Corrections on

"Multiple change-point detection for high-dimensional time series via Sparsified Binary Segmentation" [1]

Haeran Cho * Piotr Fryzlewicz ${ }^{\dagger}$

January 28, 2015

We correct Lemma 2 in Appendix of [1] as below.
Lemma 2' Suppose (15) holds and let $\eta \equiv \eta_{q_{1}+q} \in[s, e]$ for some q, denote a true change-point. Then there exists $c_{0} \in(0, \infty)$ such that for b satisfying $|\eta-b| \geq c_{0} \epsilon_{T}$ and $\mathbb{S}_{s, b, e}<\mathbb{S}_{s, \eta, e}$, we have $\mathbb{S}_{s, \eta, e} \geq \mathbb{S}_{s, b, e}+C^{\prime} \epsilon_{T} \delta_{T} T^{-2} \mathbb{S}_{s, \eta, e}$.

Proof. The proof follows directly from the proof of Lemma 2.6 in [2]. We only consider Case 2 of Lemma 2.6, since adapting the proof of Case 1 (when there is a single change-point within $[s, e]$) to that of the current lemma takes analogous arguments.
Using the notations therein, it is shown that the term $E_{1 l}$ is dominant over $E_{2 l}$ and $E_{3 l}$ in $\mathbb{S}_{s, \eta, e}$ $\mathbb{S}_{s, b, e}$, where $l=c_{0} \epsilon_{T}$. Noting further that $i=\eta-s+1, h=\delta_{T}, j=e-\eta-h$ and $a=$ $\sum_{t=s}^{\eta} \sigma(t / T)-(e-s+1)^{-1} \sum_{t=s}^{e} \sigma(t / T)$, and that $h \geq 2 l$,

$$
\begin{aligned}
E_{1 l} & =\frac{l a \sqrt{i+j+h}}{\sqrt{i} \sqrt{j+h}} \cdot \frac{h-l}{\sqrt{i+l} \sqrt{j+h-l}\{\sqrt{(i+l)(j+h-l)}+\sqrt{i(j+l)}\}} \\
& \geq \mathbb{S}_{s, \eta, e} \cdot C \epsilon_{T} \delta_{T} T^{-2}
\end{aligned}
$$

Applying the above Lemma 2' to Lemma 4 of [1, the upper bound on $\left(|\langle f, \widetilde{\psi}\rangle|-\left|\left\langle f, \psi^{0}\right\rangle\right|\right)\left|\left\langle f, \psi^{0}\right\rangle\right|$

[^0]is corrected to $-C \epsilon_{T} \delta_{T}^{3} T^{-3}$. Also, we can refine the upper bound imposed on III and $I V$, since
\[

$$
\begin{aligned}
& \left|(\widehat{\eta}-s+1)^{-1} \sum_{t=s}^{\widehat{\eta}} f_{t}-(\eta-s+1)^{-1} \sum_{t=s}^{\eta} f_{t}\right| \\
= & \left|\frac{1}{\widehat{\eta}-s+1} \sqrt{\frac{(\widehat{\eta}-s+1)(e-\widehat{\eta})}{e-s+1}} \mathbb{S}_{s, \widehat{\eta}, e}-\frac{1}{\eta-s+1} \sqrt{\frac{(\eta-s+1)(e-\eta)}{e-s+1}} \mathbb{S}_{s, \eta, e}\right| \\
= & \frac{1}{\sqrt{e-s+1}}\left|\sqrt{\frac{e-\widehat{\eta}}{\hat{\eta}-s+1}}\left(\mathbb{S}_{s, \widehat{\eta}, e}-\mathbb{S}_{s, \eta, e}\right)-\left(\sqrt{\frac{e-\eta}{\eta-s+1}}-\sqrt{\frac{e-\widehat{\eta}}{\hat{\eta}-s+1}}\right) \mathbb{S}_{s, \eta, e}\right| \\
\leq & \sqrt{\frac{e-\eta}{(e-s+1)(\eta-s+1)}}\left\{\left|1-\frac{\sqrt{1-\frac{\hat{\eta}-\eta}{e-\eta}}}{\sqrt{1+\frac{\hat{\eta}-\eta}{\eta-s+1}}}\right| \mathbb{S}_{s, \eta, e}+\left|\mathbb{S}_{s, \widehat{\eta}, e}-\mathbb{S}_{s, \eta, e}\right|\right\} \\
\leq & \sqrt{\frac{e-\eta}{(e-s+1)(\eta-s+1)}}\left\{C \epsilon_{T} \delta_{T}^{-1} \mathbb{S}_{s, \eta, e}+\left|\mathbb{S}_{s, \widehat{\eta}, e}-\mathbb{S}_{s, \eta, e}\right|\right\} \\
\leq & 2 \sqrt{\frac{e-\eta}{(e-s+1)(\eta-s+1)}} \cdot C \epsilon_{T} \delta_{T}^{-1} \mathbb{S}_{s, \eta, e},
\end{aligned}
$$
\]

and

$$
\begin{aligned}
& \left|(\widehat{\eta}-s+1)^{-1} \sum_{t=s}^{\widehat{\eta}} f_{t}-(e-\eta)^{-1} \sum_{t=\eta+1}^{e} f_{t}\right| \\
= & \left|\frac{1}{\widehat{\eta}-s+1} \sqrt{\frac{(\widehat{\eta}-s+1)(e-\widehat{\eta})}{e-s+1}} \mathbb{S}_{s, \widehat{\eta}, e}+\frac{1}{e-\eta} \sqrt{\frac{(\eta-s+1)(e-\eta)}{e-s+1}} \mathbb{S}_{s, \eta, e}\right| \\
= & \frac{1}{\sqrt{e-s+1}}\left|\left(\sqrt{\frac{e-\widehat{\eta}}{\widehat{\eta}-s+1}}+\sqrt{\frac{\eta-s+1}{e-\eta}}\right) \mathbb{S}_{s, \eta, e}+\sqrt{\frac{e-\widehat{\eta}}{\widehat{\eta}-s+1}}\left(\mathbb{S}_{s, \widehat{\eta}, e}-\mathbb{S}_{s, \eta, e}\right)\right| \\
\leq & 2 \sqrt{\frac{e-s+1}{(\eta-s+1)(e-\eta)}} \mathbb{S}_{s, \eta, e},
\end{aligned}
$$

and thus $|I I I| \leq C \epsilon_{T} \delta_{T}^{-1} \log T \cdot \mathbb{S}_{s, \eta, e}$ and $|I V| \leq C^{\prime} \epsilon_{T}^{1 / 2} \delta_{T}^{-1 / 2} \log T \cdot \mathbb{S}_{s, \eta, e}$.
In summary, the inequality in (24) is modified to

$$
\frac{\epsilon_{T} \delta_{T}^{3}}{T^{3}}>\left(\epsilon_{T} T^{-1 / 2} \log T\right) \vee\left(\epsilon_{T}^{1 / 2} \delta_{T}^{1 / 2} T^{-1 / 2} \log T\right) \vee\left(\log ^{2} T\right)
$$

Together with the fact that Lemmas 5-6 require that $\delta_{T}^{-5 / 2} T^{5 / 2} \log T<\epsilon_{T}^{1 / 2} \ll \pi_{T} \ll \delta_{T} / \sqrt{T}$, we derive Theorems $1^{\prime}-2^{\prime}$ below with assumptions (A1') and (B2') which modify (A1) and (B2) in [1], respectively.
(A1') The distance between any two adjacent change-points is bounded from below by $\delta_{T} \asymp T^{\Theta}$ for $\Theta \in(6 / 7,1]$.
(B2') $\nu_{r} \in \mathbb{B}, r=1, \ldots, N$ satisfy (A1') in place of $\eta_{q}, q=1, \ldots, N$.

Theorem 1' Let $\Delta_{T} \asymp \epsilon_{T}$ in the SBS algorithm. Under (A1') and (A2)-(A4), there exists $C_{1}>0$ such that $\widehat{\eta}_{q}, q=1, \ldots, \widehat{N}$ satisfy

$$
\mathbb{P}\left\{\widehat{N}=N ;\left|\widehat{\eta}_{q}-\eta_{q}\right|<C_{1} \epsilon_{T} \text { for } q=1, \ldots, N\right\} \rightarrow 1
$$

as $T \rightarrow \infty$, where

- if $\delta_{T} \asymp T$, there exists some positive constant κ such that we have $\epsilon_{T}=\log ^{2+\vartheta} T$ with $\pi_{T}=\kappa \log ^{1+\omega} T$ for any positive constants ϑ and $\omega>\vartheta / 2$.
- if $\delta_{T} \asymp T^{\Theta}$ for $\Theta \in(6 / 7,1)$, we have $\epsilon_{T}=T^{\theta} \log ^{2} T$ for $\theta=5-5 \Theta$ with $\pi_{T}=\kappa T^{\gamma}$ for some $\kappa>0$ and any $\gamma \in(5(1-\Theta) / 2, \Theta-1 / 2)$.

Theorem 2' Let $\Delta_{T} \asymp \epsilon_{T}$ in the SBS algorithm and $\Lambda_{T} \asymp \epsilon_{T}$ in the across-scales post-processing. Under (B1), (B2') and (B3)-(B5), there exists $C_{2}>0$ such that $\widehat{\nu}_{r}, r=1, \ldots, \widehat{N}$ estimated with $I_{T}^{*}=-\lfloor\alpha \log \log T\rfloor$ for $\alpha \in(0,2+\vartheta\rfloor$, satisfy

$$
\mathbb{P}\left\{\widehat{N}=N ;\left|\widehat{\nu}_{r}-\nu_{r}\right|<C_{2} \epsilon_{T} \text { for } r=1, \ldots, N\right\} \rightarrow 1
$$

as $T \rightarrow \infty$, where

- if $\delta_{T} \asymp T$, there exists some positive constant κ such that we have $\epsilon_{T}=\log ^{2+\vartheta} T$ with $\pi_{T}=\kappa \log ^{1+\omega} T$ for any positive constants ϑ and $\omega>\vartheta / 2$.
- if $\delta_{T} \asymp T^{\Theta}$ for $\Theta \in(6 / 7,1)$, we have $\epsilon_{T}=T^{\theta} \log ^{2} T$ for $\theta=5-5 \Theta$ with $\pi_{T}=\kappa T^{\gamma}$ for some $\kappa>0$ and any $\gamma \in(5(1-\Theta) / 2, \Theta-1 / 2)$.

References

[1] Cho, H. and Fryzlewicz, P. (2015), "Multiple change-point detection for high-dimensional time series via Sparsified Binary Segmentation," Journal of the Royal Statistical Society, Series B (to appear).
[2] Venkatraman, E. S. (1992), "Consistency results in multiple change-point problems," Technical Report No. 24, Department of Statistics, Stanford University.

[^0]: *School of Mathematics, University of Bristol, UK. haeran.cho@bristol.ac.uk
 ${ }^{\dagger}$ Department of Statistics, London School of Econimics, UK.

