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Abstract

This paper considers variable selection in linear regression models where the number

of covariates is possibly much larger than the number of observations. High dimensional-

ity of the data brings in many complications, such as (possibly spurious) high correlations

among the variables, which result in marginal correlation being unreliable as a measure of

association between the variables and the response. We propose a new way of measuring

the contribution of each variable to the response which takes into account high correlations

among the variables in a data-driven way. The proposed tilting procedure provides an adap-

tive choice between the use of marginal correlation and tilted correlation for each variable,

where the choice is made depending on the values of the hard-thresholded sample correlation

of the design matrix. We study the conditions under which this measure can successfully

discriminate between the relevant and the irrelevant variables and thus be used as a tool

for variable selection. Finally, an iterative variable screening algorithm is constructed to

exploit the theoretical properties of tilted correlation, and its good practical performance is

demonstrated in a comparative simulation study.

1 Introduction

Inferring the relationship between the response and the explanatory variables in linear models

is an extremely important and widely studied statistical problem, from the point of view of

both practical applications and theory. In this work, we consider the following linear model:

y = Xβ + ǫ, (1)

where y = (y1, . . . , yn)
T ∈ Rn is an n-vector of the response, X = (X1, . . . ,Xp) is an n × p

design matrix and ǫ = (ǫ1, . . . , ǫn)
T ∈ Rn is an n-vector of i.i.d. random errors.

Recent technological advances have led to the explosion of data across many scientific disciplines,

where the dimensionality of the data p can be very large; examples can be found in genomics,

functional MRI, tomography and finance, to name but a few. In such settings, difficulties arise

in estimating the coefficient vector β. Over the last two decades, substantial progress has been

made in tackling this problem under the assumption that only a small number of variables

actually contribute to the response, i.e., S = {1 ≤ j ≤ p : βj 6= 0} is of cardinality |S| ≪ p. By

identifying S, we can improve both model interpretability and estimation accuracy.
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There exists a long list of literature devoted to the high-dimensional variable selection problem

and an exhaustive survey can be found in Fan and Lv (2010). The Lasso (Tibshirani, 1996)

belongs to a class of penalised least squares estimators where the penalty is on the l1-norm of β,

which leads to a sparse solution by setting certain coefficients to be exactly zero. It has enjoyed

considerable attention and substantial efforts in studying the consistency of the methodology

and its extension can be found e.g. in Meinshausen and Bühlmann (2008), Zhang and Huang

(2008), Zhao and Yu (2006), Zou (2006), Meinshausen and Bühlmann (2010).

Efron et al. (2004) proposed the Least Angle Regression (LARS) algorithm, which can be

modified to compute the Lasso solution path for a range of penalty parameters. The main

criterion for determining which variables should enter the model in the progression of the LARS

algorithm is the screening of the marginal correlations between each variable and the current

residual. That is, denoting the current residual by z, the Lasso solution path is computed by

taking a step of a suitably chosen size in the equiangular direction between those variables

which achieve the maximum |XT
j z| at each iteration. The Sure Independence Screening (SIS)

proposed in Fan and Lv (2008) is a dimension reduction procedure, which screens the marginal

correlations XT
j y to choose which variables should remain in the model.

While the aforementioned methods show good theoretical properties as well as performing well

in practice, we note that they heavily rely on marginal correlation to measure the strength

of association between Xj and y. Fan and Lv (2008) observed that, even when X1, . . . ,Xp

were generated as i.i.d. Gaussian variables, there might exist spurious correlations among the

variables with growing dimensionality p. In general, when there are non-negligible correlations

among the variables, whether spurious or not, an irrelevant variable (Xj , j 6∈ S) can have large

marginal correlation with y due to its association with the relevant variables (Xj , j ∈ S), which
implies that marginal correlation can be misleading, especially if p is large.

There have been some efforts to introduce new measures of association between each variable and

the response in order to deal with the issue of high correlations among the variables. Bühlmann

et al. (2009) proposed the PC-simple algorithm, which uses partial correlation in order to infer

the association between each variable and the response conditional on other variables. Also,

we note that “greedy” algorithms such as the traditional forward selection (see e.g. Chapter

8.5 of Weisberg (1980)) or the forward regression (Wang, 2009) have an interpretation in this

context due to their greediness (unlike less greedy algorithms generating a solution path, e.g.

LARS). At each iteration, both forward selection and forward regression algorithms update the

current residual z by taking the greediest step towards the variables included in the current

model, i.e., z is obtained by projecting y onto the orthogonal complement of the current model

space and this greedy progression can be seen as taking into account the correlations between

those variables which are in the current model and those which are not. Radchenko and James

(2011) proposed the forward-Lasso adaptive shrinkage (FLASH) which includes the Lasso and

forward selection as special cases at two extreme ends. FLASH iteratively adds one variable at

a time and adjusts each step size by introducing a new parameter so that their procedure is

greedier than the Lasso, yet not as greedy as the forward selection. The regression framework

proposed in Witten and Tibshirani (2009) accounts for correlations among the variables using

the so-called “scout” procedure, which obtains a shrunken estimate of the inverse covariance
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matrix of X by maximising a penalised likelihood and then applies it to the estimation of β.

A more detailed description of the aforementioned methods, in comparison with our proposed

methodology, is provided later in Section 3.3.

In this paper, we propose a new way of measuring the contribution of each variable to the

response, which also accounts for the correlation structure among variables. It is accomplished

by “tilting” each column Xj (so that it becomes X∗
j ) such that the impact of other variables

Xk, k 6= j on the “tilted” correlation between X∗
j and y is reduced and thus the relationship

between the jth covariate and the response can be identified more accurately. One key ingredient

of this methodology, which sets it apart from other approaches listed above, is the adaptive

choice of the set Cj of variables Xk whose impact on Xj is to be removed. Informally speaking,

we note that Cj cannot include “too many” variables, as this would distort the association

between the jth covariate and the response due to the large dimensionality p. However, we also

observe that those Xk’s which have low marginal correlations with Xj do not individually cause

distortion in measuring this association anyway, so they can safely be omitted from the set Cj.
Therefore, it appears natural to include in Cj only those variables Xk whose correlations with

Xj exceed a certain threshold in magnitude, and this hard thresholding step is an important

element of our methodology.

Other key steps in our methodology are: projection of each variable onto a subspace chosen in the

hard-thresholding step; and rescaling of such projected variables. We show that under certain

conditions the tilted correlation can successfully discriminate between relevant and irrelevant

variables and thus can be applied as a tool for variable selection. We also propose an iterative

algorithm based on tilting and present its unique features in relation to the existing methods

discussed above.

The remainder of the paper is organised as follows. In Section 2, we introduce the tilting

procedure and study the theoretical properties of tilted correlation in various scenarios. Then

in Section 3, we propose the TCS algorithm, which iteratively screens the tilted correlations

to identify relevant variables, and compare it in detail to other existing methods. Section 4

reports the outcome of extensive comparative simulation studies and the performance of TCS

algorithm is further demonstrated in Section 5 on a real world dataset predicting real estate

prices. Section 6 concludes the paper and the proofs of theoretical results are in the Appendix.

2 Tilting: motivation, definition and properties

2.1 Notation and model description

For an n-vector u ∈ Rn, we define the l1 and l2-norms as ‖u‖1 =
∑

j |uj | and ‖u‖2 =
√

∑

j u
2
j ,

and the latter is frequently referred to as the norm. Each column of X is assumed to have a unit

norm, and thus the sample correlation matrix of X is defined as C = XTX = (cj,k)
p
j,k=1. We

assume that ǫi, i = 1, . . . , n are i.i.d. random noise following a normal distribution N (0, σ2/n)

with σ2 < ∞, where the n−1 in the noise variance is required due to our normalisation of the

columns of X. We denote the ith row of X as xi = (Xi,1, . . . ,Xi,p). Let D denote a subset of the

index set J = {1, . . . , p}. Then XD denotes an n × |D|-submatrix of X with Xj , j ∈ D as its

columns for any n× p matrix X. In a similar manner, βD denotes a |D|-subvector of a p-vector
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β with βj , j ∈ D as its elements. For a given submatrix XD, we denote the projection matrix

onto the column space of XD by ΠD. Finally, C and C ′ are used to denote generic positive

constants.

2.2 Tilting: motivation and definition

In this section, we introduce the procedure of “tilting” a variable and define the tilted correlation

between each variable and the response. We first list typical difficulties encountered in high-

dimensional problems, which were originally pointed out in Fan and Lv (2008).

(a) Irrelevant variables which are highly correlated with the relevant ones can have high

priority to be selected in marginal correlation screening.

(b) A relevant variable can be marginally uncorrelated but jointly correlated with the response.

(c) Collinearity can exist among the variables, i.e., |cj,k| = |XT
j Xk| for j 6= k can be close to

1.

We note that the marginal correlation between each variable Xj and y has the following de-

composition,

XT
j y = XT

j

(

p
∑

k=1

βkXk + ǫ

)

= βj +
∑

k∈S\{j}

βkX
T
j Xk +XT

j ǫ, (2)

which shows that the issues (a) and (b) arise from the underlined summand in (2). The main

idea behind tilting is to transform each Xj in such a way that the corresponding underlined

summand for the transformed Xj is zero or negligible, while not distorting the contribution

of the jth covariate to the response. By examining the form of the underlined summand and

viewing it as a “bias” term, it is apparent that its components are particularly large for those

k’s for which the corresponding term XT
j Xk is large. If we were to transform Xj by projecting

it on the space orthogonal to those Xk’s, a corresponding bias term for a thus-transformed Xj

would be significantly reduced.

For each Xj , denote the set of such Xk’s by Cj. Without prior knowledge of S, one way of

selecting Cj for each Xj is to identify those variables Xk, k 6= j which have non-negligible

correlations with Xj. A careful choice of Cj is especially important when the dimensionality

p is high; when Cj is chosen to include too many variables, any vector in Rn may be well-

approximated by Xk, k ∈ Cj , which would result in the association between the transformed Xj

and y failing to reflect the true contribution of the jth covariate to the response. Intuitively,

those Xk’s having small sample correlations with Xj do not significantly contribute to the

underlined bias term, and thus can be safely omitted from the set Cj . Below, we propose a

procedure for selecting Cj adaptively for each j, depending on the sample correlation structure

of X.

We first find πn ∈ (0, 1) which will act as a threshold on each off-diagonal entry cj,k, j 6= k of the

sample correlation matrix C of X, identifying whether the sample correlation between Xj and

Xk is non-negligible. Then, the subset Cj is identified as Cj = {k 6= j : |XT
j Xk| = |cj,k| > πn}
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separately for each variable Xj . We note that although the subset Cj is obviously different

for each j, the thresholding procedure for selecting it is always the same. Our procedure for

selecting πn itself is described in Section 3.4. Tilting a variable Xj is defined as the procedure

of projecting Xj onto the orthogonal complement of the space spanned by Xk, k ∈ Cj, which
reduces to zero the impact of those Xk’s on the association between the projected version of Xj

and y.

Hard-thresholding was previously adopted for the estimation of a high-dimensional covariance

matrix, although we emphasise that this was not in the context of variable selection. In Bickel

and Levina (2008), an estimator obtained by hard-thresholding the sample covariance matrix

was shown to be consistent with the choice of C
√

log p/n as the threshold, provided the co-

variance matrix was appropriately sparse and the dimensionality p satisfied log p/n → 0. A

similar result was reported in El Karoui (2008) with the threshold of magnitude Cn−γ for some

γ ∈ (0, 1/2). Our theoretical choice of threshold πn is described in Section 2.3, where we also

briefly compare it to the aforementioned thresholds. In practice, we choose πn by controlling

the false discovery rate, as presented in Section 3.4.

Let X̃j denote a submatrix of X with Xk, k ∈ Cj as its columns, and Πj the projection

matrix onto the space spanned by Xk, k ∈ Cj , i.e., Πj ≡ X̃j(X̃
T
j X̃j)

−1X̃T
j . The tilted variable

X∗
j for each Xj is defined as X∗

j ≡ (In − Πj)Xj . Then the correlation between the tilted

variable X∗
j and Xk, k ∈ Cj is reduced to zero, and therefore such Xk’s no longer have any

impact on (X∗
j )

Ty. However, (X∗
j )

Ty cannot directly be used as a measure of association

between Xj and y, since the norm of the tilted variable X∗
j , provided Cj is non-empty, satisfies

‖X∗
j ‖2 = XT

j (In −Πj)Xj < XT
j Xj = 1. Therefore, we need to rescale (X∗

j )
Ty so as to make it

a reliable criterion for gauging the contribution of each Xj to y.

Let aj and ajy denote the squared proportion of Xj and y (respectively) represented by Xk, k ∈
Cj, i.e., aj ≡ ‖ΠjXj‖22/‖Xj‖22 and ajy ≡ ‖Πjy‖22/‖y‖22. We denote the tilted correlation between

Xj and y with respect to a rescaling factor sj by c∗j(sj) ≡ s−1
j ·(X∗

j )
Ty, and propose two rescaling

rules below.

Rescaling 1. Decompose (X∗
j )

Ty as

(X∗
j )

Ty = XT
j (In −Πj)y = XT

j

{

p
∑

k=1

βk(In −Πj)Xk + (In −Πj)ǫ

}

= βjX
T
j (In −Πj)Xj +

∑

k∈S\Cj ,k 6=j

βkX
T
j (In −Πj)Xk +XT

j (In −Πj)ǫ. (3)

Provided the second and third summands in (3) are negligible in comparison with the

first, rescaling the inner product (X∗
j )

Ty by 1 − aj = XT
j (In − Πj)Xj can “isolate” βj ,

which amounts to the contribution of Xj to y, in the sense that (X∗
j )

Ty/(1 − aj) can be

represented as βj plus a “small” term (our theoretical results later make this statement

more precise). Motivated by this, we use the rescaling factor of λj ≡ (1 − aj) to define a

rescaled version of X∗
j as X•

j ≡ (1− aj)
−1 ·X∗

j and the corresponding tilted correlation as

c∗j (λj) = (1− aj)
−1 · (X∗

j )
Ty = (X•

j )
Ty.

Rescaling 2. Since In − Πj is also a projection matrix, we note that (X∗
j )

Ty is equal to
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the inner product between X∗
j = (In − Πj)Xj and y∗

j = (In − Πj)y, with their norms

satisfying ‖X∗
j ‖2 =

√

1− aj and ‖y∗
j‖2 =

√

1− ajy · ‖y‖2. By rescaling X∗
j and y∗

j

by
√

1− aj and
√

1− ajy respectively, we obtain vectors X◦
j ≡ (1 − aj)

−1/2 · X∗
j and

y◦
j ≡ (1−ajy)

−1/2 ·y∗
j , whose norms satisfy ‖X◦

j ‖2 = ‖Xj‖2 and ‖y◦
j‖2 = ‖y‖2. Therefore,

with the rescaling factor set equal to Λj ≡ {(1 − aj)(1 − ajy)}1/2, we define the tilted

correlation as c∗j (Λj) = {(1 − aj)(1 − ajy)}−1/2 · (X∗
j )

Ty = (X◦
j )

Ty◦
j .

We note that, with the rescaling factor λj (rescaling 1), the tilted correlation c∗j(λj) coincides

with the ordinary least squares estimate of βj when regressing y onto Xk, k ∈ Cj ∪ {j}. When

rescaled by Λj (rescaling 2), the tilted correlation coincides with the sample partial correlation

between Xj and y given Xk, k ∈ Cj (denoted by ρ̂n(j,y|Cj)), up to a constant multiplicative

factor ‖y‖2, i.e., c∗j(Λj) = ‖y‖2 · ρ̂n(j,y|Cj). Although partial correlation is also used in the

PC-simple algorithm (Bühlmann et al., 2009), we emphasise that a crucial difference between

tilting and PC-simple is that tilting makes an adaptive choice of the conditioning subset Cj for

each Xj , as described earlier in this section. For a detailed discussion of this point, see Section

3.3. In what follows, whenever the tilted correlation is denoted by c∗j without specifying the

rescaling factor sj, the relevant statement is valid for either of the rescaling factors λj and Λj.

Finally, we note that if the set Cj turns out to be empty for a certain index j, then for such Xj,

our tilted correlation with either rescaling factor would reduce to standard marginal correlation,

which in this case is expected to work well (in measuring the association between the jth

covariate and the response) due to the fact that no other variables Xk are significantly correlated

with Xj . In summary, our proposed tilting procedure enables an adaptive choice between the

use of marginal correlation and tilted correlation for each variable Xj , depending on the sample

correlation structure of X.

In the following section, we study some properties of tilted correlation and show that the

corresponding properties do not always hold for marginal correlation. This prepares the ground

for the algorithm proposed in Section 3.1 which adopts tilted correlation for variable screening.

2.3 Properties of the tilted correlation

In studying the theoretical properties of tilted correlation, we make the following assumptions

on the linear model in (1).

(A1) The number of non-zero coefficients |S| satisfies |S| = O(nδ) for δ ∈ [0, 1/2).

(A2) The number of variables satisfies log p = O(nθ) with θ ∈ [0, 1 − 2γ) for γ ∈ (δ, 1/2).

(A3) With the same γ as in (A2), the threshold is chosen as πn = C1n
−γ for some C1 > 0.

We assume that there exists C > 0 such that Cj = {k 6= j : |cj,k| > πn} is of cardinality
|Cj | ≤ Cnξ uniformly over all j, where ξ ∈ [0, 2(γ − δ)).

(A4) Non-zero coefficients satisfy maxj∈S |βj | < M for M ∈ (0,∞) and nµ · minj∈S |βj | → ∞
for µ ∈ [0, γ − δ − ξ/2).

(A5) There exists α ∈ (0, 1) satisfying 1−XT
j ΠjXj = 1− aj > α for all j.
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(A6) For those j whose corresponding Cj satisfies S * Cj , we have

nκ · ‖(In −Πj)XSβS‖22
‖XSβS‖22

→∞,

for κ satisfying κ/2 + µ ∈ [0, γ − δ − ξ/2).

In (A1) and (A2), we let the sparsity |S| and dimensionality p of the linear model grow with

the sample size n. Intuitively, if some non-zero coefficients tend to zero too rapidly, identifying

them as relevant variables is difficult. Therefore (A4) imposes a lower bound on the magnitudes

of the non-zero coefficients, which still allows the minimum non-zero coefficient to decay to 0

as n grows. It also imposes an upper bound, which is needed to ensure that the ratio between

the largest and smallest coefficients in absolute value does not grow too quickly with n.

We now clarify the rest of assumptions which are imposed on the correlation structure of X,

and compare them to related conditions in existing literature. It is common practice in high-

dimensional variable selection literature to study the performance of proposed methods under

some conditions on X. For the Lasso, it was shown that the irrepresentable condition (Zhao

and Yu, 2006), also referred to as the neighbourhood stability condition (Meinshausen and

Bühlmann, 2008) on X was sufficient and almost necessary for consistent variable selection.

This condition required that

max
j /∈S

∣

∣sign(βS)
T (XT

SXS)
−1XT

SXj

∣

∣ < 1,

which can roughly be interpreted as saying that the portion of the irrelevant variable Xj , j /∈ S,
represented by relevant variables XS is bounded from above by 1. Zhang and Huang (2008)

showed the variable selection consistency of Lasso under the sparse Riesz condition. It requires

the existence of C > 0 for which the eigenvalues of XT
DXD are bounded uniformly over any

D ⊂ J with |D| ≤ C|S|. Candès and Tao (2007) showed the consistency of the Dantzig selector

under the uniform uncertainty principle (UUP), which also similarly restricts the behaviour of

the sparse eigenvalues of XT
DXD.

We note that the assumption (A3) is not directly comparable to the above conditions in the

sense that it requires the number of highly correlated variables for each variable not to exceed

a certain polynomial rate in n. This bound is needed in order to guarantee the existence of

the projection matrix Πj , as well as to prevent tilted correlations from being distorted by high

dimensionality as explained in Section 2.2. We now give an example of when (A3) is satisfied.

Suppose for instance that each observation xi, i = 1, . . . , n is independently generated from a

multivariate normal distribution Np(0,Σ) with Σj,k = ϕ|j−k| for some ϕ ∈ (−1, 1). Then using

Lemma 1 in Kalisch and Bühlmann (2007), we have that

P

(

max
j 6=k
|cj,k − Σj,k| ≤ C2n

−γ

)

≥ 1− Cnp(p− 1)

2
· exp

(

−C2(n − 4)n−2γ

2

)

, (4)

for some C2 ∈ (0, C1) and C > 0. The right-hand side of (4) tends to 1, provided log p = O(nθ)

with θ ∈ [0, 1/2 − γ). Then (A3) holds with probability tending to 1 since |cj,k| ≤ |ϕ||j−k| +

C2n
−γ < πn for |j−k| ≫ log n (|an| ≫ |bn|means |anb−1

n | → ∞). The choice of πn = C1n
−γ is in
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agreement with Bickel and Levina (2008) and El Karoui (2008) in the sense that their threshold

is also greater than n−1/2. However, as we describe in Section 3.4, our procedure requires a

data-dependent, rather than a fixed threshold, and we propose to choose it by controlling the

false discovery rate.

(A5) is required to rule out strong collinearity among the variables. From the fact that 1−aj =

det
(

XT
Cj∪{j}

XCj∪{j}

)

/det
(

X̃T
j X̃j

)

, we can find a connection between (A5) and the condition

requiring strict positive definiteness of the population covariance matrix of X, which is often

found in the variable selection literature including Fan and Li (2001), Bühlmann et al. (2009)

and Zou (2006).

Further, we show in Appendix D that assumptions (A5) and (A6) are satisfied under a certain

mild assumption on X and ǫ, also used e.g. in Wang (2009).

As far as variable selection is concerned, if the absolute values of tilted correlations for j ∈ S
are markedly larger than those for j /∈ S, we can use the tilted correlations for the purpose of

variable screening. Before studying the properties of the tilted correlation in details, we provide

a simple example to throw light on the situations where tilted correlation screening is successful

while marginal correlation is not. The following set-up is consistent with Condition 3 in Section

2.3.1: p = 3, S = {1, 2}, noise is not present, |c1,3| and |c2,3| exceed the threshold. Then, even

when c1,2, c1,3, c2,3 and the non-zero coefficients β1, β2 are chosen so that the marginal correlation

screening fails (i.e., |XT
3 y| > max(|XT

1 y|, |XT
2 y|)), it is still the case that |(X∗

3 )
Ty| = 0 and thus

tilted correlation screening can avoid picking up X3 as relevant.

In the following Sections 2.3.1–2.3.3, we introduce different scenarios under which the tilted

correlation screening (with either rescaling factor) achieves separation between relevant and

irrelevant variables.

2.3.1 Scenario 1

In the first scenario, we assume the following condition on X.

Condition 1. There exists C > 0 such that
∣

∣(ΠjXj)
TXk

∣

∣ ≤ Cn−γ for all j ∈ J and k ∈
S \ Cj, k 6= j.

This condition implies that when Xj is projected onto the space spanned by Xl, l ∈ Cj, any
Xk ∈ S which are not close to Xj (in the sense that k /∈ Cj) remain not “too close” to the

projected Xj (ΠjXj). In Appendix A.1, it is shown that Condition 1 holds asymptotically

when each column Xj is generated independently as a random vector on a sphere of radius 1,

which is the surface of the Euclidean ball Bn
2 =

{

x ∈ Rn :
∑n

i=1 x
2
i ≤ 1

}

. The following theorem

states that, under Condition 1, the tilted correlations of the relevant variables dominate those

of the irrelevant variables.

Theorem 1. Under assumptions (A1)–(A6), if Condition 1 holds, then P(E1)→ 1 where

E1 =
{

|c∗k(sk)|
minj∈S |c∗j (sj)|

→ 0 for all k /∈ S
}

, (5)

regardless of the choice of the rescaling factor (that is, with sj = λj or sj = Λj). On the event

E1, the following holds.
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• nµ · c∗j → 0 for j /∈ S.

• nµ · |c∗j | → ∞ for j ∈ S.

• With the rescaling 1, c∗j (λj)/βj → 1 when βj 6= 0.

As noted in the Introduction, in high-dimensional problems, the maximum sample correlation

of the columns of X can be non-negligible, even if the columns are generated as independent.

Therefore marginal correlations XT
j y for j ∈ S cannot be expected to have the same dominance

over those for j /∈ S as in (5).

2.3.2 Scenario 2

Let K denote a subset of J such that Xk, k ∈ K are either relevant (k ∈ S) or highly correlated

with at least one of relevant variables (k ∈ ∪j∈SCj). That is, K = S ∪{∪j∈SCj}, and we impose

the following condition on the sample correlation structure of XK.

Condition 2. For each j ∈ S, if k ∈ K \ {Cj ∪ {j} }, then Ck ∩ Cj = ∅.

In other words, this condition implies that for each relevant variable Xj , if Xk, k ∈ K is

not highly correlated with Xj , there does not exist an Xl, l 6= j, k, which achieves sample

correlations greater than the threshold πn with both Xj and Xk simultaneously.

Suppose that the sample correlation matrix of XK is “approximately bandable”, i.e., |cj,k| > πn

for any j, k ∈ K satisfying |j − k| ≤ B and |cj,k| < πn otherwise, with the band width B

satisfying B|S|2/p→ 0. Then, if S is selected randomly from J with each j ∈ J having equal

probability to be included in S, Condition 2 holds with probability bounded from below by

(

1− 4B

p− 1

)

·
(

1− 8B

p− 2

)

· · ·
(

1− 4(|S| − 1)B

p− |S|+ 1

)

≥
(

1− 4|S|B
p− |S|+ 1

)|S|−1

→ 1.

Another example satisfying Condition 2 is when each column of XK is generated as a linear

combination of common factors in such a way that every off-diagonal element of the sample

correlation matrix of XK exceeds the threshold πn.

Under this condition, we can derive a similar result as in Scenario 1, with the dominance of the

tilted correlations for relevant variables restricted within K.

Theorem 2. Under (A1)–(A6), if Condition 2 holds, then P(E2)→ 1 where

E2 =
{

|c∗k(sk)|
minj∈S |c∗j (sj)|

→ 0 for all k ∈ K \ S
}

,

regardless of the choice of the rescaling factor (that is, with sj = λj or sj = Λj). On the event

E2, the following holds.

• nµ · c∗j → 0 for j /∈ S.

• nµ · |c∗j | → ∞ for j ∈ S.

• With the rescaling 1, c∗j (λj)/βj → 1 when βj 6= 0.
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2.3.3 Scenario 3

Finally, we consider a case when X satisfies a condition weaker than Condition 2.

Condition 3. (C1) For each j ∈ S, if k ∈ K \ {Cj ∪ S }, then Ck ∩ Cj = ∅.

(C2) The marginal correlation between X∗
j = (In − Πj)Xj for j ∈ S and Ey = XSβS satisfies

nµ · infj∈S
∣

∣

∣
(X∗

j )
TXSβS

∣

∣

∣
→∞.

It is clear that Condition 2 is stronger than (C1), as the latter does not impose any restriction

between Cj and Ck if both j, k ∈ S. Bühlmann et al. (2009) placed a similar lower bound as

that in (C2) on the population partial correlation ρn(j,y|D) of relevant variables Xj , j ∈ S for

any subset D ⊂ J \ {j} satisfying |D| ≤ |S|. Combined with the assumptions (A4)–(A5), (C2)

rules out an ill-posed case where the parameters βj , j ∈ S take values which cancel out the

“tilted covariance” among the relevant variables (this statement is explained more precisely in

the proof of Theorem 3). It is shown in Appendix C that Condition 3 is satisfied if Condition 2

holds and thus Condition 3 is indeed weaker than Condition 2. With Condition 3, we can show

similar results to those in Theorem 2.

Theorem 3. Under (A1)–(A6), if Condition 3 holds, then P(E3)→ 1 where

E3 =
{

|c∗k(sk)|
minj∈S |c∗j (sj)|

→ 0 for all k ∈ K \ S
}

,

regardless of the choice of the rescaling factor (that is, with sj = λj or sj = Λj). On the event

E3, the following holds.

• nµ · c∗j → 0 for j /∈ S.

• nµ · |c∗j | → ∞ for j ∈ S.

In contrast to Scenario 2, tilted correlations c∗j (λj) no longer necessarily converge to βj as

n→∞ in this scenario.

In the next section, we use the theoretical properties of tilted correlations derived in this section

to construct a variable screening algorithm.

3 Application of tilting

Recalling issues (a)–(c) listed at the beginning of Section 2 which are typically encountered in

high-dimensional problems, it is clear that tilting is specifically designed to tackle the occurrence

of (a) and (b). First turning to (a), for an irrelevant variable Xj which attains high marginal

correlation with y due to its high correlations with relevant variables Xk, k ∈ Cj ∩ S, the

impact of those high correlations is reduced to 0 in the tilted correlation of Xj and y, and thus

tilted correlation provides a more accurate measure of its association with y, as demonstrated

in our theoretical results of the previous section. Similar arguments apply to (b), where tilting

is capable of fixing low marginal correlations between relevant variables and y. (As for (c), it

is common practice to impose assumptions which rule out strong collinearity among variables,
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and we have also followed this route.) In what follows, we present an algorithm, specifically

constructed to exploit our theoretical study in Section 2.3 by iteratively applying the tilting

procedure.

3.1 Tilted correlation screening algorithm

In Scenario 3, under a relatively weaker condition than those in Scenarios 1–2, it is shown

that the tilted correlations of relevant variables dominate those of irrelevant variables within

K = S ∪ (∪j∈SCj). Even though K is unknown in practice, we can exploit the theoretical results

by iteratively screening both marginal correlations and tilted correlations within a specifically

chosen subset of variables.

When every off-diagonal entry of the sample correlation matrix is small, marginal correlation

screening can be used as a reliable way of measuring the strength of association between each Xj

and y, and indeed, c∗j for the variable Xj with an empty Cj is equal to the marginal correlation

XT
j y, with either choice of the rescaling factor sj. Therefore if a variable Xj with Cj = ∅

achieves the maximum marginal correlation, such Xj is likely to be relevant. On the other

hand, if Cj 6= ∅, then high marginal correlation between Xj and y may have resulted from the

high correlations of Xj with Xk, k ∈ Cj ∩ S, even when j /∈ S. In this case, by screening the

tilted correlations of Xk, k ∈ Cj ∪ {j}, we can choose the variable attaining the maximum |c∗k|
as a relevant variable. In either case, one variable is selected and added to the active set A
which represents the currently chosen model. The next step is to update the linear model by

projecting it onto the orthogonal complement of the current model space XA, i.e.,

(In −ΠA)y = (In −ΠA)Xβ + (In −ΠA)ǫ. (6)

With the updated response and design matrix, we iteratively continue the above screening

procedure. Below we present the algorithm which is referred to as the tilted correlation screening

algorithm (TCS algorithm) throughout the paper.

Step 0 Start with an empty active set A = ∅, current residual z = y, and current design matrix

Z = X.

Step 1 Find the variable which achieves the maximum marginal correlation with z and let k =

argmaxj /∈A |ZT
j z|. Identify Ck = {j /∈ A, j 6= k : |ZT

k Zj| > πn} and if Ck = ∅, let k∗ = k

and go to Step 3.

Step 2 If Ck 6= ∅, screen the tilted correlations c∗j between Zj and z for j ∈ Ck ∪ {k} and find

k∗ = argmaxj∈Ck∪{k} |c∗j |.

Step 3 Add k∗ toA and update the current residual and the current design matrix z← (In−ΠA)y

and Z← (In−ΠA)X, respectively. Further, rescale each column j 6∈ A of Z to have norm

one.

Step 4 Repeat Steps 1–3 until the cardinality of active set |A| reaches a pre-specified m < n.

We note that Theorems 1–3 do not guarantee the selection consistency of the TCS algorithm

itself. However, they do demonstrate a certain ‘separation’ property of the tilted correlation (as
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a measure of association). Steps 1–2 of the above algorithm exploit this property in the sense

that they attempt to “operate” within the set K (which is unknown without the knowledge of

S), since we either directly choose a variable indexed k which is believed to lie in the set S or

screen its corresponding set Ck (recall that K = S ∪ {∪j∈SCj}).
In Step 4, we need to specify m which acts as a stopping index in the TCS algorithm. The TCS

algorithm iteratively builds a solution path of the active set A(1) ⊂ · · · ⊂ A(m) = A, and the

final model Ŝ can be chosen as either one of the sub-models A(i) or a subset of A. We discuss

the selection of the final model Ŝ in Section 3.2. In the simulation study, we used m = ⌊n/2⌋,
which was an empirical choice made in order to ensure that the projections performed in the

algorithm were numerically stable, while a sufficiently large number of variables were selected

in the final model, if necessary. In practice however, if the TCS algorithm combined with the

chosen model selection criterion returned m variables (i.e. if it reached the maximum permitted

number of active variables), we would advise re-running the TCS algorithm with the limit of m

slightly raised, until the number of final active variables was less than the current value of m.

During the application of the TCS algorithm, the linear regression model (1) is updated in

Step 3 by projecting both y and X onto the orthogonal complement of the current model space

spanned by XA. Therefore, with a non-empty active set A, it is interesting to observe that the

tilted correlation c∗j measures the association between Xj and y conditional on both the current

model Xk, k ∈ A and the following subset of variables adaptively chosen for each j /∈ A,

Cj|A = {k /∈ A, k 6= j : ρ̂n(j, k|A) > πn}, (7)

where ρ̂n(j, k|A) denotes the sample partial correlation between Xj and Xk conditional on XA.

Finally, we discuss the computational cost of the TCS algorithm. When p ≫ n, the computa-

tional complexity of the algorithm is dominated by the computation of the threshold at Step 1,

which is O(np+ np2 + p2 log p+ p2) = O(np2). Since the procedure is repeated m times, with

m set to satisfy m = O(n), the computational complexity of the entire algorithm is O(n2p2),

which is n times the cost of computing a p× p sample covariance matrix.

3.2 Final model selection

Once the size of the active set reaches a pre-specified value m, the final model Ŝ needs to be

chosen from A. In this section, we present two methods which can be applied in our framework.

One of the most commonly used methods for model selection is cross-validation (CV), in which

the observations would be divided into a training set and a test set such that the models

returned after each iteration (i.e. A(1) ⊂ · · · ⊂ A(m) = A) could be tested using an appropriate

error measure. However, we expect that for a CV-based method to work well, it would have

to be computationally intensive: for example, a leave-one-out CV or a leave-half-out CV with

averaging over different test and training sets.

One less computationally demanding option is to use e.g. an extended version of the Bayesian

information criterion (BIC) proposed in Bogdan et al. (2004) and Chen and Chen (2008) as

BIC(A) = log

{

1

n
‖(In −ΠA)y‖22

}

+
|A|
n

(log n+ 2 log p). (8)
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This new BIC takes into account high dimensionality of the data by adding a penalty term

dependent on p. Since the TCS algorithm generates a solution path which consists of m sub-

models A(1) ⊂ · · · ⊂ A(m) = A, we can choose our final model as Ŝ = A(m∗) where m∗ =

argmin1≤i≤m BIC(A(i)).

Chen and Chen (2008) showed the consistency of this new BIC under stronger conditions than

those imposed in (A1), (A2) and (A4): the level of sparsity was |S| = O(1), the dimensionality

was p = O(nC) for C > 0, and non-zero coefficients satisfied minj∈S |βj | > C ′ for C ′ > 0. Then,

under the asymptotical identifiability condition introduced in Chen and Chen (2008), (see (12)

in Appendix D), the modified BIC as defined in (8) was shown to be consistent in the sense

that

P

(

min
|D|≤m, D6=S

BIC(D) > BIC(S)
)

→ 1 for m ≥ |S|,

i.e., the probability of selecting any model other than S converged to zero. It was also noted

that the original BIC was likely to fail when p > n1/2. At the price of replacing log n/n with

n−κ in (12), the consistency of the new BIC (8) can be shown with the level of sparsity growing

with n as in (A1) and the dimensionality increasing exponentially with n as in (A2). The proof

of this statement follows the exact line of proof in Chen and Chen (2008) and so we omit the

details.

3.3 Relation to existing literature

We first note that our use of the term “tilting” is different from the use of the same term in Hall

et al. (2009), where it applies to distance-based classification and denotes an entirely different

procedure.

In the Introduction, we briefly discuss a list of existing variable selection techniques in which

care is taken of the correlations among the variables in measuring the association between each

variable and the response. Having now a complete picture of the TCS algorithm, we provide a

more detailed comparison between our methodology and the aforementioned methods.

Bühlmann et al. (2009) proposed the PC-simple algorithm, which iteratively removes variables

having small association with the response. Sample partial correlations ρ̂n(j,y|D) are used

as the measure of association between Xj and y, where D is any subset of the active set A
(those variables still remaining in the model excluding Xj) with its cardinality |D| equal to
the number of iterations taken so far. Behind the use of partial correlations lies the concept

of partial faithfulness which implies that, at the population level, if ρn(j,y|D) = 0 for some

D ⊂ J \ {j}, then ρn(j,y|J \ {j}) = 0. Their PC-simple algorithm starts with A = J and

iteratively repeats the following: (i) screening sample partial correlations ρ̂n(j,y|D) for all j ∈ A
and for all D satisfying the cardinality condition, (ii) applying Fisher’s Z-transform to test the

null hypotheses H0 : ρn(j,y|D) = 0, (iii) removing irrelevant variables from A, until |A| falls
below the number of iterations taken so far. Recalling the definition of the rescaling factor Λj,

we can see the connection between c∗j (Λj) and ρ̂n(j,y|D), as both are (up to a multiplicative

factor ‖y‖2) partial correlations between Xj and y conditional on a certain subset of variables.

However, a significant difference comes from the fact that the PC-simple algorithm takes all

D ⊂ A \ {j} with fixed |D| at each iteration, whereas our TCS algorithm adaptively selects Cj
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Table 1: Comparison of variable selection methods.

TCS algorithm PC-simple FR FS

Step 0 A = ∅ A = J A = ∅ A = ∅
action

one multiple one one
selected removed selected selected

conditioning set D
A ∪ Cj|A remaining current current

= A ∪ {k /∈ A, k 6= j : variables, model model
|ρ̂n(j, k|A)| > πn} |D| fixed A A

rescaling λj or Λj Λj λj none

(or Cj|A when A 6= ∅) for each j. Also, while λj is also a valid rescaling factor in our tilted

correlation methodology, partial correlations are by definition computed using Λj only.

As for the forward regression (Wang, 2009, FR) and the forward selection (FS), although the

initial stage of the two techniques is simple marginal correlation screening, their progression

has a new interpretation given a non-empty active set (A 6= ∅). Both algorithms obtain the

current residual z by projecting the response y onto the orthogonal complement of the current

model space, i.e., z = (In − ΠA)y. Therefore they also measure the association between each

Xj , j /∈ A and y conditional on the current model space spanned by XA and thus take into

account the correlations between Xj, j /∈ A and Xj , j ∈ A. The difference between FR and

FS comes from the fact that FR updates not only the current residual z but also the current

design matrix as Z = (In−ΠA)X (as in Step 3 of the TCS algorithm). Therefore FR eventually

screens the rescaled version of XT
j (In −ΠA)y with the rescaling factor defined similarly to λj,

replacing Cj with A, i.e., XT
j (In − ΠA)Xj = 1 − XT

j ΠAXj . On the other hand, there is no

rescaling step in FS and it screens the terms XT
j (In −ΠA)y, j /∈ A, themselves.

By contrast, we note that while both FR and FS apply straight marginal correlation at each stage

of their progression, our method, if and as necessary, uses the tilted correlation, which provides

an adaptive choice between the marginal correlation and conditional correlation, depending on

the correlation structure of the current design matrix. Indeed, in the extreme case where πn = 1

is used, we have Cj = ∅ and therefore the TCS algorithm becomes identical to FR. Another

crucial difference is as already mentioned above in the context of the PC-simple algorithm: the

tilting algorithm employs an adaptive choice of the conditioning set, unlike FR and FS.

In conclusion, the TCS algorithm, the PC-simple algorithm, FR and FS share the common

ingredient of measuring the contribution of each variable Xj to y conditional on certain other

variables; however, there are also important differences between them, and Table 1 summarises

this comparison. We emphasise yet again that the TCS algorithm is distinguished from the rest

in its adaptive choice of the conditioning subset via hard-thresholding of the sample correlations

among the variables. Also, we note that the theoretical results of Section 2.3 hold for both

rescaling methods, while the other algorithms use only one of them (FR, PC-simple) or none

(FS).

Finally, we note the relationship between the TCS algorithm and the covariance-regularised

regression method proposed in Witten and Tibshirani (2009). A key difference between the two

is that the TCS algorithm works with the sample marginal correlations among the variables

whereas in the scout procedure, it is the conditional correlations among the variables (i.e.,
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ρn(j, k|J \ {j, k}) 6= 0) that are subject to regularisation. Also, the scout procedure achieves

such regularisation by maximising a penalised likelihood function rather than hard-thresholding,

and the thus-obtained estimate of the covariance structure of X is applied to estimate β, again

by solving an optimisation problem. By contrast, the tilted correlation method uses the outcome

from thresholding the sample correlation structure to compute the tilted correlations and select

the variable with maximum tilted correlation in an iterative algorithm, and therefore does not

involve any optimisation problems.

3.4 Choice of threshold

In this section, we discuss the practical choice of the unknown threshold πn from the sample

correlation matrix C. Due to the lack of information on the correlation structure of X in general

and the possibility of spurious sample correlation among the variables, a deterministic choice

of πn is not expected to perform well universally and we need a data-driven way of selecting

a threshold. Bickel and Levina (2008) proposed a cross-validation method for this purpose,

while El Karoui (2008) conjectured the usefulness of a procedure based on controlling the false

discovery rate (FDR). Since our aim is different from the accurate estimation of the correlation

matrix itself, we propose a threshold selection procedure which is a modified version of the

approach taken in the latter paper. In the following, we assume that X is a realisation of a

random matrix with each row generated as xi ∼i.i.d. (0,Σ), where each diagonal element of Σ

equals one.

The procedure is a multiple hypothesis testing procedure and thus requires p-values of the

d = p(p − 1)/2 hypotheses H0 : |Σj,k| = 0 defined for all j < k. We propose to compute the

p-values as follows. First, an n-vector with i.i.d. Gaussian entries is repeatedly generated p

times, and sample correlations {rl,m : 1 ≤ l < m ≤ p} among those vectors are obtained as

a reference. Then, the p-value for each null hypothesis H0 : |Σj,k| = 0 is defined as Pj,k =

d−1 · |{rl,m : 1 ≤ l < m ≤ p, |rl,m| ≥ |cj,k|}|. The next step is to apply the testing technique

proposed in Benjamini and Hochberg (1995) to control the false discovery rate. Denoting

P(1) ≤ . . . ≤ P(d) as the ordered p-values, we find the largest i for which P(i) ≤ i/d ·ν∗ and reject

all H(j), j = 1, . . . , i. Then π̂thr is chosen as the absolute value of the correlation corresponding

to P(i). FDR is controlled at level ν∗ and we use ν∗ = p−1/2 as suggested in El Karoui (2008).

An extensive simulation study described below confirms good practical performance of the above

threshold selection procedure. We also checked the sensitivity of our algorithm to the choice of

threshold by applying a grid of thresholds in model (C) below. Apart from the threshold π̂thr

selected as above, we ran versions of our algorithm where π̂thr was multiplied by the constant

factors of 0.75, 0.9, 1.1, 1.25 each time it was used. Performance of our algorithm was similar

across the different thresholds, which provides evidence for robustness of our procedure to the

choice of threshold within reason.

4 Simulation study

In this section, we compare the performance of the TCS algorithm on simulated data with

that of other related methods discussed in the Introduction and Section 3.3, which are the
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PC-simple algorithm, FR, FS, iterative SIS (ISIS) and FLASH (for ease of implementation, we

adopt the “global” approach for FLASH), as well as Lasso for completeness. Furthermore, some

non-convex penalised least squares (PLS) estimation techniques are included in the comparison

study, such as the SCAD (Fan and Li, 2001) and the MC+ penalty (Zhang, 2010). Sub-

optimality of the Lasso in terms of model selection has been noted in recent literature (see e.g.

Zhang and Huang (2008) and Zou and Li (2008)), and non-convex penalties are proposed as a

greedier alternative to achieve better variable selection. In the following simulation study, the

SCAD estimator is produced using the local linear approximation (Zou and Li, 2008) and the

MC+ penalised criterion is optimised using the SparseNet (Mazumder et al., 2009).

The TCS algorithm is applied using both rescaling methods (denoted by TCS1 and TCS2,

respectively), with the maximum cardinality of the active set A (Step 4) set at m = ⌊n/2⌋,
a value also used for FR. The extended BIC is adopted (see Section 3.2) to select the final

model for the one-at-a-time algorithms, i.e. TCS1, TCS2, FR and FS. For the thus-selected

final models, the coefficient values are estimated using least squares. We note that, when the

aim is to construct a well-performing predictive model, a shrinkage method can be applied to

the least squares estimate. However, since our focus is on the variable selection aspect of the

different techniques, we use the plain (i.e. unshrunk) least squares estimates.

As for the rest of the methods, we select the tuning parameters for each method as follows:

the data is divided into the training and validation sets such that the training observations are

used to compute the solution paths over a range of tuning parameters, and those which give the

smallest mean squared error between the response and the predictions on the validation data

are selected.

Finally, we note that FS and the Lasso are implemented using the R package lars, and the

ISIS and the SCAD by the package SIS.

4.1 Simulation models

Our simulation models were generated as below. For models (A)–(C) and (F), the procedure

for generating the sparse coefficient vectors β is outlined below the itemised list which follows.

(A) Factor model with 2 factors: Let φ1 and φ2 be two independent standard normal vari-

ables. Each variable Xj , j = 1, . . . , p, is generated as Xj = fj,1φ1 + fj,2φ2 + ηj , where

fj,1, fj,2, ηj are also generated independently from a standard normal distribution. The

model is taken from Meinshausen and Bühlmann (2010).

(B) Factor model with 10 factors: Identical to (A) but with 10 instead of 2 factors.

(C) Factor model with 20 factors: Identical to (A) but with 20 instead of 2 factors.

(D) Taken from Fan and Lv (2008) Section 4.2.2:

y = βX1 + βX2 + βX3 − 3β
√
ϕX4 + ǫ,

where ǫ ∼ Nn(0, In) and (Xi,1, . . . ,Xi,p)
T are generated from a multivariate normal dis-

tribution Nn(0,Σ) independently for i = 1, . . . , n. The population covariance matrix
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Σ = (Σj,k)
p
j,k=1 satisfies Σj,j = 1 and Σj,k = ϕ, j 6= k, except Σ4,k = Σj,4 =

√
ϕ, such that

X4 is marginally uncorrelated with y at the population level. In the original model of Fan

and Lv (2008), β = 5 and ϕ = 0.5 were used, but we chose β = 2.5 and ϕ = 0.5, 0.95 to

investigate the performance of the variable selection methods in more challenging situa-

tions.

(E) Taken from Fan and Lv (2008) Section 4.2.3:

y = βX1 + βX2 + βX3 − 3β
√
ϕX4 + 0.25βX5 + ǫ,

with the population covariance matrix of X as in (D) except Σ5,k = Σj,5 = 0, such that

X5 is uncorrelated with any Xj , j 6= 5, and relevant. However, it has only a very small

contribution to y.

(F) Leukemia data analysis: Golub et al. (1999) analysed the Leukaemia dataset from high-

density Affymetrix oligonucloeotide arrays (available on http://www.broadinstitute.

org/cgi-bin/cancer/datasets.cgi), which has 72 observations and 7129 genes (i.e.

variables). In Fan and Lv (2008), the dataset was used to investigate the performance of

Sure Independence Screening in a feature selection problem. Here, instead of using the

actual response from the dataset, we used the design matrix to create simulated models

as follows. Each column Xj of the design matrix was normalised to ‖Xj‖22 = n, and

out of 7129 such columns, p were randomly selected to generate an n × p-matrix X.

Then we generated a sparse p-vector β and the response y as in (1). In this manner,

the knowledge of S could be used to assess the performance of the competing variable

selection techniques. A similar approach was taken in Meinshausen and Bühlmann (2010)

to generate simulation models from real datasets.

With the exception of (D)–(E), we generated the simulated data as below. Sparse coefficient

vectors β were generated by randomly sampling the indices of S from 1, . . . , p, with |S| = 10.

The non-zero coefficient vector βS was drawn from a zero-mean normal distribution such that

CS,SβS ∼ N|S|(0, n
−1I|S|), where CS,S denotes the sample correlation matrix of XS . In this

manner, argmaxj∈J |XT
j (XSβX)| may not always be attained by j ∈ S, which makes the

correct identification of relevant variables more challenging. The noise level σ was chosen to set

R2 = var(xT
i β)/var(yi) at 0.3, 0.6, or 0.9, adopting a similar approach to that taken in Wang

(2009). In models (A)–(E), the number of observations was n = 100 while the dimensionality p

varied from 500 to 2000 (except (D)–(E) where it was fixed at 1000), and finally, 100 replicates

were generated for each set-up.

4.2 Simulation results

For each method and simulation setting, we report the following error measures which are

often adopted to evaluate the performance of variable selection: the number of False Positives

(FP, the number of irrelevant variables incorrectly identified as relevant), the number of False

Negatives (FN, the number of relevant variables incorrectly identified as irrelevant) and the L2

distance ‖β − β̂‖22; all averaged over 100 simulated data sets. The summary of the simulation

17



Table 2: Simulation results for model (A) with |S| = 10. Results in bold font mean the value of FP+FN is the
lowest or within 10% of the lowest; the same for L2. The value of 0 means less than 5× 10−4.

p R2 TCS1 TCS2 FR FS Lasso ISIS PCS MC+ SCAD FLASH

500 0.3 FP 1.2 0.55 3.8 1.04 44.93 1.06 4.59 5.33 57.28 5.66
FN 2.47 2.52 1.82 2.2 2.93 9.18 8.45 4.31 1.8 2.9

FP+FN 3.67 3.07 5.62 3.24 47.86 10.24 13.04 9.64 59.08 8.56
L2 0.012 0.012 0.012 0.013 0.264 1.006 0.914 0.134 0.096 0.081

0.6 FP 1.05 0.74 4.49 1.07 47.92 1.09 4.76 3.25 40.76 6.45
FN 1.07 1.12 0.87 1.16 2.24 9.29 8.45 1.96 1.06 1.94

FP+FN 2.12 1.86 5.36 2.23 50.16 10.38 13.21 5.21 41.82 8.39
L2 0.002 0.002 0.003 0.055 0.242 1.021 0.812 0.042 0.04 0.106

0.9 FP 0.92 0.57 2.64 1.17 47.97 1.06 4.52 1.57 27.48 7.15
FN 0.43 0.41 0.32 0.62 1.75 9.21 8.37 2.03 0.58 1.49

FP+FN 1.35 0.98 2.96 1.79 49.72 10.27 12.89 3.6 28.06 8.64
L2 0 0 0.001 0.074 0.292 1.075 0.982 0.085 0.02 0.205

1000 0.3 FP 1.79 1.38 22.28 1.61 44.56 1.38 5.53 6.6 69.77 10.05
FN 2.18 2.54 1.41 2.31 4.73 9.48 8.73 5.21 2.34 4.76

FP+FN 3.97 3.92 23.69 3.92 49.29 10.86 14.26 11.81 72.11 14.81
L2 0.01 0.027 0.035 0.039 0.463 1.073 0.787 0.219 0.159 0.318

0.6 FP 1.67 1.35 24.91 1.3 46 1.19 5.55 4.39 55.93 7.76
FN 1.13 1.17 0.78 1.65 4.16 9.33 8.63 2.79 1.51 3.33

FP+FN 2.8 2.52 25.69 2.95 50.16 10.52 14.18 7.18 57.44 11.09
L2 0.002 0.003 0.009 0.126 0.498 1.016 0.868 0.13 0.117 0.32

0.9 FP 1.21 0.8 25.75 1.11 47.38 1.23 5.45 1.84 43.93 7.42
FN 0.43 0.45 0.3 1.1 3.86 9.38 8.69 2.58 0.94 2.61

FP+FN 1.64 1.25 26.05 2.21 51.24 10.61 14.14 4.42 44.87 10.03
L2 0 0 0.002 0.088 0.405 0.916 0.803 0.078 0.063 0.192

2000 0.3 FP 1.77 1.65 41.53 1.64 38.27 1.48 6.71 10.53 80.9 9.07
FN 2.33 2.36 1.53 3.48 6.48 9.59 8.98 5.79 3.07 6.22

FP+FN 4.1 4.01 43.06 5.12 44.75 11.07 15.69 16.32 83.97 15.29
L2 0.013 0.016 0.047 0.116 0.603 0.99 0.804 0.311 0.199 0.467

0.6 FP 1.89 1.89 40.87 1.39 41.32 1.35 6.37 6.1 66.65 7.82
FN 1.4 1.46 0.87 2.77 6.18 9.48 8.82 4.06 2.21 5.06

FP+FN 3.29 3.35 41.74 4.16 47.5 10.83 15.19 10.16 68.86 12.88
L2 0.004 0.004 0.024 0.252 0.752 1.243 0.989 0.338 0.18 0.496

0.9 FP 1.61 1.32 39.5 1.45 39 1.35 6.87 19.99 59.73 6.96
FN 0.44 0.56 0.68 2.21 6.32 9.55 8.9 3.88 1.6 5.11

FP+FN 2.05 1.88 40.18 3.66 45.32 10.9 15.77 23.87 61.33 12.07
L2 0 0.005 0.314 0.285 0.711 1.126 0.978 0.367 0.147 0.577

results can be found in Tables 2–5. We also present the receiver operating characteristic (ROC)

curves, which plot the true positive rate (TPR) against the false positive rate (FPR), in Figures

1–4. Note that the simulation results from model (B) are discussed in the text only and the

corresponding figure and table are omitted for brevity. The steep slope of an ROC implies that

relevant variables have been selected without including too many irrelevant ones. Vertical lines

are plotted as a guideline to indicate when the FPR reaches 2.5|S|/p. Since the existing R

implementation of ISIS (package SIS) returns the final selection of variables only, rather than

an entire path, we did not produce the ROC curves for that method.

Overall, compared with other methods, TCS1, TCS2 and FR achieve a high TPR more quickly

without including too many irrelevant variables and thus tend to achieve a small L2 distance.

While the PC-simple algorithm attains a low FPR, its TPR is also low even when the significant

level for the testing procedure is set to be high. For certain set-ups, Lasso or SCAD achieves a

high TPR but only at the cost of a high FPR.

Specifically, for factor models (A)–(C), it can be observed that TCS1, TCS2, FR (combined
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Table 3: Simulation results for model (C) with |S| = 10. Results in bold font mean the value of FP+FN is the
lowest or within 10% of the lowest; the same for L2.

p R2 TCS1 TCS2 FR FS Lasso ISIS PCS MC+ SCAD FLASH

500 0.3 FP 4.21 3.57 9.56 8.44 43.82 1.81 5.73 38.84 42.23 19.97
FN 6.27 5.45 5.81 7.44 3.08 9.81 9.42 4.49 3.69 5.19

FP+FN 10.48 9.02 15.37 15.88 46.9 11.62 15.15 43.33 45.92 25.16
L2 0.207 0.172 0.246 0.427 0.166 0.718 0.648 0.322 0.189 0.271

0.6 FP 6.57 4.44 15.67 15.61 45.36 1.83 5.78 64.69 38.82 19.07
FN 3.44 2.01 1.57 3.35 1.99 9.83 9.31 5.73 3.4 4.09

FP+FN 10.01 6.45 17.24 18.96 47.35 11.66 15.09 70.42 42.22 23.16
L2 0.066 0.024 0.019 0.114 0.093 0.858 0.782 0.36 0.164 0.207

0.9 FP 6.89 3.49 16.22 17.58 48.62 1.79 5.9 58.78 39.17 18.66
FN 1.06 0.86 0.63 1.43 1.01 9.79 9.47 5.7 3.16 3.16

FP+FN 7.95 4.35 16.85 19.01 49.63 11.58 15.37 64.48 42.33 21.82
L2 0.011 0.002 0.025 0.078 0.035 0.82 0.752 0.374 0.157 0.2

1000 0.3 FP 2.29 3.45 8 6.73 45.22 1.92 5.86 109.1 114.8 19.63
FN 7.9 5.77 7.75 8.67 4.33 9.92 9.58 6.48 3.63 6.92

FP+FN 10.19 9.22 15.75 15.4 49.55 11.84 15.44 115.6 118.4 26.55
L2 0.558 0.342 0.694 0.835 0.414 0.993 0.897 0.588 0.343 0.554

0.6 FP 5.04 4.72 15.21 11.93 48.97 1.92 6.13 90.51 110.8 19.86
FN 5.79 3.6 4.31 6.41 3.27 9.92 9.6 6.74 2.51 5.97

FP+FN 10.83 8.32 19.52 18.34 52.24 11.84 15.73 97.25 113.3 25.83
L2 0.286 0.138 0.293 0.456 0.287 1.006 0.905 0.537 0.214 0.404

0.9 FP 9.15 5.44 20.3 15.99 52.41 1.8 6.23 78.06 100.4 20.67
FN 3.74 1.72 2.18 4.22 2.28 9.8 9.56 6.75 1.75 5.16

FP+FN 12.89 7.16 22.48 20.21 54.69 11.6 15.79 84.81 102.1 25.83
L2 0.258 0.058 0.147 0.52 0.174 1.09 0.985 0.612 0.137 0.43

2000 0.3 FP 1.75 2.25 5.12 4.97 47.13 1.89 6.4 133.6 129.4 19.9
FN 8.72 7.34 9.13 9.44 5.63 9.89 9.74 7.39 4.81 7.89

FP+FN 10.47 9.59 14.25 14.41 52.76 11.78 16.14 141 134.3 27.79
L2 0.649 0.446 0.855 0.894 0.499 0.951 0.87 0.669 0.438 0.678

0.6 FP 3.4 4.76 11.64 6.85 49.4 1.94 6.31 187.3 125.4 20.29
FN 7.83 4.62 7.27 8.66 4.56 9.94 9.78 6.67 3.68 7.69

FP+FN 11.23 9.38 18.91 15.51 53.96 11.88 16.09 194 129 27.98
L2 0.512 0.164 0.629 0.761 0.418 0.943 0.857 0.566 0.31 0.675

0.9 FP 7.02 4.93 19.17 10.77 52.8 1.91 6.16 149.3 117.3 20.81
FN 5.75 2.64 4.3 7.17 3.87 9.91 9.65 7.25 2.85 7.3

FP+FN 12.77 7.57 23.47 17.94 56.67 11.82 15.81 156.6 120.2 28.11
L2 0.36 0.104 0.292 0.516 0.284 0.796 0.708 0.552 0.196 0.56

Table 4: Simulation results for models (D)–(E) with |S| = 4 and 5. Results in bold font mean the value of
FP+FN is the lowest or within 10% of the lowest; the same for L2.

p ϕ TCS1 TCS2 FR FS Lasso ISIS PCS MC+ SCAD FLASH

1000 0.5 FP 0.71 2.4 22.41 27.86 58.73 1.21 2.33 27.94 111 26.18
FN 0 0 0 1 1 3.21 1.65 0.6 1 1

FP+FN 0.71 2.4 22.41 28.86 59.73 4.42 3.98 28.54 112 27.18
L2 0.149 0.351 2.876 33.46 30.92 47.9 38.74 19.12 30.96 31.85

0.95 FP 0.39 0.76 19.84 7.14 28.37 1.45 1.42 49.58 46.68 12.88
FN 1.43 3.64 1.89 2.05 1.54 3.71 3.58 1.7 2.07 1.61

FP+FN 1.82 4.4 21.73 9.19 29.91 5.16 5 51.28 48.75 14.49
L2 26.71 71.17 76.23 70.87 65.82 73.73 71.61 67.07 69.23 67.21

1000 0.5 FP 0.85 3.31 30.2 29.06 56.92 1.23 2.31 32.56 112.3 27.04
FN 0.03 0.11 0.01 1.15 1.05 4.23 2.42 0.79 1.02 1.19

FP+FN 0.88 3.42 30.21 30.21 57.97 5.46 4.73 33.35 113.3 28.23
L2 0.177 0.528 4.102 33.5 31.46 48.83 39.46 22.11 31.46 32.18

0.95 FP 0.05 0.05 26.08 4.5 28.74 1.03 1.01 35.82 43.73 12.78
FN 2.76 3.96 1.75 2.32 1.56 4.1 3.77 1.86 2.11 1.83

FP+FN 2.81 4.01 27.83 6.82 30.3 5.13 4.78 37.68 45.84 14.61
L2 49.89 71.56 81.1 69.81 65.9 76.37 71.88 66.78 68.76 67.28
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Table 5: Simulation results for model (F) with |S| = 10. Results in bold font mean the value of FP+FN is the
lowest or within 10% of the lowest; the same for L2.

p R2 TCS1 TCS2 FR FS Lasso ISIS PCS MC+ SCAD FLASH

1000 0.3 FP 2.27 2.08 13.68 1.65 23.69 0.87 6.09 130.6 23.61 7.97
FN 7.2 6.45 5.12 8.94 8.22 9.92 8.33 7.81 8.42 5.96

FP+FN 9.47 8.53 18.8 10.59 31.91 10.79 14.42 138.4 32.03 13.93
L2 3.376 2.579 3.549 6.487 6.33 7.577 5.144 6.654 6.346 2.605

0.6 FP 3.97 3.87 16.36 1.58 21.89 0.78 5.98 106.4 23.54 8.48
FN 4.65 4.11 4.07 9.1 8.24 9.89 8.37 7.88 8.46 5.22

FP+FN 8.62 7.98 20.43 10.68 30.13 10.67 14.35 114.2 32 13.7
L2 3.029 2.515 6.604 10.53 10.25 11.5 7.181 10.64 10.38 4.229

0.9 FP 5.97 5.17 14.54 1.77 20.29 0.83 6.1 115.2 20.72 7.73
FN 1.95 2.42 3.45 9.14 8.7 9.88 8.3 8.03 8.87 4.81

FP+FN 7.92 7.59 17.99 10.91 28.99 10.71 14.4 123.2 29.59 12.54
L2 0.573 2.055 5.81 9.555 9.501 10.65 8.428 9.736 9.51 5.428

2000 0.3 FP 1.76 1.53 12.56 1.49 21.06 0.84 6.89 154.2 26.63 8.88
FN 8.66 8.25 7.73 9.48 8.89 9.9 8.75 8.37 8.86 7.06

FP+FN 10.42 9.78 20.29 10.97 29.95 10.74 15.64 162.6 35.49 15.94
L2 4.774 3.952 5.626 6.371 6.267 7.756 5.484 6.403 6.286 4.27

0.6 FP 3.18 2.51 16.9 1.62 20.89 0.85 6.45 250.1 29.89 8.46
FN 6.94 7.04 6.56 9.51 8.83 9.9 8.56 8.05 8.86 6.56

FP+FN 10.12 9.55 23.46 11.13 29.72 10.75 15.01 258.2 38.75 15.02
L2 2.424 2.9 5.74 6.891 6.901 8.071 6.072 7.013 6.902 4.79

0.9 FP 5.4 4.42 18.96 1.83 22.73 0.83 6.73 202.3 29.23 9.04
FN 4.29 3.98 5.17 9 8.72 9.92 8.64 8.25 8.99 5.86

FP+FN 9.69 8.4 24.13 10.83 31.45 10.75 15.37 210.6 38.22 14.9
L2 1.675 1.745 3.64 5.232 5.254 6.67 4.133 5.401 5.275 2.841

with the extended BIC) and SCAD are superior to other methods in terms of achieving small

FN, especially when R2 is sufficiently high. However, the FR and SCAD tend to result in a

model with too large an FP in comparison to the TCS algorithm, and therefore the L2 distance

obtained from TCS2 is often the smallest. This becomes more obvious as the dimensionality

grows and the number of factors increases, and the ROC curves in Figures 1–2 also support this

conclusion, as those from the TCS algorithm attain a higher TPR for a similar level of FPR. Note

that from our extensive numerical experiments, we observed that increasing number of factors

led to an increased chance of marginal correlation screening being misleading at the very first

iteration in the sense that argmaxj |XT
j y| /∈ S. In such set-ups, the adaptive choice of Cj used

by the TCS algorithm turned out to be helpful in correctly identifying a relevant variable more

often than marginal correlation screening. Between TCS1 and TCS2, while the two perform

as well as each other for the two factor models from (A), it is TCS2 which outperforms the

other for the models with more factors. As for the rest of the methods, FS performs as well as

FR for lower dimensionality, and even better in terms of FP, but its FN is larger than that of

FR as p and the number of factors increase. Both PCS algorithm and ISIS return final models

which are too small and therefore obtain large FN and small FP; especially ISIS almost always

misses the entire set of variables in S. Lasso is not significantly inferior to, and occasionally

better than, TCS1, TCS2 and FR in terms of FN, but it tends to select a model with a large

FP like SCAD. While the ROC curves of MC+ and FLASH behave better than that of SCAD

for certain set-ups (e.g. for two factor models), final selected models for these methods achieve

larger FN. Finally, in terms of FP, FLASH tends to be better than SCAD, MC+ and Lasso.

For models (D) and (E), the TCS algorithm and FR outperform the rest when ϕ = 0.5, rapidly
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identifying all the relevant variables before the FPR reaches 2.5|S|/p (left column of Figure 3).

However, when correlations among the variables increase with ϕ = 0.95, ROC curves show that

TCS1 is the only method that can identify all the relevant variables (right column of Figure 3).

Other methods, including TCS2 and FR, often neglect to include X4 due to its high correlations

with the other variables,
√
ϕ being almost 0.975. We note that while the ROC curves indicate

that very often all the relevant variables are recovered by TCS1, the models selected by the

extended BIC leave out some of them. Since the final models from TCS1 tend to contain the

smallest number of noisy variables, we conclude that the extended BIC tends to choose final

models which are too small for these particular examples. The rest of methods behave similarly

as in the case of factor models; while Lasso, MC+, SCAD and FLASH achieve relatively small

FN, the FP of their final models is too large and therefore they end up with a larger L2 distance

than that of TCS1.

For the examples generated from the Leukemia dataset (model (F), Figure 4), the TCS al-

gorithm with either of the rescaling methods always performs the best, with its ROC curves

always dominating those of others. FR performs the second best and then follows FLASH. The

remaining methods are not able to identify as many relevant variables as the TCS algorithm or

FR even for a high FPR. The results reported in Table 5 also support this observation, where

it is clear that the smallest FP and L2 distance are attained by either TCS1 or TCS2. Some-

times FR outperforms the two in terms of FN but TCS1 or TCS2 still achieves a smaller L2

distance, which implies that TCS algorithm, when combined with the extended BIC, can pick

up a smaller model that better mimics the true coefficient vector than that yielded by FR with

the same criterion. Interestingly, when it comes to the final model, FLASH achieves similar FN

and much smaller FP than FR.

We have observed that the two rescaling methods sometimes select variables in different orders,

although it does not necessarily imply that the resulting models are different. Overall, TCS2

performs better than TCS1 except for the examples from (D)–(E). In these two models, the

variables X1, . . . ,Xp have a very special correlation structure in that e.g. X4, a significant

variable, can often appear uncorrelated with y in marginal correlation screening. Since TCS1

involves the term ‖(In − ΠA)Xj‖22 in the denominator of the tilted correlation, as opposed to

the term ‖(In − ΠA)Xj‖2 in TCS2, it is better at picking up X4 than TCS2. In the factor

model examples, while the overall correlations among the variables are high, such “masking”

does not take place as often among the significant variables. Therefore we conclude that unless

the correlations are particularly high, TCS2 usually performs well.

5 Boston housing data analysis

In this section, we apply the TCS algorithm as well as the methods used in the simulation study

in Section 4 to the Boston housing data, which was previously used to compare the performance

of different regression techniques e.g. in Radchenko and James (2011). Originally, the dataset

contains 13 variables which may have influence over the house prices. As in Radchenko and

James (2011), we include the interaction terms between the variables in the analysis such that

the data has p = 91 variables and n = 506 observations. Note that, due to the way the variables
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Table 6: Boston housing data: test errors and the number of selected variables averaged over
20 test data sets.

TCS1 TCS2 FR PC-simple MC+ SCAD FLASH

test error 27.03 26.43 33.10 32.47 36.47 34.95 30.14
number of variables 19.5 13.5 16.0 2.0 83.5 36.0 26.0

are produced, there exist large sample correlations across the columns of the design matrix X.

We split the data into three with n1 = 91(= p), n2 = 46 and n3 = 369 observations each, and

use the first n1 observations as the training data (to compute a solution path for each method),

next n2 observations as the validation data (to choose the solution along the path that minimises

the sum of the squared residuals for each method), and the last n3 for computing the test error

(n−1
3 ‖y−ŷ‖22). Random splitting of the data is repeated 20 times and Table 6 reports the average

test error and number of selected variables, which shows that TCS2 achieves the minimum test

error with the fewest variables in the model (except for the PC-simple algorithm). TCS1 also

performs second best with more variables selected during the validation step. FR performs well

in terms of both test error and the number of selected variables, and then follows FLASH. We

note that the PC-simple algorithm chooses too few variables to describe the data well, while

the non-convex penalty algorithms (MC+, SCAD) tend to include many more variables than

the rest.

6 Conclusions

In this paper, we proposed a new way of measuring strength of association between the variables

and the response in a linear model with a possibly large number of covariates, by adaptively tak-

ing into account correlations among the variables. We conclude by listing the new contributions

made in this paper.

• Although tilting is not the only procedure which measures the association between a

variable and the response conditional on other variables, its selection of the conditioning

variables is a step further from simply using the current model itself or its sub-models, as is

done in existing iterative algorithms. The hard-thresholding step in the tilting procedure

enables an adaptive choice of the conditioning subset Cj for each variable Xj. Recalling

the decomposition of the marginal correlation in (2), this adaptive choice can be seen as

a vital step in capturing the contribution of each variable to the response. Also, in the

case Cj = ∅, tilted correlation is identical to marginal correlation, which can be viewed as

“adaptivity” of our procedure.

• We propose two rescaling factors to obtain the tilted correlation c∗j . Rescaling 1 (λj) is

also adopted by the forward regression and rescaling 2 (Λj) is also adopted by the PC-

simple algorithm, yet tilting is the only method to meaningfully use both rescaling factors

and our theoretical results in Section 2.3 are valid for either of the two factors. It would

be of interest to identify a way of combining the two rescaling methods, which we leave

as a topic for future research.
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• The separation of relevant and irrelevant variables, achieved by tilted correlation (as in

our Theorems 1–3), cannot always be achieved by marginal correlation, and similar results

to these theorems have not been reported previously to the best of our knowledge.

• The proposed TCS algorithm is designed to fully exploit the theoretical properties of the

tilted correlation, and in particular its asymptotic consistency in separating between the

relevant and irrelevant variables. Although we have not yet been able to demonstrate

the model selection consistency of the TCS algorithm, numerical experiments confirm its

good performance in comparison with other well-performing methods, showing that it can

achieve high true positive rate without including many irrelevant variables. The algorithm

is simple, easy to implement and does not require the use of advanced computational tools.

Ending on a slightly more general note, since correlation is arguably the most widely used

statistical measure of association, we would expect our tilted correlation (which can be viewed

as an “adaptive” extension of standard correlation) to be more widely applicable in various

statistical contexts beyond the simple linear regression model.
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A Proof of Theorem 1

The proof of Theorem 1 is divided into Steps 1–3. Recalling the decomposition of (X∗
j )

Ty in

(3), we first control the inner product between X∗
j and ǫ uniformly over all j in Step 1. In Steps

2–3, we control the second summand I ≡∑k∈S\Cj ,k 6=j βkX
T
j (In − Πj)Xk for j falling into two

different categories, and thus derive the result.

Step 1 For ǫ ∼ Nn(0, n
−1σ2·In), we observe that, with probability converging to 1, max1≤j≤p |〈ǫ, Zj〉| ≤

σ
√

2 log p/n for Z1, . . . , Zp ∈ Rn having unit norm as ‖Zj‖2 = 1. From (A2), we have

σ
√

2 log p/n ≤ Cn−γ for some C > 0, and from (A5), ‖X∗
j ‖2 >

√
α > 0. Therefore by

defining E0 = {maxj |(X∗
j )

T ǫ| < Cn−γ}, it follows that P(E0)→ 1.

Step 2 In this step, we turn our attention to those j whose corresponding Cj satisfy S \ {j} ⊆ Cj
and thus the corresponding I = 0 and (X∗

j )
Ty = βj(1− aj) + (X∗

j )
T ǫ.

Rescaling 1. With the rescaling factor λj = (1 − aj) which is bounded away from 0

by (A5), it can be shown that if such j belongs to S, its tilted correlation satisfies

c∗j (λj)/βj → 1 on E0, as |βj | ≫ n−µ. On the other hand, if j /∈ S, we have βj(1−aj) =
0 which leads to nµ · c∗j (λj) ≤ nµ · Cn−γ → 0 on E0.

Rescaling 2. Note that j whose Cj include all the members of S cannot be a mem-

ber of S itself, and in this case, (In − Πj)y is reduced to (In − Πj)ǫ. Since (A3)

assumes that each Cj has its cardinality bounded by Cnξ, it can be shown that

P
(

maxj ‖Πjǫ‖2 ≤ C ′n−(γ−ξ/2)
)

→ 1 for some C ′ > 0, similarly to Step 1. Also,

23



Lemma 3 from Fan and Lv (2008) implies that P
(

σ−2 · ‖ǫ‖22 < 1− ω
)

→ 0 for

any ω ∈ (0, 1). Combining these observations with (A1) and (A4), we derive that

1 − ajy = ‖(In − Πj)ǫ‖22/‖y‖22 ≥ Cn−δ with probability tending to 1, and eventu-

ally we have Λj ≥ C ′n−δ/2 from (A5). Therefore, if S ⊆ Cj for some j /∈ S, its
corresponding tilted correlation satisfies nµ · c∗j (Λj) ≤ nµ · Cn−(γ−δ/2) → 0 on E0.
In the case of S * Cj, we can derive from (A6) that for such j, ‖(In−Πj)y‖22/‖y‖22 =

1 − ajy ≫ n−κ, which, combined with (A5), implies that Λj ≫ n−κ/2. Then the

following holds for such j on E0: nµ · |c∗j (Λj)| ≥ nµ · C|βj| → ∞ if j ∈ S, while
nµ · c∗j (Λj) ≤ nµ · Cn−(γ−κ/2) → 0 if j /∈ S.

Step 3 We now consider those j ∈ J for which S \ {j} * Cj and consequently the corresponding

term I 6= 0 in general. From (A3) and Condition 1, we derive that for each j, there exists

some C > 0 satisfying the following for all k ∈ S \ Cj , k 6= j,

|XT
j (In −Πj)Xk| ≤ |XT

j Xk|+ |(ΠjXj)
TXk| ≤ Cn−γ . (9)

Then from (A1) and (A4), we can bound I as |I| ≤ C ′n−(γ−δ). Also when S \ {j} * Cj,
(A5)–(A6) imply that Λj ≫ n−κ/2. In summary, we can show that the following claims

hold on E0, similarly as in Step 2: if j /∈ S, with either of the rescaling factors, nµ ·c∗j (λj) ≤
nµ · Cn−(γ−δ−κ/2) → 0, whereas if j ∈ S, its coefficient satisfies |βj | ≫ n−µ and therefore

nµ · |c∗j | ≥ nµ · C|βj | → ∞ with c∗j (λj)/βj → 1 for j ∈ S. �

A.1 An example satisfying Condition 1

In this section, we verify the claim made in Section 2.3.1, which states that Condition 1 holds

with probability tending to 1 when each column Xj is generated independently as a random

vector on a n-dimensional unit sphere. We first introduce a result from modern convex geometry

reported in Lecture 2 of Ball (1997), which essentially implies that, as the dimension n grows,

it is not likely for any two vectors on a n-dimensional unit sphere to be within a close distance

to each other.

Lemma 1. Let Sn−1 denote the surface of the Euclidean ball Bn
2 = {x ∈ Rn :

∑n
i=1 x

2
i ≤ 1}

and u ∈ Rn be a vector on Sn−1 such that ‖u‖2 = 1. Then the proportion of spherical cone

defined as {v ∈ Sn−1 : |uTv| ≥ ω} for any u is bounded from above by exp(−nω2/2).

We first note that any Xk, k 6= j can be decomposed as the summation of its projection onto

Xj and the remainder, i.e., Xk = cj,kXj + (In −XjX
T
j )Xk. Then

(ΠjXj)
TXk = cj,k(ΠjXj)

TXj +
{

(In −XjX
T
j )ΠjXj

}T
Xk,

and for k ∈ S \ Cj, k 6= j, the first summand is bounded from above by aj · πn ≤ C1n
−γ . As for

the second summand, note that

‖(In −XjX
T
j )ΠjXj‖22 = (ΠjXj)

T (In −XjX
T
j )ΠjXj = aj(1− aj),

and thus w = {aj(1− aj)}−1/2 · (In − XjX
T
j )ΠjXj satisfies w ∈ Sn−1. Then the probability
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of |wTXk| > Cn−γ for any k ∈ S \ Cj , k 6= j is bounded from above by the proportion of the

spherical cone
{

Xk ∈ Sn−1 : |wTXk| > Cn−γ
}

in the unit sphere Sn−1. Applying Lemma 1,

we can show that such proportion is bounded by exp
(

−C2n1−2γ/2
)

for each j and k. Therefore,

we can find some C > 0 satisfying

P

(

max
j∈J ; k∈S\Cj , k 6=j

|(ΠjXj)
TXk| > Cn−γ

)

≥ 1− p|S| exp
(

−C ′n1−2γ/2
)

,

where the right-hand side converges to 1 from assumptions (A1)–(A2).

B Proof of Theorem 2

For those j ∈ K = S ∪ {∪j∈SCj}, Condition 3 implies that Ck ∩ Cj = ∅ if k ∈ S \ Cj . Then from

(A3), we have ‖ΠjXk‖2 ≤ Cn−(γ−ξ/2) and therefore

∣

∣XT
j (In −Πj)Xk

∣

∣ =
∣

∣XT
j Xk − (ΠjXj)

TΠjXk

∣

∣ ≤ Cn−γ +C ′n−(γ−ξ/2),

which leads to

∣

∣

∣

∣

∣

∣

∑

k∈S\Cj ,k 6=j

βkX
T
j (In −Πj)Xk

∣

∣

∣

∣

∣

∣

= O
(

n−(γ−δ−ξ/2)
)

(10)

for all j ∈ K. Using Step 1 of Appendix A, we derive that

E01 =







max
j∈K

∣

∣

∣

∣

∣

∣

∑

k∈S\Cj ,k 6=j

βkX
T
j (In −Πj)Xk +XT

j (In −Πj)ǫ

∣

∣

∣

∣

∣

∣

≤ Cn−(γ−δ−ξ/2)







satisfies P(E01) = P(E0)→ 1. Since µ+κ/2 < γ− δ− ξ/2, we have nµ · c∗j → 0 for j /∈ S on E01,
whereas nµ · |c∗j | → ∞ and c∗j (λj)/βj → 1 for those j ∈ S. Therefore the dominance of tilted

correlations for j ∈ S over those for j ∈ K \ S follows. �

C Proof of Theorem 3

Compared to Condition 2, Condition 3 does not require any restriction on Cj∩Ck when both Xj

and Xk are relevant, although it has an additional assumption (C2). Since nµ · |βj |(1−aj)→∞
for j ∈ S from (A4)–(A5), (C2) implies that for any j ∈ S, non-zero coefficients βk, k ∈ S \ Cj
do not cancel out all the summands in the following to 0,

XT
j (In −Πj)XSβS = βj(1− aj) +

∑

k∈S\Cj ,k 6=j

βkX
T
j (In −Πj)Xk.

If (10) in Appendix B holds, (C2) follows and therefore it can be seen that Condition 2 is

stronger than Condition 3.

On the event E0 (Step 1 of Appendix A), |XT
j (In − Πj)y| ≫ n−µ for j ∈ S under (C2) and

therefore the tilted correlations of relevant variables satisfy |c∗j | ≫ n−µ with either of the
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rescaling factors. On the other hand, for j ∈ K \ S, we can use the arguments in Appendix B

to show that nµ · c∗j → 0. �

D Study of the assumptions (A5) and (A6)

In this section, we show that the assumptions (A5) and (A6) are satisfied under the following

condition from Wang (2009). Let λ∗(A) and λ∗(A) represent the smallest and the largest

eigenvalues of an arbitrary positive definite matrix A, respectively.

• Both X and ǫ follow normal distributions.

• There exist two positive constants 0 < τ∗ < τ∗ <∞ such that τ∗ < λ∗(Σ) ≤ λ∗(Σ) < τ∗,

where cov(xi) = Σ for i = 1, . . . , n.

Then, Wang (2009) showed that there exists η ∈ (0, 1) satisfying

τ∗ ≤ min
D

λ∗(X
T
DXD) ≤ max

D
λ∗(XT

DXD) ≤ τ∗ (11)

with probability tending to 1, for any D ⊂ {1, . . . , p} with |D| ≤ nη. We use the result from

(11) in the following arguments.

(A5) Recalling the notations X̃j = XCj and Πj = X̃j(X̃
T
j X̃j)

−1X̃T
j , we have

1−XT
j ΠjXj =

∥

∥

∥
Xj − X̃j(X̃

T
j X̃j)

−1X̃T
j Xj

∥

∥

∥

2

2
.

We let θ = (X̃T
j X̃j)

−1X̃T
j Xj and assume that ξ from assumption (A3) satisfies ξ ≤ η such

that, by applying (11), we obtain the following;

1−XT
j ΠjXj = (1,θ)

(

Xj , X̃j

)T (

Xj , X̃j

)

(1,θ)T

≥ (1,θ)λ∗

(

(Xj , X̃j)
T (Xj , X̃j)

)

(1,θ)T ≥ (1 + ‖θ‖22)τ∗ ≥ τ∗ > 0.

(A6) We note the link between (A6) and the asymptotic identifiability condition for high-

dimensional problems first introduced in Chen and Chen (2008). The condition can be

re-written as

lim
n→∞

min
D⊂J ,|D|≤|S|,D6=S

n(log n)−1 · ‖(In −ΠD)XSβS‖22
‖XSβS‖22

→∞, (12)

after taking into account the column-wise normalisation of X. Although the rate nκ is

less favourable than n(log n)−1, following exactly the same arguments as in Section 3 of

Chen and Chen (2008), we are able to show that (A6) is implied by the condition in (11).
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That is, letting θ = (X̃T
j X̃j)

−1X̃T
j XSβS , we have

nκ · ‖(In −Πj)XSβS‖22
‖XSβS‖22

≥ nκ inf
j /∈S

‖XS∩Cc
j
βS∩Cc

j
− X̃jθ‖22

‖XSβS‖22
≥ Cnκ−2δ inf

j /∈S

(

βT
S∩Cc

j
,−θ

)T
XT

S∪CjXS∪Cj

(

βT
S∩Cc

j
,−θ

)

≥ Cnκ−2δλ∗(S ∪ Cj)‖βS∩Cj‖22 (13)

for some positive constant C, where the second inequality is derived under the assumptions

(A1) and (A4). Then a constraint can be imposed on the relationship between κ, δ and ξ

such that the right-hand side of the above (13) diverges to infinity.
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Figure 1: ROC curves for the simulation model (A) with n = 100: TCS1 (empty circle), TCS2 (filled
circle), FR (empty square), FS (filled square), Lasso (crossed circle) PC-simple algorithm (cross “×”),
MC+ (empty triangle), SCAD (filled triangle) and FLASH (reversed triangle); FPR= 2.5|S|/p (vertical
dotted); first row: p = 500, second row: p = 1000, third row: p = 2000; first column: R2 = 0.3, second
column: R2 = 0.6, third column: R2 = 0.9.
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Figure 2: ROC curves for the simulation model (C) with n = 100.
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Figure 3: ROC curves for the simulation models (D) (first row) and (E) (second row) with n = 100;
first column: ϕ = 0.5, second column: ϕ = 0.95.
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Figure 4: ROC curves for the simulation model (F) with n = 72.
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