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A. Choices of parameters
Choice ofM. Adopting the arguments in Fryzlewicz (2014), we can derive a theoretical lower bound for M to ensure

that the convergence rate of the probability in Theorem 1 is suitably bounded. Suppose that (1− δ2T /T 2)M ≤ T−ε
in order to match the term CT−ε in the RHS of the inequality in Theorem 1. Since log(1− x) ≈ −x for x close to
0, we obtain M ≥ εδ−2T T 2 log T . When δT is as large as δT � T , this leads to M � log T , i.e., only a logarithmic
number of random intervals are necessary to ensure the consistency of our test.

As δT is mostly unknown in practice, we propose to use M = 2000 for data of moderately large T ≤ 1024. In
simulation studies, this choice of M worked well on various stationary and non-stationary models. When several
other values of M were tested on the same datasets, this did not alter the results noticeably.

To facilitate the identification of the pairs of intervals which lead to large |Cj(p, q)|, we propose to perform the
sub-sampling by (i) first locating where the top ε largest and smallest ordinates of Ij,k are for all j = −1, . . . ,−J∗T ,
and (ii) randomly drawing M intervals around such locations. Besides, when any two intervals overlap, we modify
the intervals to produce two pairs of disjoint intervals, since otherwise too many pairs are “thrown away”. In the
simulation studies, we have set ε = 5.

Choice of the wavelets for computing Ij,k . Haar wavelets, defined as

ψHj,k = 2j/2I(0 ≤ k ≤ 2−j−1 − 1)− 2j/2I(2−j−1 ≤ k ≤ 2−j − 1), k = 0, . . . , 2−j − 1,

(I(·) is an indicator function returning I(A) = 1 if the event A is true and I(A) = 0 otherwise), form one of the
simplest non-decimated wavelet systems. As our interest does not lie in accurate estimation of the EWS, we use
Haar wavelets to compute the wavelet periodograms instead of other wavelets of higher regularity.
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Choice of J∗T . In practice, we have access to a limited number of scales j = −1, . . . ,−blog2 T c. At coarser scales
(corresponding to large |j |), the supports of the wavelet vectors increase in their lengths and thus the
corresponding wavelet periodogram sequences are strongly autocorrelated as well as providing little information
about the local second-order structure of Xt . Therefore, while still letting J∗T increase slowly with T as in (A3),
we choose to disregard wavelet periodograms at coarser scales by setting J∗T = [log2 log2 T ]. For the range of T
considered in our simulation studies, this choice corresponds to J∗T = 3.

Choice of mT . As with M, the theoretical choice of mT is directly linked to δT and therefore it is often inapplicable
in practice. In simulation studies, we set mT = [

√
T ] which appears to perform reasonably well in practice.

B. Real data analysis
In this section, we illustrate the application of the proposed test to egg price series at a German agricultural market
observed weekly between April 1967 and May 1990. Following Paparoditis (2010) and Preuß et al. (2013), we took
the differenced series as our input time series {Xt}Tt=1 with T = 1200, to see whether there is any non-stationarity in
the second-order structure of the original time series besides that in its level.

Applying the test procedure with M = 2000, our test rejected the null hypothesis at α = 0.05. This agrees with the
results reported in Paparoditis (2010) as well as those from applying the PVD, PP and JWW to the data. When applied
to the first 1024 observations of the data, the HWTOS does not reject the null hypothesis whereas the opposite is
observed when it is applied to the latter 1024 observations (its implementation in the R package locits (Nason,
2013) is applicable to the data of length 2J only for some integer J).

Denoting (p̂j , q̂j) = arg max(p,q)∈D{σ̂j(p, q)}−1|Cj(p, q)|, we plot the pairs of the intervals chosen at the scales
j = −1 and j = −2 along with the egg price series Xt in Figure B.1, which are also the two scales where
max(p,q)∈D{σ̂j(p, q)}−1|Cj(p, q)| was greater than the test criterion. We also present the pointwise average of the equal
weights given to the pairs of intervals which returned {σ̂j(p, q)}−1|Cj(p, q)| exceeding the critical value at j = −1 and
−2. It is clear that (Lp̂j , Lp̂j ) at the two scales lie close to each other and the weights from the two scales behave
similarly as well. The HWTOS returned Haar wavelet coefficients computed over entire span of Xt , t = 177, . . . , 1200,
as significant, which covers (Lp̂j , Lp̂j ) for both j = −1 and −2.

C. Proofs
Throughout the proof, C is used to denote a fixed, positive constant which may vary from one occasion to another.

C.1. Proof of Lemma 1
Proof of (a).
From (3),
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Figure B.1. Top: weekly egg price data with the intervals returned at scales j = −1 (upper arrows) and j = −2 (lower arrows);
bottom: pointwise average of the weights given to Lp and Lq, which returned {σ̂j(p, q)}−1|Cj(p, q)| exceeding the test criterion,
at j = −1 and j = −2.

Hence, |E{Cj(p, q)} − C̃j(p, q)| ≤ 2
√

npnq
np+nq

(n−1p ∨ n−1q ) � m−1/2T .

Proof of (b).
We can re-write Cj(p, q) in a quadratic form involving X = (X0, . . . , XT−1)

>, as

Cj(p, q) =
∑
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where Rp,qj = (rp,qj,s,t)s,t is symmetric. Below, we omit j, p, q from the superscripts and subscripts, as rp,qj,s,t = rs,t
and Rp,qj = R. Then under (A2), Lemma 3.1 of Neumann & von Sachs (1997) shows that for ηT = Y>RY with
Y = (Y1, . . . , TT )> ∼ NT (0,ΣT ) and ΣT = cov(X),

cumn(X>RX) = cumn(ηT ) +Qn for n = 2, 3, . . . , where (C.1)

|cumn(ηT )| ≤ var(ηT )2n−2(n − 1)!{λmax(R)λmax(ΣT )}n−2

Qn ≤ 2n−2C2n0 {(2n)!}1+λ max
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Similarly, since |s − t| ≤ Lj as well as s ∈ [sp, ep + Lj ] ∪ [sq, eq + Lj ] for non-zero rs,t ,

‖R‖∞ = max
s

∑
t
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s

∑
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√
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(
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)
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)
. (C.4)

Further, λmax(ΣT ) ≤ maxs
∑

t |cov(Xs , Xt)| ≤ C20(2!)1+λ <∞ from (A1). According to (C.1)–(C.2) and (C.4),
var{Cj(p, q)} = var(ηT ) +Q2 where φ(3)j (p, q) = Q2 = O(1). Following the practice taken in the proof of Lemma
3.2 in Neumann & von Sachs (1997), we focus on the case where Sj(z) (and thus c(z, τ)) smoothly vary over time
with the regularity constant Lj (LjLj). Extension to Sj(z) of bounded total variation follows similarly.

Using the Gaussianity of Y, we have

var(ηT ) = 2tr(RΣTRΣT ) = 2
∑
s,t,v ,w

rv,wcT

(
s + w

2T
, s − w

)
rs,tcT

(
t + v

2T
, t − v

)
:= I, where

cT

(
t

T
, τ

)
:= cov(Xt−τ/2, Xt+τ/2) = E

∑
j

∑
k

wj,kψj,t−τ/2−kξj,k
∑
j ′

∑
k ′

wj ′,k ′ψj ′,t+τ/2−k ′ξj ′,k ′


=

∑
j

∑
k

w2j,kψt−τ/2−kψt+τ/2−k =
∑
j

∑
k

[
Sj

(
t

T

)
+O

{
Lj(t − k)

T

}
+O

(
Cj
T

)]
ψt−τ/2−kψt+τ/2−k

=
∑
j

Sj

(
t

T

)
Ψj(τ) +O

(∑
j LjLjΨj(τ)

T

)
+O

(∑
j CjΨj(τ)

T

)
= c

(
t

T
, τ

)
+O

(
log T

T

)
,

with the last but one equality following from the fact that |t − k | ≤ Lj due to the compact support of ψj,k . Thus,
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where, as the support of the second argument of c(z, τ) is bounded as |τ | ≤ Lj and |v − w |, |s − t| ≤ Lj , |II| ≤
TL3j m

−1
T O(log T/T ) = O(L3j m

−1
T log T ) using the bound obtained in (C.2).

Now we consider the effect of replacing rs,t by in III,
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where the constraints max{|s − t|, |t − v |, |v − w |, |w − s|} ≤ CLj are omitted from the range of summations. Let
s − w = τ and t − v = τ ′. Then,
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=: V +O(L3j m−1T ) using Definition 1 (b.iv), and
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It is easily shown that V I = O(L3j m
−1
T ) and and thus |φ(2)j (p, q)| ≤ |II|+ |III − IV |+ |IV − V |+ |V I| =

O(L3j m
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T log T ). In summary,
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Proof of (c).
From (C.2)–(C.4), |cumn(Cj(p, q))| ≤ (n!)2λ+2Kn−2(Ljm−1/2T )n−2 for some K > 0.

C.2. Proof of Proposition 1
As noted above in Remark 1, σj(p, q) ≥ σ∗ for some σ∗ > 0 uniformly for all j and (p, q). Then,

cum
(
Cj(p, q)

σj(p, q)

)
≤ (n!)2λ+2(K′)n−2m

−(n−2)/2
T

for some K′ > 0. This implies that, using Lemma 1 of Rudzkis et al. (1978),

P
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≥ x

]
= (1−Φ(x))(1 + o(x))

uniformly for 0 ≤ x ≤ T ν for some ν > 0, p and q. Following the same arguments adopted in the proof of Proposition
3.1 in Neumann & von Sachs (1997), we control the discrepancy between E{Cj(p, q)} and C̃j(p, q) and conclude the
proof. �
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C.3. Proof of Proposition 2
From Proposition 1,

P
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(p,q)∈D
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2
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where Z denotes a standard normal variable, provided that 2$ < C2δ /2.

C.4. Proof of Theorem 1
Under (B2), the probability of randomly drawing M intervals so that none is contained in either [a1, b1] or [a2, b2], is
bounded from above by 2{1− c(1− c)δ2T /T

2}M . Denote such an event by BT . Then, on BcT , there exists at least one
pair of intervals in M such that one of which, say Lp̃ = [sp̃, ep̃], is contained in [a1, b1], and Lq̃ = [sq̃, eq̃] in [a2, b2].
It trivially follows that Lp̃ ∩ Lq̃ = ∅. From Proposition 1 and (B2)–(B3), we have
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with some C, ε > 0 and a standard normal variable Z, and II ≤ 2{1− c(1− c)δ2T /T
2}M . �
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