,l)j,l<0 can be found in Nason et al.
(2000). E(Ij,k) remains constant in k for stationary time series, whereas any change in the second-order structure
of Xt is detectable by examining the constancy of wavelet periodograms at multiple scales. Nason (2013c) chose
wavelet periodograms as statistics on which the Haar wavelet-based stationarity testing was performed. For a formal
argument establishing the one-to-one correspondence between wavelet periodogram sequences and the autocovariance
structure of Xt , see Nason et al. (2000) and Cho & Fryzlewicz (2012). We note that wavelet periodogram do not
require smoothing or block size selection in their computation, and “encode” the localised behaviour of the second-order
structure of Xt in the sequences of lengths comparable to T (T − 2−j + 1 to be precise).
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3. Proposed methodology
3.1. Main statistic
We denote a set of randomly drawn intervals within [0, T ) by M = {Lp = [sp, ep] : 0 ≤ sp < ep ≤ T − 1, p =

1, . . . ,M ≡ MT }, where any two end-points are randomly drawn from {0, . . . , T − 1} with equal probability subject
to a condition on np = ep − sp + 1 as specified later in (A2). The collection of the pairs of indices corresponding to
any two disjoint intervals belonging toM, is denoted by D ≡ D(M) = {(p, q); 1 ≤ p < q ≤ M, Lp ∩ Lq = ∅} with its
cardinality |D| = D. Let

C̃j(p, q) =

√
npnq
np + nq

{
1

np

∫ ep

sp

βj

( y
T

)
dy −

1

nq

∫ eq

sq

βj

( y
T

)
dy

}
for any 1 ≤ p, q ≤ M satisfying Lp ∩ Lq = ∅. Recalling that for stationary time series, the EWS Sj(z) remain constant
in z for all j and so βj(z) are, it is evident that C̃j(p, q) = 0 for all (p, q) ∈ D and scale j for stationary Xt .

As seen in (3), Ij,k is an asymptotically unbiased estimator of βj(k/T ) for each j = −1,−2, . . ., which implies that
testing the stationarity of Xt can be achieved by evaluating the constancy of E(Ij,k). Hence, the sample counterpart
of C̃j(p, q) is defined as

Cj(p, q) =

√
npnq
np + nq

 1

np

ep∑
k=sp

Ij,k −
1

nq

eq∑
k=sq

Ij,k

 . (4)

By examining Cj(p, q) over a sufficiently large number of pairs of randomly drawn intervals, our hope is that there
exists a pair of intervals Lp∗ and Lq∗ such that any departure from constancy of E(Ij,k) at some scale j∗, is reflected as
the large value of |Cj∗(p∗, q∗)|. The correspondence between the stationarity of Xt and the constancy of βj(z) was also
utilised in Nason (2013c). However, the test statistics therein are Haar wavelet coefficients of Ij,k , which are Cj(p, q)

with Lp and Lq chosen under systematic constraints, namely that the intervals are at dyadic locations and of the same
length that is a power of two.

We notice the resemblance of our approach to the Wild Binary Segmentation (WBS) proposed in Fryzlewicz (2014)
which computes CUSUM statistics on a collection of randomly drawn intervals for change-point analysis. However,
the WBS is developed for detecting abrupt shifts in the underlying structure of the data (e.g., mean) that is otherwise
constant, and is not suited for detecting smooth and gradual changes over time.

3.2. Stationarity test
First, we establish the asymptotic properties of Cj(p, q) under the following assumptions.

(A1) The cumulants of {Xt}T−1t=0 satisfies sup0≤t1≤T−1
∑T−1

t2,...,tk=0
|cum(Xt1 , Xt2 , . . . , Xtk )| ≤ Ck0 (k!)1+λ for all k =

2, 3, . . . where λ ≥ 0 and C0 > 0.
(A2) For any Lp ∈M, its length is bounded from the below, i.e., min1≤p≤M np ≥ mT , for some mT satisfying

(log2 T )−1mT →∞ as T →∞.

In Remark 3.1 of Neumann (1996), it was shown that (A1) holds for an α-mixing process when (i) its mixing coefficients
satisfy α(k) ≤ C exp(−b|k |), and (ii) E|Xt |k ≤ Ck0 (k!)λ for all k and some C,C0 and b > 0. The condition (ii) is met
by many distributions such as exponential, gamma and inverse Gaussian besides the Gaussian distribution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Copyright c© 2016 John Wiley & Sons, Ltd. 4 Stat 2016, 00 1–13
Prepared using staauth.cls



Unsystematic stationarity test Stat

The choice of a bandwidth or window size is an inherent problem in most statistical inference for locally stationary
processes. von Sachs & Neumann (2000) and Nason (2013c) impose an assumption on the coarseness of the Haar
wavelets used for test statistic construction, while Paparoditis (2010) does so on the size of the rolling window. In
Jin et al. (2014), the indices of Walsh functions are chosen such that all the sub-intervals defined by the selected
functions are of length greater than T 2/3. Analogously but distinctively, mT serves as a lower bound on the lengths of
all the intervals inM, over which wavelet periodograms are “smoothed” (averaged) out and contrasted as in (4).

The following lemma and proposition are comparable to Lemma 3.2, Proposition 3.1 of Neumann & von Sachs (1997)
and Lemma 1, Proposition 1 of Nason (2013c), which are modified to accommodate the unsystematic nature of
Cj(p, q). We note that the proof of Lemma 1 is not a straightforward application of the proofs given in the other
papers.

Lemma 1. For Xt defined in (2), let (A1)–(A2) hold. We denote the “wavelet” vector associated with Cj(p, q) by
ψp,q = (ψp,q0 , . . . , ψp,qT−1)

>, where

ψp,qk =


√
npnq/(np + nq)n−1p for sp ≤ k ≤ ep,

−
√
npnq/(np + nq)n−1q for sq ≤ k ≤ eq,

0 otherwise,

such that Cj(p, q) = 〈I,ψp,q〉 for Ij = (Ij,0, . . . , Ij,T−1)
>. Then, givenM, the followings hold uniformly for (p, q) ∈ D

and j ≤ −1.

(a) E{Cj(p, q)} = C̃j(p, q) +O(m
−1/2
T ).

(b) var{Cj(p, q)} = φ
(1)
j (p, q) + φ

(2)
j (p, q) + φ

(3)
j (p, q), where φ

(1)
j (p, q) = 2

∑
k(ψp,qk )2

∑
u{
∑

τ Ψj(τ −
u)c(k/T, τ)}2, φ(2)j (p, q) = O(L3j m

−1
T log T ) and φ

(3)
j (p, q) = O(1), and c(z, τ) is a wavelet transform

of Sj(z) that denotes the local autocovariance function of Xt (Nason et al., 2000, Definition 2.9).
(c) |cumn(Cj(p, q))| ≤ (n!)2λ+2Kn(Ljm−1/2T )n−2 for all n ≥ 3 and some fixed K > 0.

Remark 1. The compactness of the range of u (namely, |u| < 2Lj) and the fact that
∑

k(ψp,qk )2 = 1, lead
to φ

(1)
j (p, q) ≤ CLj for some C > 0. On the other hand, φ(1)j (p, q) ≥ 2

∑
k(ψp,qk )2{

∑
τ Ψj(τ)c(k/T, τ)}2 =

2
∑

k(ψp,qk )2βj(k/T )2, which is bounded away from zero. We can derive tighter bounds if, e.g., Xt is time-modulated
white noise defined in Fryzlewicz (2005) with Haar wavelets, as φ(1)j (p, q) = 2

∑
k(ψp,qk )2c(k/T, 0)2

∑
u Ψ2j (u)

≥ 2 minz c(z, 0)2Aj,j � 2−j (Nason et al., 2000, Theorem 2.15), indicating the dominance of φ(1)j (p, q) in var{Cj(p, q)}.
However, it is difficult to generalise this result due to the presence of φ(3)j (p, q), which arises from approximating the
moments of Cj(p, q) by those of a quadratic form of Gaussian random variables. Nevertheless, var{Cj(p, q)} is bounded
away from zero while being bounded from the above by Lj , uniformly in j and (p, q).

From Lemma 1, it is reasonable to take into consideration wavelet periodograms at a limited number of finest scales
only. We allow J∗T , the coarsest scale to be examined, to slowly grow with T as below.

(A3) J∗T →∞ as T →∞ subject to J∗T ≤ bc∗ log log T c for c∗ ∈ (0, 1/3).

Let a � b indicate the existence of fixed C,C′ > 0 such that C|b| ≤ |a| ≤ C′|b|. Then, the choice of M � T 2 amounts
to including every interval [s, e] defined by any 1 ≤ s < e ≤ T inM, which leads to examining the discrepancy between
T 4 pairs of intervals via Cj(p, q). In order to avoid such a computationally intensive search, we impose the following
condition on M. Later in Section 3.3, conditions are established so that any non-stationarity can be detected without
such an exhaustive search, and the practical selection of M is discussed in Appendix A of the supporting information.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(A4) M � T$ for some $ ∈ (0, 2).

Equipped with Lemma 1, the following proposition shows the asymptotic normality of Cj(p, q).

Proposition 1. Let the assumptions in Lemma 1 hold and ΛT �
√

log T . Then, givenM,

P

{
±
Cj(p, q)− C̃j(p, q)

σj(p, q)
≥ x

}
= {1−Φ(x)}{1 + o(x)}

uniformly in −∞ ≤ x ≤ ΛT for all (p, q) ∈ D and j = −1, . . . ,−J∗T , where σj(p, q) =
√
var{Cj(p, q)} and Φ(x) denotes

the cumulative density function of the standard normal distribution.

Motivated by Proposition 1, we propose the following test

T := max
(p,q)∈D

max
−J∗T≤j≤−1

|Cj(p, q)|
σj(p, q)

> ∆T , (5)

where ∆T = Cδ
√

log T with some fixed Cδ > 0. Under the null hypothesis of stationarity, C̃j(p, q) = 0 over any non-
overlapping intervals Lp and Lq, and therefore {σj(p, q)}−1Cj(p, q) ∼ N (0, 1) for all j = −1, . . . ,−J∗T and (p, q) ∈ D.
Then, an immediate consequence of Proposition 1 is the consistency of the proposed test (5) under the null hypothesis.

Proposition 2. Let Xt be defined as in (2) with Sj(z) constant in z ∈ [0, 1) for all j ≤ −1, and suppose that (A1)–(A4)
hold. Then for ∆T = Cδ

√
log T with some Cδ > 2

√
$, we have P(T ≥ ∆T )→ 0 as T →∞.

Using ∆T as a test criterion requires the choice of the unknown constant Cδ, which is closely related to that of M
and consequently to the choices of other unknown quantities as discussed in Section 3.3. Instead, noting that the test
involves multiple testing over D pairs of intervals and J∗T scales by construction, we adopt the Bonferroni correction and
use the (1− 0.5α/(DJ∗T )}-quantile of the standard normal distribution as a critical value at a nominal level α ∈ (0, 1).

3.3. Consistency of the test statistic under the local alternatives
In this section, we study the asymptotic consistency of the proposed test under a series of local alternatives. Motivated
by the invertible relationship between the EWS and βj(z), an alternative hypothesis of non-stationarity is formulated
with the latter:

H1,T : βj(z) = β̄j + νTβ
o
j (z) with

∫ 1
0

βoj (z)2dz > 0 for at least one scale j = −1,−2, . . . , (6)

where νT → 0 as T →∞ such that the sequence of the alternatives converges to the null hypothesis at the rate νT .

We further assume the following conditions on βoj (z) with the notations A ∨ B = max(A,B) and A ∧ B = min(A,B).

(B1) There exists at least one j∗ ∈ {−1, . . . ,−J∗T } for which
∫ 1
0 β

o
j∗(z)2dz > 0.

(B2) For some fixed ω1, ω2 and δT satisfying (log2 T )−1δT →∞ as T →∞,

(a) βoj∗(t/T ) > ω1 for all t ∈ [a1, b1] (0 ≤ a1 < b1 ≤ T − 1), and
(b) βoj∗(t/T ) < ω2 for all t ∈ [a2, b2] (0 ≤ a2 < b2 ≤ T − 1),

where ω1 > ω2, (b1 − a1 + 1) ∧ (b2 − a2 + 1) ≥ δT and [a1, b1] ∩ [a2, b2] = ∅.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Under (A3), (B1) follows trivially from (B2) as noted in Appendix B.1 of Cho & Fryzlewicz (2015). (B2) assumes
the existence of two disjoint intervals over which βoj∗(z) is greater (smaller) than a fixed constant ω1 (ω2), without
imposing any further restrictions on its shape. For example, (B2) is satisfied when βoj∗(z) is piecewise constant with at
least a single jump that is bounded away from zero and located at a sufficient distance from the both ends. In such a
context, δT is related to the minimum spacing of change-points. Besides, (B2) is met, for example, when βoj∗(z) is a
sinusoidal signal with a fixed amplitude and its frequency (number of oscillations) increasing with T at the rate Tδ−1T
or slower. On the other hand, when the departure from the constancy of βoj∗(z) takes the form of a spike (e.g., a
mixture of Dirac delta functions), then δT � 1 and hence (B2) is violated. We further make the following assumption.

(B3) (log T )−1νT δ
1/2
T →∞ as T →∞.

The rate at which the local alternatives are allowed to converge to the null hypothesis is dependent on the length of the
intervals of non-stationarities through δT . Due to this dependence, although the local alternatives in (6) are presented
in the form of HG1,T in (1), they are comparable to HL1,T implicitly. If δT � T , (B3) boils down to νT � T−1/2 log T ,
which is competitive with the rates provided by Preuß et al. (2013) and Jin et al. (2014) up to a factor logarithmic
in T . On the other hand, when νT = 1 (fixed alternative), δT is permitted to be logarithmic in T . Under the above
conditions, our test is asymptotically consistent under the sequence of local alternatives in (6).

Theorem 1. Let (A1)–(A4) and (B1)–(B3) hold, and mT = cδT for some c ∈ (0, 1). Then,

P(T > ∆T ) ≥ 1−
2
√

log T
√

2πνT δ
1/2
T (ω1 − ω2)

exp

(
−
ν2T δT (ω1 − ω2)2

8 log T

)
− 2

{
1−

c(1− c)δ2T
T 2

}M
≥ 1− CT−ε − 2

{
1−

c(1− c)δ2T
T 2

}M
→ 1 as T →∞ (7)

for some fixed C, ε > 0.

3.4. Estimation of σj(p, q)

Estimation of the scaling term σj(p, q) is an enduring problem as its estimator σ̂j(p, q) plays an important role in
ensuring that, our test based on T̂ := max(p,q)∈Dmax−J∗T≤j≤−1{σ̂j(p, q)}−1|Cj(p, q)| and the critical value selected via
Bonferroni correction, performs well even for small sample size.

Motivated by Lemma 1 (b) and the definition of c(z, τ), we may approximate φ(1)j (p, q) via estimating the EWS.

However, as discussed in Remark 1, the contribution of φ(3)j (p, q) to var{Cj(p, q)} may be non-negligible. Moreover,
while there are a few procedures proposed for estimating the EWS, some rely on the assumption of piecewise stationarity
(Fryzlewicz & Nason, 2006) or provide only pointwise estimates of the wavelet spectrum (Van Bellegem & von Sachs,
2008). The R package wavethresh (Nason, 2013b) offers a readily applicable estimation procedure, but it occasionally
returns EWS estimates with negative ordinates and may be sensitive to the choice of wavelets. Instead, we propose
to employ the AR sieve bootstrap (see Kreiss et al. (2011) and references therein) for estimating σj(p, q) as below.

AR sieve bootstrap for estimating σj(p, q).

Step 1: An AR model of order p is fitted to the observed data X0, . . . , XT−1, where p ≡ pT increases with the
sample size T while p � T . The Yule-Walker estimators of the AR parameters are denoted by α̂1, . . . , α̂p,
and the residuals are Z̃t = Xt −

∑p
i=1 α̂iXt−i . Finally, the centred residuals are obtained as Ẑt = Z̃t − Z̄ with

Z̄ = (T − p)−1
∑T−1

t=p Z̃t .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Step 2: For b = 1, . . . , B, repeat the following steps.

Step 2.1: Draw Zbt , t = 0, . . . , T independently from F̂T , the empirical distribution of Ẑt , and let Xbt =∑p
i=1 α̂iX

b
t−i + Zbt .

Step 2.2: Compute Cbj (p, q) =
√

npnq
np+nq

( 1np
∑ep

k=sp
Ibj,k −

1
nq

∑eq
k=sq

Ibj,k) for all j = −1, . . . ,−J∗T and (p, q) ∈ D,

where Ibj,k = |
∑T−1

t=0 X
b
t ψj,k−t |2.

Step 3: σj(p, q) is estimated by σ̂j(p, q) = B−1
∑B

b=1{Cbj (p, q)− C̄j(p, q)}2, where C̄j(p, q) = B−1
∑B

b=1 Cbj (p, q).

4. Finite sample performance
In the simulations below, we consider several stationary and non-stationary time series models. For each model, we
generated R = 100 replications with varying sample size (T = 256, 512, 1024). Some practical guidance on the choice
of M, wavelets for computing Ij,k , the coarsest wavelet scale J∗T and mT is provided in Appendix A (available as
supporting information for this paper). We apply the proposed test with these quantities chosen according to the
guidance and the bootstrap procedure in Section 3.4 with the bootstrap sample size B = 200. For comparison, we
have included the tests proposed in Nason (2013c) (Nason, 2013a, R package locits), Preuß et al. (2013), Puchstein
& Preuß (2016) and Jin et al. (2014) (denoted by HWTOS, PVD, PP and JWW, respectively), each of which was
applied with the tuning parameters chosen as per the suggestions made in the respective papers.

4.1. Size of the test
We investigate the empirical Type I errors of our test on the data simulated from the following ARMA models first
studied in Nason (2013c), with innovations drawn from the standard normal, Gamma(9, 1) and t5 distributions.

(S1) White noise model.
(S2) AR(1) process with the AR parameter −0.9.
(S3) AR(1) process with the AR parameter 0.9.
(S4) MA(1) process with the MA parameter −0.8.
(S5) MA(1) process with the MA parameter 0.8.
(S6) ARMA(1, 2) process with the AR parameter −0.4 and MA parameters −0.8, 0.4.
(S7) AR(2) process with the AR parameters 1.385929,−0.9604.

The results are summarised in Tables 1–3, which report the proportion of rejections at given significance level α = 0.1

and 0.05 under each model.

With the standard normal innovations, our test performs well in keeping the empirical Type I errors below the
nominal level or slightly above for all (S1)–(S7). In (S2), the large, negative AR parameter leads to Haar wavelet
periodograms with high autocorrelations at scale j = −1, which in turn leads to Haar wavelet coefficients computed
on the periodograms being spuriously large, and this is reflected as the large Type I error returned by the HWTOS.
As for (S7), the process is stationary but close to a unit root process with a spectral peak around π/4 (see Nason
(2013c) for more detail) and as a result, the PVD, PP, JWW and HWTOS struggle to keep the size below the nominal
levels. Moreover, the HWTOS tends not to scale well with increasing sample size, which is also observed with different
innovation distributions (see Tables 2–3).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In Table 2, the proposed test performs similarly well with the innovations drawn from the Gamma distribution. The
performance of HWTOS is similar to that observed from Table 1. On the other hand, the PVD and PP rely on the
Gaussianity of the time series, which plays an essential role in their proposed bootstrap procedures for test criterion
selection, and hence they tend to perform poorly with non-Gaussian innovations. Most tends to perform poorly with
increasing sample size when the innovations are drawn from the t5-distribution. T̂ suffers from the heavy tail of the
innovation distribution that violates (A1), and so do the HWTOS, PVD and PP. The JWW shows marginally better
size performance for some models, such as (S1) and (S5)–(S6), but performs worse than T̂ for (S3) and (S7).

4.2. Power of the test
We investigate the empirical power of the proposed test on a number of non-stationary models: (N1)–(N4) in Nason
(2013c), (N5)–(N8) in Preuß et al. (2013) and (N9)–(N11) in Jin et al. (2014). Additionally, we include (N12) where
a piecewise stationary AR(1) process has its AR coefficient switch between 0.5 and −0.5 at a higher frequency with
increasing T , so that the changes may be “masked” within the systematic sub-samples taken by the HWTOS or JWW.
In all models, {Zt}Tt=1 are generated as independent and identically distributed standard normal random variables.

(N1) Xt = αtXt−1 + Zt , where αt evolves linearly from 0.9 to −0.9 over t = 1, . . . , T .
(N2) An LSW process based on Haar wavelets with spectrum S−1(z) = 0.25− 0.5(z − 0.5)2 and Sj(z) = 0 for all

j < −1.
(N3) An LSW process where S−1(z) is as in (N2), S−2(z) = S−1(z + 0.5) using periodic boundaries (for the

construction of the spectrum only) and Sj(z) = 0 for all j < −2.
(N4) An LSW process with spectrum S−1 = exp{−64(z − 0.5)2}, S−3(z) = S−1(z − 0.25), S−4(z) = S−1(z + 0.25)

and Sj(z) = 0 for j = −2 and j < −4.
(N5) Xt = (1 + t/T )Zt .
(N6) Xt = −0.9

√
t/TXt−1 + Zt .

(N7) Xt = 0.8 cos{1.5− cos(4πt/T )}Zt−1 + Zt .
(N8) Xt = 0.8 cos{1.5− cos(4πt/T )}Zt−6 + Zt .
(N9) Xt = 0.6 sin(4πt/T )Xt−1 + Zt .

(N10) Xt = 0.5Xt−1 + Zt for {1 ≤ t ≤ T/4} ∪ {3T/4 < t ≤ T}, and Xt = −0.5Xt−1 + Zt for T/4 < t ≤ 3T/4.
(N11) Xt = −0.5Xt−1 + Zt for {1 ≤ t ≤ T/2} ∪ {T/2 + T/64 < t ≤ T}, and Xt = 4Zt for T/2 < t ≤ T/2 + T/64.
(N12) Xt = −0.5Xt−1 + Zt for (2k)

√
T ≤ t ≤ (2k + 1)

√
T , and Xt = 0.5Xt−1 + Zt for (2k + 1)

√
T ≤ t ≤ (2k +

2)
√
T , where k = 0, 1, . . ..

Empirical power at α = 0.1 and 0.05 attained by the different tests is reported in Table 4. The test criterion chosen
via Bonferroni correction for T̂ behaves rather conservatively, as evidenced by the lower power observed for smaller
samples. However, the power performance of our test improves progressively as T increases beyond T ≥ 512.

Overall, the JWW attains the largest power for many models, but our test is shown to be much better suited for
detecting more localised departure from the stationarity, such as those exhibited in (N11)–(N12). Also, compared to
the HWTOS, the unsystematic sub-sampling adopted by our test proves to be better in terms of its detection power.
Note that the spuriously large empirical size of the HWTOS when T = 1024 (see Table 1), needs to be taken into
consideration when interpreting its large power. In general, different methods perform particularly well for different
models; for example, the PVD outperforms our test for (N5) and (N6), while the opposite is the case for (N7)–(N12).

Our localised approach allows us to identify the intervals of the most distinctive second-order structure in the
observed time series, through the maximisation taken over (p, q) ∈ D, without any dyadic restrictions on both

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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their locations and lengths. We confirm this by plotting the weights given to the intervals Lp̂ and Lq̂, where
(p̂, q̂) = arg max(p,q)∈Dmax−J∗T≤j≤−1{σ̂j(p, q)}−1|Cj(p, q)|, averaged pointwise over R = 100 realisations for each
model in Figures 1–3, according to two weighting schemes: (i) the equal weight of 1/R is assigned to every point in
both intervals, and (ii) the weights reciprocal to the lengths (1/np̂ and 1/nq̂) are assigned to Lp̂ and Lq̂. Employing
the weighting scheme (ii), we can learn about the length of the chosen intervals as well as their locations.

The locations of peaks and troughs in the quantities representing the time-varying second-order structure, coincide
with those of the sharp peaks formed in the weights given to Lp̂ and Lq̂, which is particularly noticeable in (N7) and
(N9). Also, the sharp spike in the weights plotted for (N11) indicates that the brief interval over which Xt switches
from being a stationary AR(1) process to being a white noise series and back, is clearly captured by our approach. In
(N4)–(N5), the time-varying quantities exhibit increasing or decreasing trends, and our method correctly identifies the
intervals of the most dissimilar autocovariance structure by preferring the intervals from the two extreme ends.

4.3. Real data analysis
We illustrate the application of the proposed test to the weekly egg price series observed at a German agricultural
market between April 1967 and May 1990 in Appendix B, which is available as supporting information for this paper.

5. Conclusions
In this paper, we proposed a novel stationarity test for time series data, which is based on pairs of randomly and
unsystematically drawn sub-samples. Our test enables us to locate the intervals of the most distinctive second-order
behaviour without any dyadic constraint, and achieves asymptotic consistency under a sequence of local alternatives
that converge to the null hypothesis at a rate comparable to the efficiency of the state-of-the-art. Accompanying the
main statistic, we introduced a bootstrap scheme for estimating its variance, which has been shown empirically to
perform well under both the null and alternative hypotheses.

As multivariate, even high-dimensional time series are frequently observed, a stationarity test applicable to such data
is increasingly in demand. We note that, working under the multivariate version of the LSW model proposed in Cho
& Fryzlewicz (2015), it may be possible to extend our test to accommodate the high dimensionality of the data, by
combining the randomised, unsystematic sub-sampling with the thresholding principle proposed therein or the Double
CUSUM operator of Cho (2016). We leave this for future investigation.

Supporting information
Additional information for this article is available where a practical guide for choice of parameters, an application of
the proposed test to real data analysis and detailed proofs of theoretical results can be found. It also includes an
implementation of the proposed test as an R package unsystation, which has been submitted and will be made
available on the Comprehensive R Archive Network archive.
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Table 1. Empirical size at the significance level α = 0.1, 0.05 with N (0, 1) innovations.

T̂ HWTOS PVD PP JWW
T α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

256 (S1) 0.04 0.01 0.08 0.03 0.13 0.07 0.18 0.1 0.16 0.09
(S2) 0.08 0.08 0.29 0.2 0.11 0.03 0.12 0.05 0.06 0.04
(S3) 0.02 0.02 0.06 0.02 0.07 0.02 0.14 0.09 0.05 0.03
(S4) 0.02 0.02 0 0 0.09 0.03 0.08 0.01 0.14 0.06
(S5) 0.02 0.02 0.13 0.05 0.12 0.06 0.08 0.03 0.13 0.04
(S6) 0.05 0.04 0.05 0.02 0.1 0.07 0.11 0.04 0.07 0
(S7) 0.03 0.02 0.12 0.12 0.26 0.14 0.22 0.11 0.18 0.1

512 (S1) 0.05 0.05 0.08 0.02 0.13 0.06 0.12 0.06 0.09 0.07
(S2) 0.03 0.03 0.26 0.16 0.08 0.02 0.09 0.01 0.07 0.05
(S3) 0.04 0.04 0.1 0.05 0.05 0.03 0.08 0.02 0.09 0.04
(S4) 0.02 0.02 0.01 0 0.11 0.04 0.15 0.06 0.08 0.04
(S5) 0.04 0.04 0.07 0.03 0.12 0.06 0.13 0.07 0.14 0.09
(S6) 0.05 0.05 0.01 0.01 0.09 0.04 0.14 0.06 0.07 0.04
(S7) 0.05 0.05 0.27 0.23 0.15 0.05 0.15 0.07 0.17 0.11

1024 (S1) 0.06 0.06 0.39 0.29 0.08 0.01 0.15 0.07 0.1 0.06
(S2) 0.05 0.04 0.35 0.25 0.11 0.04 0.07 0.01 0.07 0.02
(S3) 0.05 0.03 0.22 0.11 0.08 0.05 0.1 0.05 0.08 0.04
(S4) 0.04 0.03 0.07 0.06 0.07 0.05 0.07 0.06 0.1 0.03
(S5) 0.05 0.02 0.28 0.19 0.04 0.03 0.11 0.03 0.12 0.06
(S6) 0.03 0.02 0.05 0.04 0.1 0.07 0.16 0.06 0.07 0.05
(S7) 0.05 0.02 0.3 0.24 0.07 0.06 0.06 0.02 0.19 0.14

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 2. Empirical size at the significance level α = 0.1, 0.05 with Gamma(9, 1) innovations.

T̂ HWTOS PVD PP JWW
T α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

256 (S1) 0.05 0.04 0.14 0.11 0.07 0.06 0.87 0.79 0.02 0.02
(S2) 0.07 0.06 0.3 0.24 0.17 0.09 0.05 0 0.06 0.04
(S3) 0.06 0.04 0.07 0.02 0.02 0.01 0.57 0.55 0.02 0.01
(S4) 0.02 0.02 0 0 0.14 0.1 0.08 0.06 0.09 0.04
(S5) 0.05 0.05 0.12 0.04 0.01 0 0.38 0.35 0.02 0.02
(S6) 0.04 0.04 0.01 0 0.21 0.09 0.08 0.04 0.03 0.02
(S7) 0.02 0.02 0.08 0.06 0.24 0.1 0.16 0.1 0.08 0.04

512 (S1) 0.03 0.02 0.08 0.02 0.09 0.02 0.81 0.75 0.06 0.03
(S2) 0.08 0.08 0.18 0.14 0.16 0.11 0.1 0.03 0.12 0.05
(S3) 0.05 0.03 0.12 0.04 0.03 0.01 0.71 0.7 0.04 0.03
(S4) 0.02 0.02 0.05 0.02 0.13 0.06 0.13 0.07 0.09 0.05
(S5) 0.04 0.04 0.14 0.04 0.09 0.02 0.51 0.45 0.03 0.02
(S6) 0.06 0.05 0 0 0.15 0.09 0.09 0.07 0.08 0.05
(S7) 0.06 0.06 0.21 0.18 0.14 0.06 0.12 0.04 0.13 0.09

1024 (S1) 0.09 0.07 0.32 0.2 0.15 0.09 0.85 0.8 0.03 0.02
(S2) 0.09 0.07 0.32 0.23 0.13 0.06 0.1 0.03 0.16 0.09
(S3) 0.08 0.08 0.43 0.3 0.01 0 0.87 0.84 0 0
(S4) 0.06 0.05 0.09 0.08 0.16 0.09 0.18 0.09 0.07 0.03
(S5) 0.09 0.07 0.35 0.26 0.08 0.02 0.57 0.53 0.03 0.02
(S6) 0.08 0.08 0.08 0.02 0.19 0.12 0.15 0.08 0.11 0.03
(S7) 0.06 0.06 0.4 0.32 0.17 0.09 0.15 0.03 0.2 0.12
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Figure 1. Top: time-varying AR parameter in (N1) and scale-by-scale Sj(z) in (N2)–(N4) (j = −1, . . . ,−JT from bottom to
top); bottom: weights applied to Lp̂ and Lq̂ according to the weighting schemes (i) (solid) and (ii) (dotted), respectively,
averaged pointwise over 100 replications; T = 1024 is used.
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Table 3. Empirical size at the significance level α = 0.1, 0.05 with t5 innovations.

T̂ HWTOS PVD PP JWW
T α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

256 (S1) 0.05 0.04 0.19 0.1 0.3 0.16 0.27 0.22 0.08 0.04
(S2) 0.05 0.04 0.24 0.19 0.1 0.03 0.09 0.03 0.14 0.08
(S3) 0.06 0.04 0.13 0.1 0.22 0.14 0.18 0.09 0.08 0.04
(S4) 0.06 0.06 0.04 0.02 0.27 0.15 0.24 0.16 0.08 0.06
(S5) 0.15 0.14 0.18 0.1 0.33 0.24 0.28 0.16 0.06 0.02
(S6) 0.15 0.14 0.09 0.08 0.24 0.14 0.17 0.14 0.1 0.06
(S7) 0.05 0.03 0.12 0.08 0.2 0.09 0.15 0.07 0.1 0.03

512 (S1) 0.14 0.12 0.21 0.14 0.45 0.26 0.25 0.19 0.07 0.03
(S2) 0.14 0.12 0.32 0.27 0.13 0.05 0.13 0.09 0.13 0.08
(S3) 0.12 0.11 0.15 0.09 0.17 0.08 0.16 0.11 0.2 0.1
(S4) 0.08 0.08 0.1 0.07 0.36 0.3 0.3 0.2 0.1 0.07
(S5) 0.14 0.12 0.21 0.1 0.29 0.15 0.21 0.14 0.08 0.05
(S6) 0.16 0.14 0.05 0.03 0.21 0.17 0.18 0.11 0.1 0.07
(S7) 0.06 0.05 0.29 0.21 0.15 0.09 0.13 0.04 0.14 0.09

1024 (S1) 0.21 0.21 0.52 0.45 0.55 0.43 0.33 0.26 0.1 0.04
(S2) 0.27 0.26 0.46 0.36 0.15 0.08 0.2 0.09 0.23 0.14
(S3) 0.18 0.15 0.45 0.34 0.24 0.18 0.15 0.06 0.35 0.29
(S4) 0.17 0.15 0.34 0.27 0.37 0.3 0.25 0.16 0.1 0.04
(S5) 0.25 0.22 0.61 0.54 0.44 0.28 0.35 0.25 0.11 0.03
(S6) 0.26 0.23 0.19 0.17 0.25 0.14 0.16 0.08 0.14 0.09
(S7) 0.14 0.12 0.47 0.41 0.15 0.05 0.14 0.08 0.28 0.17
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Figure 2. Top: time-varying variance in (N5), time-varying AR parameter in (N6) and time-varying MA parameter in (N7)–(N8);
bottom: as in Figure 1; T = 1024 is used.
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Table 4. Empirical power at the significance level α = 0.1, 0.05.

T̂ HWTOS PVD PP JWW
T α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

256 (N1) 0.89 0.89 0.88 0.71 0.9 0.78 0.6 0.37 1 1
(N2) 0.24 0.21 0.05 0.03 0.41 0.26 0.08 0.03 0.72 0.53
(N3) 0.1 0.1 0.04 0.04 0.13 0.08 0.09 0.02 0.46 0.33
(N4) 0.98 0.98 0.67 0.52 0.79 0.7 0.22 0.11 1 1
(N5) 0.35 0.3 0.14 0.07 0.97 0.95 0.95 0.95 0.91 0.82
(N6) 0.43 0.41 0.34 0.25 0.81 0.64 0.81 0.71 0.76 0.62
(N7) 0.49 0.47 0.35 0.22 0.21 0.09 0.17 0.1 1 1
(N8) 0.11 0.09 0.09 0.05 0.09 0.05 0.1 0.05 0.22 0.16
(N9) 0.65 0.63 0.51 0.29 0.2 0.12 0.14 0.09 1 1
(N10) 0.56 0.53 0.59 0.32 0.23 0.18 0.13 0.07 1 1
(N11) 0.61 0.57 0.48 0.37 0.3 0.17 0.4 0.26 0.35 0.16
(N12) 0.22 0.18 0.09 0.01 0.23 0.17 0.15 0.13 0.18 0.13

512 (N1) 1 1 1 1 1 0.99 0.91 0.86 1 1
(N2) 0.57 0.53 0.23 0.1 0.76 0.59 0.1 0.05 0.97 0.96
(N3) 0.24 0.17 0.06 0.03 0.21 0.11 0.03 0.01 0.88 0.81
(N4) 1 1 0.99 0.98 1 1 0.39 0.2 1 1
(N5) 0.69 0.63 0.42 0.3 1 1 1 1 0.99 0.97
(N6) 0.76 0.74 0.8 0.7 0.95 0.93 0.97 0.95 1 0.97
(N7) 0.83 0.8 0.71 0.56 0.19 0.12 0.16 0.09 1 1
(N8) 0.29 0.27 0.27 0.14 0.24 0.11 0.19 0.08 0.22 0.14
(N9) 0.89 0.88 0.79 0.62 0.38 0.21 0.13 0.08 1 1
(N10) 0.9 0.85 0.92 0.81 0.53 0.36 0.18 0.15 1 1
(N11) 0.96 0.95 0.88 0.76 0.55 0.42 0.53 0.45 0.6 0.54
(N12) 0.42 0.36 0.03 0.03 0.24 0.17 0.17 0.1 0.22 0.13

1024 (N1) 1 1 1 1 1 1 0.99 0.97 1 1
(N2) 0.96 0.92 0.89 0.74 0.99 0.99 0.36 0.02 1 1
(N3) 0.26 0.25 0.09 0.05 0.38 0.26 0.13 0.09 1 1
(N4) 1 1 1 1 1 1 0.73 0.56 1 1
(N5) 0.97 0.95 0.97 0.92 1 1 1 1 1 1
(N6) 0.95 0.94 1 1 1 1 1 1 1 1
(N7) 1 0.98 0.99 0.98 0.38 0.26 0.17 0.12 1 1
(N8) 0.46 0.37 0.72 0.59 0.27 0.2 0.2 0.08 0.52 0.38
(N9) 1 1 1 1 0.77 0.56 0.27 0.16 1 1
(N10) 1 1 1 1 0.78 0.52 0.16 0.06 1 1
(N11) 0.99 0.99 0.99 0.99 0.74 0.62 0.77 0.64 0.89 0.8
(N12) 0.48 0.46 0.73 0.53 0.24 0.16 0.18 0.12 0.29 0.13
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Figure 3. Top: time-varying AR parameter in (N9)–(N10), time-varying variance in (N11) and time-varying AR parameter in
(N12); bottom: as in Figure 1; T = 1024 is used.
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