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Abstract

Sparse modelling has attracted great attention as an efficient way of

handling statistical problems in high dimensions. This thesis consid-

ers sparse modelling and estimation in a selection of problems such

as breakpoint detection in nonstationary time series, nonparametric

regression using piecewise constant functions and variable selection in

high-dimensional linear regression.

We first propose a method for detecting breakpoints in the second-

order structure of piecewise stationary time series, assuming that

those structural breakpoints are sufficiently scattered over time. Our

choice of time series model is the locally stationary wavelet process

(Nason et al., 2000), under which the entire second-order structure of a

time series is described by wavelet-based local periodogram sequences.

As the initial stage of breakpoint detection, we apply a binary seg-

mentation procedure to wavelet periodogram sequences at each scale

separately, which is followed by within-scale and across-scales post-

processing steps. We show that the combined methodology achieves

consistent estimation of the breakpoints in terms of their total num-

ber and locations, and investigate its practical performance using both

simulated and real data.

Next, we study the problem of nonparametric regression by means of

piecewise constant functions, which are known to be flexible in approx-

imating a wide range of function spaces. Among many approaches de-

veloped for this purpose, we focus on comparing two well-performing

techniques, the taut string (Davies & Kovac, 2001) and the Unbal-

anced Haar (Fryzlewicz, 2007) methods. While the multiscale nature

of the latter is easily observed, it is not so obvious that the former



can also be interpreted as multiscale. We provide a unified, multiscale

representation for both methods, which offers an insight into the re-

lationship between them as well as suggesting some lessons that both

methods can learn from each other.

Lastly, one of the most widely-studied applications of sparse modelling

and estimation is considered, variable selection in high-dimensional

linear regression. High dimensionality of the data brings in many

complications including (possibly spurious) non-negligible correlations

among the variables, which may result in marginal correlation being

unreliable as a measure of association between the variables and the

response. We propose a new way of measuring the contribution of

each variable to the response, which adaptively takes into account

high correlations among the variables. A key ingredient of the pro-

posed tilting procedure is hard-thresholding sample correlation of the

design matrix, which enables a data-driven switch between the use of

marginal correlation and tilted correlation for each variable. We study

the conditions under which this measure can discriminate between rel-

evant and irrelevant variables, and thus be used as a tool for variable

selection. In order to exploit these theoretical properties of tilted cor-

relation, we construct an iterative variable screening algorithm and

examine its practical performance in a comparative simulation study.
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Chapter 1

Introduction

One of the most challenging problems in modern statistics is to effectively analyse

complex and possibly high-dimensional data. Sparse modelling has often been

found attractive when it is believed that there exists a sparse structure which can

well-describe the data. For example, sparse modelling is widely adopted in high-

dimensional linear regression, where substantial progress has been made over the

last few decades under the assumption that only a small number of variables have

significant contribution to the response.

This thesis is divided into three parts where different statistical problems are

discussed under the common theme of sparse modelling and estimation, which are:

breakpoint detection in piecewise stationary time series, nonparametric regression

using piecewise constant estimators and variable selection in high-dimensional

linear regression. In Chapter 2, we first review the literature in the relevant

areas, as well as the basic of wavelet theory which is frequently used throughout

this thesis. The rest of the thesis is organised as follows.

Chapter 3. Multiscale and multilevel technique for consistent break-

point detection in piecewise stationary time series

Being one of the simplest forms of departure from stationarity, piecewise

stationary modelling can be useful for analysing a wide class of time series,

where a time series is assumed to be (approximately) stationary between

two adjacent breakpoints in its dependence structure. A commonly adopted

assumption in the relevant literature is that those structural breakpoints

1



are sufficiently scattered over time and thus sparse in the time domain.

Therefore classifying this problem as an application of sparse modelling

and estimation, we propose a breakpoint detection method for a class of

piecewise stationary, linear processes, which is a combined procedure of a

binary segmentation algorithm and post-processing steps. We show that

the breakpoints detected by our methodology are consistent estimates of

the breakpoints in the second-order structure of the time series, in terms

of their total number and locations, and apply the breakpoint detection

method to simulated data as well as Dow Jones Industrial Average index

to see its practical performance.

Chapter 4. Multiscale interpretation of piecewise constant estimators:

taut string and Unbalanced Haar techniques

In nonparametric regression, piecewise constant estimators are favoured for

their flexibility in approximating a wide range of function spaces. Chapter 4

compares two piecewise constant estimators, the taut string (see e.g. Davies

& Kovac (2001)) and the Unbalanced Haar (Fryzlewicz, 2007) techniques,

both of which show good performance in numerical experiments as well as

achieving theoretical consistency. We present a unified, multiscale repre-

sentation for both methods, which offers an insight into the links between

them and provides avenues for further improving the two techniques.

Chapter 5. High-dimensional variable selection via tilting

In high-dimensional linear regression problems, variable selection can im-

prove estimation accuracy and model interpretability when it is assumed

that only a small number of variables actually contribute to the response.

With growing dimensionality of data, the problem of correctly identifying

the relevant variables becomes more challenging, one of the complications

being the presence of (possibly spurious) non-negligible correlations among

the variables. In Chapter 5, a procedure termed tilting is proposed in order

to measure the association between each variable and the response in a way

that adaptively takes into account high correlations among the variables.

We study the conditions under which the tilted correlations of the relevant

variables dominate those of the irrelevant variables, and construct an itera-

2



tive algorithm based on this new measure, whose performance is compared

with other competitors in a simulation study.

In Fan & Lv (2010), the term “high” dimensionality was used to refer to the

general case where the dimensionality, or the complexity of the data, grew with

the sample size, and “ultra-high” to refer to the case where the dimensionality

increased at a non-polynomial rate. Therefore the first two problems can be

classified as high-dimensional problems, the dimensionality of the data being

equal to the number of observations in both problems, whereas the third problem

can include ultra-high dimensional cases in this thesis.

We note that the problems discussed in Chapters 3–5 are distinct from each

other in several aspects. For example, in Chapter 4, although a breakpoint in

a piecewise constant estimate can indicate where the mean of the data changes

significantly, the underlying function may not be piecewise constant itself; on the

other hand, the time series model used in Chapter 3 has piecewise constant com-

ponents in its decomposition, whose breakpoints correspond to the breakpoints

in the second-order structure of the time series. Also, the target data for a break-

point detection method or a piecewise constant estimator have natural (temporal)

ordering and thus structured differently from the data used in Chapter 5. This

difference is reflected in the model assumptions made in Chapter 3 and Chapter

5. In the former, the structural breakpoints are assumed to be both sparse in the

time domain and of sufficient distance from each other, while in the latter, the

parameter vector is assumed only to be sparse in terms of the number of non-zero

coefficients.

However, we can also draw connections between these different statistical

problems under the overall theme of this thesis, sparsity. Being located between

the two other chapters, Chapter 4 contains our attempt at establishing some links

between breakpoint detection and high-dimensional variable selection problems,

using the piecewise constant estimators discussed in that chapter as a “bridge”.

3



Chapter 2

Literature review

In this chapter, we provide a review of the literature on the sparse modelling and

estimation problems covered in this thesis, which include breakpoint detection

in nonstationary time series, nonparametric regression using piecewise constant

estimators and high-dimensional variable selection.

We begin with an overview of the wavelet theory, which has been applied to a

broad range of statistical analysis. Wavelets are frequently employed throughout

this thesis in different contexts.

2.1 Wavelets

A wavelet function is a wave-like oscillation whose compact support sets it apart

from the big waves such as sine and cosine functions. An excellent overview of

wavelet theory and its application can be found in Vidakovic (1999). In this

section, we provide a brief introduction to wavelets which is vital in expanding

the discussion of this thesis, including the multiscale nature of wavelets, discrete

wavelet transform and non-decimated wavelets.

We first present some properties of wavelets in connection with continuous

wavelet decomposition. A mother wavelet  is defined as any function in L2(ℝ),

the space of all square-integrable functions, which satisfies the following admis-

4



sibility condition,

C =

∫

ℝ

∣ ̂(!)∣2
∣!∣ d! <∞, (2.1)

where  ̂(!) is the Fourier transform of  (x). From the admissibility condition,

we can derive that

∫

 (x)dx =  ̂(0) = 0. (2.2)

From  , a family of functions  a,b are generated as translated and dilated versions

of the mother wavelet  for a ∈ ℝ ∖ {0} and b ∈ ℝ, i.e.

 a,b(x) =
1√
a
 

(
x− b
a

)

.

Example 1.2.2 given in Vidakovic (1999) notes that classical orthonormal bases,

such as Fourier basis for L2(ℝ), are non-local, since many basis functions have

substantial contributions at any value of a decomposition. The properties of

 as noted in (2.1) and (2.2) indicate that the bases generated from a wavelet

function can be localised both in frequency and time by their construction, and

such localisation in time can be made arbitrarily fine when an appropriate dilation

parameter a is chosen.

For any function f ∈ L2(ℝ), the continuous wavelet transform (CWT) is

defined as a function of two variables a and b,

CWTf(a, b) = ⟨f,  a,b⟩ =
∫

f(x) a,b(x)dx,

and under the admissibility condition, the original function f is recovered via the

following inverse transform,

f(x) =
1

C 

∫

ℝ2

CWTf(a, b) a,b(x)
dadb

a2
.

The CWT of a function of one variable is a function of two variables, which

implies that the CWT is redundant. This redundancy in transform can be reduced

5



by selecting discrete values of a and b. The following critical sampling

a = 2−i, b = k2−i;  i,k = 2i/2 (2ix− k) for i, k ∈ ℤ,

produces the minimal basis in the sense that, it preserves all the information

about the decomposed function and any coarser sampling does not give a unique

inverse transform. A generalisation of the above sampling can be obtained as

a = a−i0 , b = kb0a
−i
0 ; i, k ∈ ℤ, a0 > 1, b0 > 0.

Indices i and k are commonly referred to as “scale” and “location” parameters,

respectively. Large values of the scale parameter i denote finer scales where the

wavelet functions are more localised and oscillatory. On the other hand, small val-

ues of i denote coarser scales with less oscillatory wavelet functions. A theoretical

framework for the critically sampled wavelet transform was developed in Mallat

et al. (1989) and Mallat (1989), which is known as the Mallat’s multiresolution

analysis, and we describe it in the next section.

2.1.1 Multiresolution analysis

A multiresolution analysis is a sequence of closed subspaces {Vi}i∈ℤ in L2(ℝ)

satisfying the follows conditions.

(i) There exists a scaling function � ∈ V0 whose integer translations {�(x −
k)}k∈ℤ form an orthonormal basis of V0.

(ii) Spaces {Vi}i∈ℤ lie in a containment hierarchy as

⋅ ⋅ ⋅ ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ⋅ ⋅ ⋅ . (2.3)

(iii) Spaces are self-similar in the sense that f(2ix) ∈ Vi ⇐⇒ f(x) ∈ V0.

(iv) ∩iVi = {0} and ∪iVi = L2(ℝ).

6



From (i) and (iii), the set {
√
2�(2x−k)}k∈ℤ is an orthonormal basis for V1. Then,

since V0 ⊂ V1, the function � also belongs to V1 with the following representation

�(x) =
√
2
∑

k

ℎk�(2x− k) (2.4)

for some coefficients ℎk, k ∈ ℤ. We refer to this (possibly infinite) vector h =

{ℎk}k∈ℤ as a wavelet filter.

When there is a sequences of subspaces of L2(ℝ) satisfying (i)–(iv) with the

scaling function �, there exists an orthonormal basis for L2(ℝ) in the following

form

{ i,k(x) = 2i/2 (2ix− k) : i, k ∈ ℤ},

such that each { i,k(x) : k ∈ ℤ} for a fixed i is an orthonormal basis of Wi,

which is defined as the orthogonal complement space of Vi in Vi+1. We denote

this relationship between the function spaces by Vi+1 = Vi ⊕Wi. Then we have

Vi+1 = Vi ⊕Wi = Vi−1 ⊕Wi−1 ⊕Wi = ⋅ ⋅ ⋅ = V0 ⊕
i⊕

j=0

Wj ,

and taking i→∞,

L2(ℝ) = Vi0 ⊕
∞⊕

j=i0

Wj

for any i0 ∈ ℤ.

The function  =  0,0 is called a wavelet function or the mother wavelet,

and since  (x) ∈ V1, the following representation is satisfied for some coefficients

{gk}k∈ℤ,

 (x) =
√
2
∑

k

gk�(2x− k). (2.5)

Derivation of the mother wavelet  from the scaling function � was discussed in

Section 3.3.1 of Vidakovic (1999), where {gk}k∈ℤ and {ℎk}k∈ℤ were shown to be

related as gk = (−1)kℎ1−k.
Section 3.4 of the same monograph contains some examples of important

families of wavelets. By way of example, we introduce Haar wavelets, whose

7
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Figure 2.1: Examples of Haar wavelets:  (solid),  0,1 (dashed) and  1,0 (dotted).

scaling function is of the following form

�(x) = I(0 ≤ x < 1) =

{

1 if 0 ≤ x < 1,

0 otherwise.

Examining this scaling function, we have

�(x) = �(2x) + �(2x− 1) =
1√
2
⋅
√
2�(2x) +

1√
2
⋅
√
2�(2x− 1),

and thus the filter coefficients in (2.4) are derived as ℎ0 = ℎ1 = 1/
√
2. Then the

corresponding g0 = −g1 = 1/
√
2 and thus the wavelet function of Haar wavelets

satisfies

 (x) = �(2x)− �(2x− 1) =

⎧

⎨

⎩

1 if 0 ≤ x < 1
2
,

−1 if 1
2
< x ≤ 1,

0 otherwise.

Figure 2.1 shows the Haar wavelet function  , its shifted version  0,1 and its

rescaled version  1,0.
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2.1.2 Discrete wavelet transform

A discrete wavelet transform (Mallat, 1989; Mallat et al., 1989, DWT) is a wavelet

algorithm for fast decomposition and reconstruction of discrete datasets, which

is analogous to the fast Fourier transform (FFT). Wavelet transforms are linear

and can be defined using n×n-orthonormal matrices for the input data of size n.

The DWT avoids the matrix representation by exploiting the nested structure of

the multiresolution analysis, and thus saves time and memory.

Recalling the definition of function spaces Vi and Wi in Section 2.1.1, any

function f ∈ Vi has a unique representation as f(x) = v(x)+w(x), where v ∈ Vi−1

and w ∈ Wi−1. Thus f can be decomposed as

f(x) =
∑

k

ci,k�i,k(x)

=
∑

l

ci−1,l�i−1,l(x) +
∑

l

di−1,l i−1,l(x)

= v(x) + w(x). (2.6)

Note that from (2.4) and (2.5), we have

�i−1,l(x) = 2i/2
∑

k

ℎk�(2
ix− 2l − k) =

∑

k

ℎk−2l�i,k(x), (2.7)

 i−1,l(x) = 2i/2
∑

k

gk�(2
ix− 2l − k) =

∑

k

gk−2l�i,k(x). (2.8)

Since Vi and Wi are orthogonal, applying the above results to (2.6), we obtain

ci−1,l = ⟨f, �i−1,l⟩ = ⟨f,
∑

k

ℎk−2l�i,k(x)⟩

=
∑

k

ℎk−2l⟨f, �i,k(x)⟩ =
∑

k

ℎk−2lci,k (2.9)

and similarly

di−1,l =
∑

k

gk−2lci,k. (2.10)

Therefore coefficients {ci−1,k}, {di−1,k} can be computed using the coefficients
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from the next finer scale, {ci,k}. In the reverse direction, a single step in the

reconstruction algorithm can be written as

ci,k = ⟨f, �i,k⟩ = ⟨v, �i,k⟩+ ⟨w, �i,k⟩
=

∑

l

ci−1,l⟨�i−1,l, �i,k⟩+
∑

l

di−1,l⟨�i−1,l,  i,k⟩

=
∑

l

ci−1,lℎk−2l +
∑

l

di−1,lgk−2l.

In summary, we only need O(n) operations to perform the DWT for a finite

sequence of length n. Denoting the space of square-summable sequences by l2(ℤ),

let f = {fk}2
I−1
k=0 be an input sequence of length 2I in l2(ℤ). Then viewing f as the

vector of scaling coefficients of a function f , i.e. fk = cI,k = ⟨f, �I,k⟩, the DWT

of f is obtained by using (2.9) and (2.10),

DWT(f) = (c0,0, d0,0, d1,0, d1,1, d2,0, . . . , d2,3, . . . , dI−1,0, . . . , dI−1,2I−1−1). (2.11)

Roughly speaking, the wavelet coefficients di,k capture the local behaviour of f at

scale i and location 2I−ik, while c0,0 captures its overall average behaviour.

The DWT of f in (2.11) can also be represented using the decimation and

convolution operators, which are defined as below.

∙ The decimation operator [↓ 2] is a mapping from l2(ℤ) to l2(2ℤ) as

([↓ 2]f)k =
∑

l

flI(l − 2k) = f2k,

where I(x) is an indicator function satisfying I(x) = 0 except for I(0) = 1.

∙ The convolution operatorH with respect to the filter h = {ℎk}k∈ℤ is defined

as

H : l2(ℤ)→ l2(ℤ), (Hf)k =
∑

l

ℎl−kfl,

and G is similarly defined with respect to g = {gk}k∈ℤ.

We further define the operators ℋ = [↓ 2]H and G = [↓ 2]G. Then by applying ℋ

10



to cI = {cI,k}2
I−1
k=0 , we move to the next coarser scale “approximation”, cI−1 = ℋcI

where cI−1 is of length 2I−1. The “detail” information lost by this approximation

is captured by dI−1 = GcI , which is again of length 2I−1. By repeatedly applying

these two operators, we obtain another representation of the DWT as follows.

DWT(f) = (c0, d0, d1, . . . , dI−2, dI−1)

= (ℋI f,GℋI−1f,GℋI−2f, . . . ,Gℋf,Gf).

2.1.3 Non-decimated wavelet transform

In the non-decimated wavelet transform (NDWT), or the stationary wavelet trans-

form, wavelet coefficients are not decimated as in the DWT. Nason & Silverman

(1995) provided a detailed description of the NDWT and its potential applications

in nonparametric regression.

One limitation of the DWT is that it is not translation-invariant in the fol-

lowing sense: the wavelet coefficients of f� = {fk−�}k∈ℤ are generally not the

delayed versions of DWT(f). Due to the decimation operator [↓ 2] which takes

the elements of even indices only (([↓ 2]f)k = f2k), information about the input

data used by the DWT is restricted at dyadic locations.

Note that, by defining the shifting operator as

S : l2(ℤ)→ l2(ℤ) for which (Sf)k = fk+1,

a simple modification of [↓ 2] is defined as

[↓ 2]1 = [↓ 2]S such that ([↓ 2]1f)k = f2k+1.

The NDWT tackles the limitation of the DWT with a redundant decomposition

of f, which contains the wavelet coefficients obtained from all possible alterations

between [↓ 2] and [↓ 2]1 at every scale.

To have a close look at the NDWT, we need to define the dilation operator

[↑ 2] which alternates an input sequence with zeros, such that

([↑ 2]f)2k = fk and ([↑ 2]f)2k+1 = 0.

11



Then, an operator defined as H(r) = [↑ 2]rH is a convolution operator with

respect to the filter h(r) = {ℎ(r)k }k∈ℤ satisfying

ℎ
(r)
2rk = ℎk, and ℎ

(r)
k = 0 if k is not a multiple of 2r.

By its construction, h(r) is obtained by inserting a zero between every adjacent

pair of elements of h(r−1). We similarly define G(r) = [↑ 2]rG.

Given an input sequence f = {fk}2
I−1
k=0 ∈ l2(ℤ), let aI = f and recursively define

ai−1 = H(I−i)ai and bi−1 = G(I−i)ai,

for i = I, I−1, . . . , 1. Then the NDWT of f is bI−1, bI−2, . . . , bI−i0 , aI−i0 for a fixed

i0 ∈ {1, . . . , I} indicating the depth of transform. Since there is no decimation

step in the NDWT, all the subsequent ai and bi are of the same length (= 2I) as

the input sequence. Therefore performing the NDWT takes O(n logn) operations

rather than O(n) of the DWT.

2.1.4 Wavelets in this thesis

Vidakovic (1999) discussed a broad range of wavelet applications in statistical

problems, such as nonparametric regression, density estimation, time series analy-

sis and deconvolution. Antoniadis (1997) provided a survey of wavelet techniques

for nonparametric curve estimation, including both “linear” and “non-linear”

methods (see Section 2.4 for the definitions of these two different approaches).

In this thesis, a wavelet-based time series model is adopted as a framework for

developing a time series segmentation method in Chapter 3. The chosen model is

the locally stationary wavelet model, which was first introduced in Nason et al.

(2000) and further studied in Van Bellegem & von Sachs (2004) and Fryzlewicz

& Nason (2006). We provide a detailed description of the locally stationary

wavelet model in Section 2.2.2, and justify this choice as a suitable framework for

developing our segmentation procedure in Section 3.1.

Another wavelet application of interest in this thesis is in the context of non-

parametric regression. In Section 2.4.1, a non-linear shrinkage method named

wavelet thresholding (Donoho & Johnstone, 1994) is described, which automati-
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cally adapts to the unknown smoothness of the signal to be estimated. In Chap-

ter 4, the Unbalanced Haar wavelet estimator (Fryzlewicz, 2007) is discussed

in details, which combines the wavelet thresholding technique with an adaptive

selection of Haar-like wavelet basis.

2.2 Nonstationary time series analysis

For the theoretical treatment of time series procedures, the (weak) stationarity

assumption has often been adopted, under which the autocovariance functions

are constant over time depending only on the time lag. Although stationarity

is a well-studied assumption in time series, it is not necessarily a realistic one

when the time series under observation evolves in naturally nonstationary en-

vironments. One such example can be found in finance, where return series are

considered to have time-varying variance in response to the events taking place in

the market. Mikosch & Stărică (1999), Kokoszka & Leipus (2000) and Stărică &

Granger (2005), among many others, argued in favour of nonstationary modelling

of financial returns. For instance, given the explosion of market volatility dur-

ing the recent financial crisis, it is unlikely that the same stationary time series

model can accurately describe the evolution of market prices before and during

the crisis.

Great efforts have been made to relax the assumption of second-order station-

arity, and a selective review of linear nonstationary time series models is provided

in Section 2.2.1 below. As for non-linear processes, Dahlhaus & Subba Rao (2006)

generalised the class of autoregressive conditional heteroscedastic (ARCH) pro-

cesses to include the processes whose parameters were allowed to slowly change

over time. Similarly, Polzehl & Spokoiny (2006) introduced a more general class

of GARCH models with time varying coefficients, which admitted both abrupt

change and smooth transition in the parameters. In this thesis, however, we

restrict our attention to linear nonstationary processes only.

Among many nonstationary time series models, Section 2.2.2 is devoted to

describing the class of locally stationary wavelet time series (Nason et al., 2000),

which is adopted for the development of a breakpoint detection procedure in

Chapter 3 of this thesis.
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2.2.1 Nonstationary time series models

Spectral analysis has been a fundamental tool in time series analysis, and un-

der the weak stationarity assumption, the frequency domain characteristics of a

zero-mean process Xt can be explained by the following Cramér representation

(Cramér, 1942),

Xt =

∫ �

−�

A(!) exp(i!t)dZ(!), t ∈ ℤ, (2.12)

where A(!) denotes the amplitude of the process Xt at frequency !, and dZ(!)

is an orthonormal increment process satisfying

cov(dZ(!), dZ(!′)) =

{

d! if ! = !′

0 otherwise.

Between the spectrum density of Xt, defined as fX(!) = ∣A(!)∣2, and the auto-

covariance function cX , there exists the following relationship

cX(�) =

∫ �

−�

fX(!) exp(i!�)d!. (2.13)

To relax the stationarity assumption, Priestley (1965) proposed a class of

oscillatory processes as a modified version of (2.12), where the amplitude function

A(!) was replaced with a slowly-varying, time-dependent function At(!). Then,

the spectra functions of this oscillatory process had a physical interpretation of

being local energy distributions over frequency. However, it is not an easy task to

establish rigorous asymptotic theory for oscillatory processes; for the observations

{Xt}Tt=1 from an arbitrary nonstationary process, taking the sample size T to

infinity would simply imply the extension of the process to the future, which

does not throw any light on the behaviour of the process at the beginning of the

time interval.

To tackle this drawback, Dahlhaus (1997) proposed a framework analogous to

that of nonparametric regression by regarding the observations as being obtained

on a finer grid with increasing T . Then, adopting the notation of a triangular

stochastic array {Xt,T}T−1
t=0 , we can construct asymptotic theory of nonstationary
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time series. In Dahlhaus (1997), the class of locally stationary processes was

defined with its transfer function A0 and a continuous trend function � as below;

Xt,T = �

(
t

T

)

+

∫ �

−�

A0
t,T (!) exp(i!t)dZ(!), t = 0, . . . , T − 1; T > 0, (2.14)

and there exists a 2�-periodic function A : [0, 1]× ℝ→ ℂ satisfying

∙ A(u,−!) = A(u, !),

∙ A(u, !) is continuous in u, and

∙ for some C > 0,

sup
t,!

∣
∣
∣
∣
A0
t,T (!)−A

(
t

T
, !

)∣
∣
∣
∣
≤ C

T
.

Instead of replacing the transfer function A(!) in (2.12) by a smooth function

A(t/T, !) directly, the above definition requires only that the time-dependent

transfer function A0
t,T (!) is “close” to A(t/T, !). In this manner, the class of

locally stationary processes was shown to include autoregressive processes with

time-varying AR parameters (Dahlhaus, 1996). Another example of locally sta-

tionary processes is a time-modulated process of the following form

Xt,T = �

(
t

T

)

+ �

(
t

T

)

Yt,

provided Yt is stationary and the functions �, � : [0, 1]→ ℝ are continuous.

Adak (1998) extended the locally stationary process in (2.14) to the class

of piecewise locally stationary processes. Xt,T is piecewise locally stationary if

it is locally stationary at all time points z = t/T ∈ [0, 1], except possibly at

finitely many breakpoints. Piecewise stationary process (as a concatenation of

finite number of stationary processes) belong to the class of piecewise locally

stationary processes.

Ombao et al. (2002) introduced the Smooth Localised complex EXponential

(SLEX) basis vectors, which were simultaneously orthogonal and localised both in

time and frequency. Since the SLEX basis vectors overlap, the SLEX transform
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can be adopted to smoothly partition the time axis in a dyadic manner and

hence to represent discrete random processes whose spectral properties change

over time. The partitioning outcome can be used in modelling the data as a

blended stationary process, which assumes smooth transitions between adjoining

stationary blocks rather than abrupt changes as in piecewise stationary processes.

A time series segmentation method based on SLEX transform was introduced in

their paper, and its brief description can be found in Section 2.3.

2.2.2 Locally stationary wavelet model

Nason et al. (2000) defined the class of locally stationary wavelet (LSW) processes,

which could roughly be described as replacing the harmonic system exp(i!t) in

the locally stationary processes (2.14) by a wavelet system.

Before introducing the formal definition of the LSW model, we note that in

this section (and also in Chapter 3),  i,k is used to denote discrete, non-decimated

wavelets rather than wavelet functions as in Section 2.1 of this thesis. That is, a

discrete, non-decimated wavelet vector is denoted by

 i = ( i,0,  i,1, . . . ,  i,ℒi
)T

such that e.g. for Haar wavelets,  i,k satisfies

 i,k = 2i/2I{0,...,2−i−1−1}(k)− 2i/2I{2−i−1,...,2−i−1}(k) (2.15)

(IA(k) is an indicator function which takes 1 if k ∈ A and 0 otherwise), for all

i = −1,−2, . . . and k ∈ ℤ.

The data inhabit in scale zero, and small negative values of the scale pa-

rameter i denote “finer” scales where the wavelet vectors are more localised and

oscillatory, whereas large negative values of i denote “coarser” scales with longer,

less oscillatory wavelet vectors. As for ℒi, the length of a wavelet vector at scale

i, it can be shown that ℒi = (2−i − 1)(ℒ−1 − 1) + 1 for all i < 0. As seen in

(2.15), discrete, non-decimated wavelets can be shifted to any location defined

by the finest-scale wavelets, unlike in the DWT where its shifts are restricted

to “dyadic” locations (i.e. multiples of 2−i at scale i). Therefore discrete, non-
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decimated wavelets are no longer an orthonormal, but an overcomplete collection

of shifted vectors.

Now, we present the LSW model as defined in Nason et al. (2000).

Definition 2.1. A triangular stochastic array {Xt,T}T−1
t=0 for T = 1, 2, . . . , is in

the class of LSW processes if there exists a mean-square representation

Xt,T =

−1∑

i=−I(T )

∞∑

k=−∞

!i,k;T i,t−k�i,k (2.16)

where I(T ) = −min{i : ℒi ≤ T}. The parameters i ∈ {−1,−2, . . . ,−I(T )}
and k ∈ ℤ are used to denote the scale and the location respectively,  i =

( i,0, . . . ,  i,ℒi
) are discrete, real-valued, compactly supported, non-decimated wavelet

vectors, and �i,k are zero-mean, orthonormal, identically distributed random vari-

ables. For each i, there exists a Lipschitz-continuous function Wi : [0, 1] → ℝ

such that

∙ ∑−1
i=−∞ ∣Wi(z)∣2 <∞ uniformly in z ∈ (0, 1),

∙ the Lipschitz constants Li are uniformly bounded in i as well as satisfying
∑−1

i=−∞ 2−iLi <∞, and

∙ there exists a sequence of constants Ci satisfying
∑−1

i=−∞Ci <∞ and

sup
0≤k≤T−1

∣
∣
∣
∣
!i,k;T −Wi

(
k

T

)∣
∣
∣
∣
≤ Ci

T
, (2.17)

for each T and i = −1, . . . ,−I(T ).

As wavelets are parameterised by scale i and location k, the representation in

(2.16) is naturally scale- and location-dependent, and the local power in the au-

tocovariance of Xt,T is decomposed with respect to scales (instead of frequencies)

along time. That is, like the transfer function A0
t,T in (2.14), each !2

i,k;T measures

the local power (i.e. contribution to the autocovariance) of the time series at

scale i and location k. To obtain meaningful estimation results, {!2
i,k;T}k∈ℤ are

allowed to evolve slowly by being sufficiently close to regular Lipschitz functions

Wi(k/T ) as in (2.17).
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In the LSW framework, the asymptotic evolutionary wavelet spectrum (EWS)

is defined on the rescaled unit interval (0, 1) as

Si(z) = W 2
i (z) = lim

T→∞
!2
i,⌊zT ⌋;T , z ∈ (0, 1),

which has an interpretation of being the analogue of the spectrum of stationary

processes. By way of example, Nason et al. (2000) showed in Proposition 2.17 that

any stationary process with absolutely summable covariance is an LSW process,

since each EWS Si(z) does not change over the rescaled time z in such a case.

For stationary time series, the spectral density and the autocovariance func-

tion are related as one being the Fourier transform of the other, see (2.13). Such

relationship can also be derived in the LSW model framework using the same

wavelet system in (2.16). First, define the autocorrelation wavelets Ψi(�) =
∑∞

k=−∞  i,k i,k+� , and the autocorrelation wavelet inner product matrix A =

(Ai,j)i,j<0 with its elements

Ai,j =
∑

�

Ψi(�)Ψj(�).

Further, let cT (z, �) denote the finite-sample autocovariance function of Xt,T at

lag � and rescaled location z, i.e.

cT (z, �) = E
(
X⌊zT ⌋,TX⌊zT ⌋+�,T

)
,

and let c(z, �) denote the asymptotic local autocovariance function, which is

defined as a transform of Si(z) with respect to the set of autocorrelation wavelets,

i.e.

c(z, �) =

−1∑

i=−∞

Si(z)Ψi(�). (2.18)

Then, Proposition 2.11 of Nason et al. (2000) showed that, under the assumptions

in Definition 2.1, cT (z, �) and c(z, �) are close in the following sense,

∣cT (z, �)− c(z, �)∣ = O(T−1) (2.19)
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as T → ∞, uniformly in � ∈ ℤ and z ∈ (0, 1). Also the representation in (2.18)

is invertible as

Si(z) =
∑

�

(
∑

j

Ψj(�)A
−1
i,j

)

c(z, �),

see Proposition 2.14 in Nason et al. (2000). In summary, the above results show

that there is a one-to-one correspondence between the EWS and the asymptotic

local autocovariance function for the LSW time series.

An estimate for the EWS of an LSW process Xt,T can be obtained by using

the set of its squared wavelet coefficients, which is referred to as the wavelet

periodogram.

Definition 2.2. Let Xt,T be an LSW process constructed using the wavelet system

 . Then, the triangular stochastic array

I
(i)
t,T =

∣
∣
∣
∣
∣

∑

s

Xs,T i,s−t

∣
∣
∣
∣
∣

2

(2.20)

is the wavelet periodogram of Xt,T at scale i.

We quote the following result from Nason et al. (2000).

Proposition 2.1.

EI(i)t,T =
−1∑

j=−∞

Sj

(
t

T

)

Ai,j +O

(
2−i

T

)

. (2.21)

If Xt,T is Gaussian, then

var
(

I
(i)
t,T

)

= 2

{
−1∑

j=−∞

Sj

(
t

T

)

Ai,j

}2

+O

(
2−i

T

)

.

Defining �i(z) as a linear transform of evolutionary wavelet spectra with respect

19



to the autocorrelation wavelet inner product matrix

�i(z) =
−1∑

j=−∞

Sj(z)Ai,j ,

Proposition 2.1 implies that the wavelet periodogram I
(i)
t,T is an inconsistent but

asymptotically unbiased estimator of �i(t/T ). Therefore, from (2.21), we can

derive an estimate of Si(z) as

Ŝi(z) =
−1∑

j=−I(T )

I
(j)
⌊zT ⌋,TA

−1
i,j .

For the discussion on the smoothing of wavelet periodograms and the estimates

of EWS obtained from the smoothed I
(i)
t,T , see Nason et al. (2000). Using these

estimates of wavelet spectra, the local autocovariance function c(z, �) can also be

estimated from (2.18).

In Van Bellegem & von Sachs (2004) and Van Bellegem & von Sachs (2008),

a new definition for LSW model was introduced, enlarging the class of LSW

processes to contain the processes whose spectral density function may change

abruptly over time. It was achieved by replacing the Lipschitz condition in (2.17)

by a condition on the total variation of amplitudes. Fryzlewicz & Nason (2006)

presented a modified version of the LSW model in Definition 2.1, which assumed

the scale-dependent transfer function Wi(z) : [0, 1]→ ℝ to be piecewise constant

with a finite (but unknown) number of jumps, imposing a similar condition on

the total variation of Wi(z) as that in Van Bellegem & von Sachs (2004). In

Chapter 3, we describe this modified LSW model in Section 3.1, and adopt it as

a framework for developing a procedure which detects breakpoints in the second-

order structure of nonstationary time series.

As for multivariate time series analysis, Sanderson et al. (2010) proposed a

new bivariate LSW time series model, based on which they developed a method

of wavelet coherence for estimating the dependence between neuroscience data

recorded from different brain regions. In Eckley et al. (2010), an extended version

of the LSW model into two-dimensions was used to model and analyse image

texture data.
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2.3 Breakpoint detection in nonstationary time

series

As noted in Section 2.2, for the processes which evolve in naturally nonstationary

environments, nonstationary modelling appears more realistic than its stationary

counterpart. Piecewise stationarity is arguably the simplest form of departure

from stationarity, and one task when faced with data of this form is to detect

breakpoints in the dependence structure. The breakpoint detection problem in

nonstationary time series can be divided into two categories, as retrospective (a

posteriori) breakpoint detection and on-line breakpoint detection.

The on-line approach is adopted when the aim of analysis lies in detecting

any change while the monitoring of the data is still in progress. A survey of

the literature in this area can be found in Lai (2001), and more recent efforts

include Hawkins et al. (2003), Tartakovsky et al. (2006) and Mei (2006). On

the other hand, the retrospective approach takes into account the entire set of

observations at once and detects breakpoints which occurred in the past. Using

the term “segmentation” interchangeably with multiple breakpoint detection, the

outcome of a posteriori segmentation can be of interest for several purposes; for

example, the information from the last (approximately) stationary segment can be

useful in forecasting the future. We classify the time series segmentation problem

as an application of sparse modelling and estimation, since the breakpoints in

the dependence structure of the time series are often assumed to be sufficiently

scattered over time and thus sparse in the time domain.

In Section 2.3.1, we review a selection of breakpoint detection methods which

were proposed for detecting single or multiple breakpoints, in the dependence

structure of either independent or correlated observations. Among many proce-

dures developed for time series segmentation, Section 2.3.2 focuses on the binary

segmentation procedure, which is a key ingredient of our breakpoint detection

methodology proposed in Chapter 3.
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2.3.1 Retrospective breakpoint detection methods

Early breakpoint detection literature was mostly devoted to testing the existence

of a single breakpoint in the mean or variance of independent observations (Cher-

noff & Zacks, 1964; Hawkins, 1977; Hsu, 1977; Sen & Srivastava, 1975; Worsley,

1986).

When the presence of more than one breakpoint is suspected, an algorithm

for detecting multiple breakpoints is needed to extend the testing procedures

for a single breakpoint. Being a method of solving complex problems by break-

ing them down into simpler steps, dynamic programming was adopted in the

literature when the proposed segmentation procedure looked for the “optimal”

segmentation, according to a criterion tailored e.g. in the framework of maxi-

mum likelihood estimation (Hawkins, 2001) or reproducing kernel Hilbert space

(Harchaoui & Cappe, 2007). One drawback of dynamic programming is that its

application involves the difficult choice of the total number of breakpoints. An-

other method for tackling the multiple breakpoint detection problem is the binary

segmentation procedure, whose detailed description can be found in Section 2.3.2.

Various multiple breakpoint detection methods have been proposed for time

series of correlated observations. Adak (1998) proposed a segmentation procedure

which divided the time series into dyadic blocks using binary trees, and then

chose the best segmentation which minimised the discrepancy between estimated

spectra within each segment. Ombao et al. (2001) adopted a similar approach

of performing the data partitioning followed by the best segmentation selection.

Their Auto-SLEX procedure used the SLEX transform (see Section 2.2.1) to

produce a collection of overlapping dyadic partitions, from which it selected the

best segmentation by applying the best basis algorithm (for the details of the

best basis algorithm, see e.g. Wickerhauser (1994)).

In Lavielle & Moulines (2000), a method was developed for obtaining the

least squares estimates of multiple breakpoints in linear processes with chang-

ing mean, extending the work of Bai & Perron (1998) who considered the single

breakpoint case. Based on this method, Andreou & Ghysels (2002) studied a

heuristic segmentation procedure for the GARCH model with changing param-

eters. In Lavielle & Teyssière (2005), a breakpoint detection method was de-
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veloped for weakly or strongly dependent processes with time-varying volatility,

which minimised a penalised contrast function based on a Gaussian likelihood.

For solving the optimisation problem, it also used dynamic programming along

with an automatic procedure for choosing the final number of breakpoints.

Davis et al. (2006) developed the Auto-PARM procedure for segmenting a

piecewise stationary AR process, which was defined as a concatenation of sta-

tionary AR processes. Based on the idea that the best fitting model for a given

time series was the one that enabled the maximum compression of the data,

the Auto-PARM procedure was designed to look for a combination of the total

number and locations of breakpoints as well as the values of AR parameters,

which would minimise a certain criterion developed under the minimum descrip-

tion length (MDL) principle. They adopted a search heuristic termed the genetic

algorithm, which mimicked the process of natural evolution for traversing the

vast parameter space. This procedure was later extended to the segmentation of

non-linear processes in Davis et al. (2008).

2.3.2 Binary segmentation

Vostrikova (1981) introduced a binary segmentation procedure, which recursively

performed locating and testing for multiple breakpoints to achieve computation-

ally efficient and multilevel breakpoint detection. It was shown that the break-

point estimates from the binary segmentation were consistent for a class of ran-

dom processes with piecewise constant means. However, one limitation of the

proposed procedure was that the critical value of the test at each iteration was

difficult to compute in practice, due to the stochasticity in previously selected

breakpoints.

Venkatraman (1993) employed a similar idea to find multiple breakpoints in

the mean of independent and normally distributed variables with a test criterion

depending only on the length of data sequence. A brief sketch of the proposed

binary segmentation procedure is as below.

Let {Yt}Tt=1 denote the sequence to be segmented and

Yt = �t + �t, t = 1, . . . , T, (2.22)
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where �t may change over time in a piecewise constant manner, and �t are in-

dependent random noise following N(0, �2). The binary segmentation procedure

performs a hypothesis testing of t = b being a breakpoint by checking whether

{Yt}bt=1 and {Yt}Tt=b+1 have the same distribution or not, which is equivalent to

checking whether two segments have the same mean under the model (2.22). To

test the null hypothesis

H0 : �1 = �2 = ⋅ ⋅ ⋅ = �n

against the alternative hypothesis

H1 : �1 = ⋅ ⋅ ⋅ = �b ∕= �b+1 = ⋅ ⋅ ⋅ = �n,

the likelihood ratio statistic is of the form

Yb
1,T =

√

T − b
T ⋅ b

b∑

t=1

Yt −
√

b

T ⋅ (T − b)
T∑

t=b+1

Yt. (2.23)

Thus the test statistic at the first level of binary segmentation is obtained as

Y1,T = max
b=1,...,T

∣
∣Yb

1,T

∣
∣ ,

and if Y1,T is greater than a critical value, say CT , the null hypothesis of no

breakpoint is rejected and a breakpoint is estimated as b̂ = argmaxb
∣
∣Yb

1,T

∣
∣. The

next step is to divide the sequence into two, to the left and right of the estimated

breakpoint b̂ (i.e., {Yt}b̂t=1 and {Yt}Tt=b̂+1
), and the same searching and testing

procedure is performed at the next level, separately within each segment.

Venkatraman (1993) showed that the breakpoints detected by the procedure

described above were consistent in terms of their total number and locations with

the test criterion CT = T 3/8.

The binary segmentation procedure was also used in detecting multiple shifts

in the variance of independent observations (Chen & Gupta, 1997; Inclán & Tiao,

1994). Whitcher et al. (2000, 2002) and Gabbanini et al. (2004) suggested to seg-

ment long memory processes by applying the iterative cumulative sum of squares

(ICSS) algorithm (originally proposed in Inclán & Tiao (1994)) to discrete wavelet

coefficients of time series, which were approximately Gaussian and decorrelated.
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However, their approach does not take into account the autocorrelation still re-

maining in the wavelet coefficient sequence of time series.

Chapter 3 of this thesis addresses the problem of retrospective breakpoint

detection in the framework of a piecewise stationary time series model, which

is based on the LSW model described in Section 2.2.2. We propose a binary

segmentation procedure which permits autocorrelation in the sequence to be seg-

mented, with its test criterion depending on the sample size only and thus being

easy to compute. We show that this binary segmentation achieves consistency in

identifying the total number and locations of multiple breakpoints in correlated

sequences of a multiplicative form, instead of the additive form in (2.22).

2.4 Nonparametric regression

A canonical problem in nonparametric regression is the estimation of a one-

dimensional function f from noisy observations y in the following additive model

yt = f

(
t

n

)

+ �t, t = 1, ⋅ ⋅ ⋅ , n. (2.24)

In the simplest version of (2.24), {�t}nt=1 are assumed to be i.i.d. Gaussian vari-

ables satisfying E(�t) = 0 and var(�t) = �2. Although it is not necessarily a

realistic assumption in some applied problems, it serves as a good benchmark

for comparing estimation techniques and judging their potential performance in

more complex models. In other words, if a method performs poorly for the model

(2.24) with i.i.d. Gaussian noise, there is often little chance of it performing well

in more complex settings.

The problem of estimating f in the model in (2.24) is of interest for at least

two purposes: an estimate of f provides insights into the relationship between

the design variable xt (in the model (2.24), xt = t/n) and the response variable

yt, and it can also be used for predicting observations which have not been made

yet. Many approaches have been proposed to tackle this nonparametric regression

problem, and we list a few of them which have been widely studied since their

introduction.
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Kernel estimation (Nadaraya, 1964; Watson, 1964).

The Nadaraya-Watson kernel estimator is defined as

f̂K(x) =

{
n∑

s=1

K

(
x− xs
ℎ

)}−1

⋅
n∑

t=1

K

(
x− xt
ℎ

)

yt, (2.25)

where the kernel K is any smooth function satisfying

K(x) ≥ 0,

∫

K(x)dx = 1,

∫

xK(x)dx = 0 and

∫

x2K(x)dx > 0.

The bandwidth ℎ > 0 determines the amount of smoothing, i.e. the es-

timates f̂K using small values of ℎ are “rough”, while the estimates gets

“smoother” for large values of ℎ. By re-writing (2.25), we can show that

the kernel estimator is linear in the observations {yt}nt=1 in the following

sense: f̂K satisfies

f̂K(x) =

n∑

t=1

lt(x)yt where lt(x) =
K
(
x−xt
ℎ

)

∑n
s=1K

(
x−xs
ℎ

) .

Spline smoothing (Silverman, 1985; Wegman & Wright, 1983).

The smoothing spline estimator is defined as the minimiser of

n∑

t=1

(

yt − f̃(xt)
)

+ �

∫

f̃ ′′(x)2dx, (2.26)

over the class of twice differentiable functions f̃ . � ≥ 0 is a smoothing

parameter which controls the trade-off between fidelity to the data and

smoothness of the estimator f̂S. Due to the quadratic nature of (2.26), f̂S

is also a linear smoother, i.e. there exists a weight function G(z, x) (which

depends on the design points xt, t = 1, . . . , n and smoothing parameter �)

satisfying

f̂S(z) =
1

n

n∑

t=1

G(z, xt)yt.
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Local polynomials (Cleveland & Devlin, 1988; Fan & Gijbels, 1996).

Let z be some fixed value at which we wish to estimate f and let p ≥ 0 be

a fixed integer. Then local polynomial regression finds â = (â0, â1, . . . , âp)
T

which minimises the following locally weighted sum of squares

n∑

t=1

wt(z) (yt − Pz(xt; a)) , where

Pz(x; a) = a0 + a1(x− z) +
a2
2!
(x− z)2 + ⋅ ⋅ ⋅+ ap

p!
(x− z)p,

and returns the local estimate Pz(x; â). To be precise, the estimator â

depends on the value of z as â(z), and therefore at the target value x = z,

we have the localy polynomial regression estimate f̂P (z) = â0(z). The

special case of p = 1 is called local linear regression, and when p = 0,

local polynomial regression coincides with kernel estimation. As with the

kernel estimator, f̂P also has a relationship similar to that in (2.26) with the

observations {yt}nt=1. For the specific expression of lt for local polynomials,

see e.g. Fan & Gijbels (1995).

We note that the above description is intended as a brief taster of the well-

known nonparametric regression techniques, and that much work has been done

to improve and extend these methods. In their simplest form, however, all three

estimators are linear smoothers. When the underlying function f is smooth,

linear approximation methods can achieve optimal performance in terms of the

mean-square error (MSE) of the estimator f̂ ,

MSE(f̂ , f) =
1

n
E∥f̂ − f∥22.

For example, Fan (1993) showed that the minimax risk of local linear regression

smoothers was optimal for a class of smooth functions f , attaining both optimal

rates of convergence and (nearly) optimal constant factors.

On the other hand, when the underlying function f is irregular (e.g. discontin-

uous), non-linear approximation can achieve better performance (DeVore, 1998),

and in what follows, our focus is on presenting some well-performing non-linear

methods. Especially, Section 2.4.1 is devoted to a wavelet smoothing technique
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named wavelet thresholding (Donoho & Johnstone, 1995, 1994), and in Section

2.4.2, we review a selection of non-linear approximation methods which produce

piecewise constant estimators. We continue the discussion of non-linear, piecewise

constant estimators in Chapter 4, where a new, multiscale estimation framework

is introduced for the better understanding of some piecewise constant estimators.

2.4.1 Wavelet thresholding estimator

Donoho & Johnstone (1994) introduced a non-linear smoothing method called

wavelet thresholding technique. The first step of wavelet thresholding is to obtain

the DWT of the observations {yt}nt=1 as

di,k = �i,k + zi,k,

where di,k (�i,k, zi,k) denotes the DWT of yt (f(t/n), �t). Then a threshold � is

applied to shrink some wavelet coefficients di,k towards 0, and the wavelet thresh-

olding estimator of f , say f̂ , is returned as the inverse DWT of the thresholded

wavelet coefficients.

Since the DWT is orthonormal, zi,k, the DWT of i.i.d. Gaussian noise variables

�t, are still i.i.d. Gaussian in the wavelet domain. Meanwhile, wavelet transforms

tend to concentrate the “energy” in data in the sense that, wavelet coefficients

�i,k corresponding to where f is smooth are likely to be close to 0, while those

corresponding to where f has irregularities are likely to be significantly different

from 0 (see Section 6.3.3 of Vidakovic (1999)). From the above observations, it

is expected that important features of f are represented sparsely in the wavelet

domain, and thus an unknown function f can accurately be recovered by “killing”

small di,k with an appropriately chosen threshold.

Donoho & Johnstone (1994) proposed hard and soft thresholding rules

Thard(di,k, �) = di,k ⋅ I(∣di,k∣ > �),

Tsoft(di,k, �) = sign(di,k) ⋅max (∣di,k∣ − �, 0) ,

with the use of the universal threshold �univ = �
√
2 logn. The term VisuShrink

was used to describe the application of thresholding with this universal threshold,
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and the resulting estimator f̂V S was shown to have the “oracle” property, i.e. the

MSE of VisuShrink estimator f̂V S is close (within a logarithmic factor log n) to

the ideal risk that can be achieved when equipped with an oracle telling which

wavelet coefficients di,k should be “killed” and “kept”.

The SureShrink procedure proposed in Donoho & Johnstone (1995) adap-

tively selects a threshold for each scale i, by minimising the Stein’s unbiased

estimator for risk (Stein, 1981, SURE). SureShrink estimator was also shown to

be near minimax within the whole range of Besov space (a set of functions in

Lebesgue space which have certain smoothness, see DeVore & Popov (1988)), by

automatically adapting to the unknown smoothness of f .

More recent approaches to the thresholding technique include the study of

threshold selection in the framework of multiple-hypothesis testing (Abramovich

& Benjamini, 1995, 1996; Ogden & Parzen, 1996a,b), or cross-validation (Na-

son, 1995, 1996). Wang (1996) and Johnstone & Silverman (1997) discussed

the application of wavelet thresholding technique under the presence of corre-

lated noise. Abramovich et al. (1998) considered wavelet thresholding within

a Bayesian framework, where a prior distribution was designed to capture the

sparseness of wavelet decomposition �i,k. In Johnstone & Silverman (2004), an

adaptive threshold selection procedure termed empirical Bayesian thresholding

was proposed.

2.4.2 Piecewise constant estimators

DeVore (1998) noted that the class of piecewise constant functions was flexible

in approximating a wide range of function spaces. It was further shown in the

paper that, when the underlying function f was spatially inhomogeneous, the

performance of non-linear, piecewise constant estimators was superior to that of

linear methods, as they chose the partition of [0, 1] (on which piecewise constant

estimates were taken) in a data-driven way, unlike the linear piecewise constant

estimators on fixed partitions. In this section, we present a list of non-linear,

piecewise constant approximation methods which have shown good performance.

The wavelet thresholding estimation discussed in Section 2.4.1 returns a piece-

wise constant estimate when Haar wavelets are used, whose specific form can be
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found in Section 2.1.1 of this thesis. The CART methodology (Breiman et al.,

1983, Classification and Regression Trees) performs greedy binary splitting to

grow a partition, whose terminal nodes yield a piecewise constant estimator. In

Engel (1997), a method for locally adaptive histogram construction was intro-

duced, which was based on a tree of dyadic partitions and hence obtained a mul-

tiscale, piecewise constant estimator. The adaptive weight smoothing (Polzehl &

Spokoiny, 2000) produces a piecewise constant estimator using an iterative local

averaging procedure with an adaptive choice of weights. Comte & Rozenholc

(2004) and Kolaczyk & Nowak (2005) proposed to estimate an unknown function

using piecewise polynomials by optimising a complexity-penalised likelihood, and

their approaches can be adopted to obtain piecewise constant estimators.

In Chapter 4, our interest lies in comparing two non-linear methods for pro-

ducing piecewise constant estimates, the taut string (Barlow et al., 1972; Davies

& Kovac, 2001) and the Unbalanced Haar (Fryzlewicz, 2007) techniques, both

of which are computationally fast, achieve theoretical consistency, and exhibit

excellent performance in numerical experiments. The former is a penalised least

squares estimator with its penalty imposed on the total variation of unknown

function, whereas the latter involves wavelet thresholding (Section 2.4.1) with re-

spect to an orthonormal, Haar-like basis vectors, whose breakpoints are no longer

constrained to be in the middle of their support as in Haar wavelets. We propose

a new multiscale framework, which both methods are instances of, and it is this

new framework that provides better insight into the two techniques as well as

some directions for future research.

2.5 High-dimensional linear regression

One of the most important and widely-studied statistical problems is to infer the

relationship between the response and the explanatory variables in the following

linear regression model

y = X� + �, (2.27)
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where y = (y1, . . . , yn)
T ∈ ℝn is an n-vector of the response, X = (X1, . . . , Xp) is

an n×p design matrix, and � = (�1, . . . , �n)
T ∈ ℝn is an n-vector of i.i.d. random

errors satisfying E(�i) = 0 and var(�i) = �2 <∞.

Technological advances have led to the explosion of data across many scientific

disciplines, e.g. genomics, functional MRI, tomography and finance, to name a

few, such that the dimensionality of the data p can be very large, sometimes much

larger than the number of observations n. Donoho (2000) listed specific scientific

problems which demanded the development of tools for high-dimensional data

analysis, due to the apparent inability of classical methods in coping with the

explosive growth of dimensionality.

For the last few decades, substantial progress has been made to tackle the

problem of high dimensionality in linear regression, under the assumption that

only a small number of variables actually contribute to the response, i.e.,

S = {1 ≤ j ≤ p : �j ∕= 0}

has its cardinality much smaller than p. Fan & Lv (2010) noted that sparsity

arose naturally in many scientific problems. By way of example, in disease clas-

sification, it is often believed that only dozens of genes out of tens of thousands

have significant contributions to the development of a disease. Assuming sparsity

on the data structure, identifying the subset S can improve both model inter-

pretability and estimation accuracy.

There exists a long list of works devoted to the high-dimensional variable

selection problem and an excellent survey of literature can be found in Fan & Lv

(2010). In this section, we review a selection of variable selection methods which

approach the problem from different angles. First, we provide an overview of

the penalised least squares (PLS) estimation, of which classical model selection

methods as well as more recent works, such as the ridge regression, the Lasso

(Tibshirani, 1996) and the SCAD (Fan & Li, 2001), are instances. Implementation

of the PLS estimation methods is discussed in Section 2.5.2.

The Dantzig selector (Candès & Tao, 2007) is an l1-regularisation method

which is closely related to the Lasso. Section 2.5.3 provides a detailed description

of the Dantzig selector and its connection with the Lasso. Then follows the
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discussion of Sure Independence Screening (Fan & Lv, 2008), a dimensionality

reduction procedure for ultra high-dimensional problems, in Section 2.5.4.

In Section 2.5.5, we note that the presence of (possibly spurious) non-negligible

correlations among the large number of variables renders the high-dimensional

variable selection problem very difficult, and present a list of methods which take

into account the correlation structure of X. In Chapter 5, we also recognise the

importance of this issue, and propose a new way of measuring the association

between each variable and the response, by accounting for the sample correlation

structure of X in a data-driven manner.

Finally, we introduce some notations which are used throughout this section,

and revisited later in Chapter 5. The lq-norm for an n-vector u ∈ ℝn is defined

as

∥u∥q =
(

n∑

i=1

∣ui∣q
)1/q

,

and therefore

∥u∥0 =
∑

i

I(ui ∕= 0), ∥u∥1 =
∑

i

∣ui∣ and ∥u∥2 =
√
∑

i

u2i .

This definition is extended to q = ∞ as ∥u∥∞ = maxi ∣ui∣, and we often refer

to the l2-norm as the norm. The ith row of X is denoted by xi, i.e. xi =

(Xi,1, . . . , Xi,p). Let D be a subset of the index set J = {1, . . . , p}. Then, for any
n× p matrix X, we use XD to denote an n×∣D∣-submatrix of X with Xj , j ∈ D

as its columns. In a similar manner, �D denotes a ∣D∣-subvector of a p-vector �
with �j , j ∈ D as its elements. For a given D satisfying ∣D∣ < n, we denote the

projection matrix onto the column space of XD by ΠD. Finally, C and C ′ are

used to denote generic positive constants.

2.5.1 Penalised least squares estimators

Classical model selection methods using the tools such as Akaike’s information

criterion (Akaike, 1973, AIC), Mallows’ Cp (Mallows, 1973) and Bayesian infor-

mation criterion (Schwarz, 1978, BIC), belong to the l0-norm PLS estimation of
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the following form,

min
�̃∈ℝp

∥y −X�̃∥22 + �∥�̃∥0, (2.28)

with different choice of the penalty parameter � > 0. These approaches have

a unified interpretation that they all search for the best trade-off between the

goodness of fit and the complexity of the model.

One critical limitation of this l0-norm minimisation framework was noted in

Candès & Tao (2007). That is, searching for a solution to the problem (2.28)

requires an exhaustive search over all the subsets of columns of X, which clearly

has exponential complexity except for in a few circumstances, e.g. when X is an

orthonormal matrix. In general, finding a solution for (2.28) may be feasible only

when p ranges in a few dozens.

The l0-norm PLS estimation is a special case of lq-norm penalised regression

which places the penalty on the lq-norm of the parameter vector. In what follows,

we provide a list of PLS estimation methods with various penalty terms.

2.5.1.1 Ridge regression

The ridge regression proposed in Hoerl & Kennard (1970) replaces the l0-norm in

(2.28) with ∥�̃∥22,

min
�̃∈ℝp

∥y −X�̃∥22 + �∥�̃∥22. (2.29)

As a result, the ridge regression achieves continuous shrinkage and its solution �̂R

shows good prediction performance through a bias-variance trade-off. However,

a parsimonious model representation cannot be obtained by the ridge regression,

and below we explain this point with a simple example.

When XTX = Ip, the ordinary least squares (OLS) estimate �̂OLS is equal to

XTy. Then the problem in (2.29) is reduced to

min
�̃∈ℝp

p
∑

j=1

{(

�̂OLS
j − �̃j

)2

+ �∣�̃j∣2
}

,
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and therefore

�̂Rj =
�̂OLS
j

1 + �
for j = 1, . . . , p.

Thus, it is clear that as the result of ridge regression, every variable is kept in

the model with each �̂Rj shrunken towards zero.

2.5.1.2 Lasso

Least absolute shrinkage and selection operator (Tibshirani, 1996, Lasso) belongs

to the class of PLS estimators with its penalty on the l1-norm of �, i.e., it solves

the following problem

min
�̃∈ℝp

∥y −X�̃∥22 + �∥�̃∥1, (2.30)

where the penalty on ∥�̃∥1 leads to a sparse solution with certain coefficients set

to be exactly zero. This property of the Lasso can be understood in connection

with the soft-thresholding rule (Section 2.4.1).

As in Section 2.5.1.1, suppose XTX = Ip. Then, the problem in (2.30) is

equal to

min
�̃∈ℝp

p
∑

j=1

{(

�̂OLS
j − �̃j

)2

+ �∣�̃j∣
}

,

whose solution satisfies

�̂Lj = sign(�̂OLS
j ) ⋅

(∣
∣
∣�̂OLS
j

∣
∣
∣− �

2

)

+

(2.31)

=

⎧

⎨

⎩

�̂OLS
j − �

2
if �̂OLS

j > 0 and ∣�̂OLS
j ∣ > �

2
,

�̂OLS
j + �

2
if �̂OLS

j < 0 and ∣�̂OLS
j ∣ > �

2
,

0 otherwise.

(2.31) can be interpreted in a way that the l1-norm penalty acts like a soft-

thresholding rule and automatically sets �j with small values of OLS estimates

�̂OLS
j to zero.

We note that the minimisation problem in (2.30) is convex and thus considered

tractable, i.e. it can be solved in polynomial time, unlike the l0-norm minimisation
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problem. Donoho (2006) showed that if there was a sparse solution to the l0-norm

minimisation problem in (2.28), it could be well-approximated by solving the l1-

norm PLS estimation problem in (2.30).

Zhao & Yu (2006) provided a condition under which the Lasso estimator was

consistent in the sense that, the Lasso solution �̂L satisfied

ℙ
(

sign(�̂L) = sign(�)
)

→ 1 as n→∞.

This condition, termed irrepresentable condition, requires that there exists C < 1

satisfying

max
j /∈S

∣
∣sign(�S)

T (XT
SXS)

−1XT
SXj

∣
∣ ≤ C < 1. (2.32)

Focusing on the term (XT
SXS)

−1XT
SXj , (2.32) can roughly be interpreted as im-

posing a constraint on the regression coefficients of the irrelevant variables on the

relevant variables. If we re-write (2.32) to hold for every possible combination of

sign(�S) (which is unknown), the condition amounts to requiring the l1-norms of

such regression coefficient vectors to be uniformly smaller than 1, i.e. the total

amount of an irrelevant variable represented by the relevant variables is uniformly

bounded from above (thus the term “irrepresentable”).

The model selection consistency of the Lasso was studied in the context of

graphical models by Meinshausen & Bühlmann (2008), where a condition similar

to the irrepresentable condition was termed neighbourhood stability. The condi-

tion (2.32) can easily be violated in the presence of non-negligible correlations

among the variables, and thus it is rather an unrealistic assumption for high-

dimensional datasets.

Zhang & Huang (2008) showed the variable selection consistency of the Lasso

under the sparse Riesz condition. Before going into the details of this condition,

we need to define the sparse eigenvalues.

Definition 2.3. The minimal sparse eigenvalue �min(d) is defined for d ≤ p as

�min(d) = inf
u∈ℝd;D⊂J;∣D∣≤d

∥XDu∥2
∥u∥2

,
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and analogously for the maximal sparse eigenvalue �max(d).

The sparse Riesz condition requires the existence of C, C ′ > 0 for which

�max((2 + 4C)∣S∣+ 1)

�min((2 + 4C)∣S∣+ 1)
≤ C ′. (2.33)

Provided that the sparse Riesz condition holds, the Lasso estimator �̂L has the

same support as the true regression coefficients vector � with asymptotic proba-

bility 1.

There have been substantial efforts to extend the Lasso, of which we men-

tion a few. The adaptive Lasso proposed in Zou (2006) selected the amount of

penalisation adaptively for each �̃j as

�j = � ⋅
∣
∣
∣�̂OLS
j

∣
∣
∣

−

for some  > 0. It was shown that the adaptive Lasso estimator possessed the

so-called oracle property for a carefully chosen �. That is, as if equipped with an

oracle furnishing complete information about which �j’s are nonzero, the adaptive

Lasso estimator �̂AL achieves the following:

consistency in variable selection

lim
n→∞

ℙ(ŜAL = S) = 1 for ŜAL = {1 ≤ j ≤ p : �̂ALj ∕= 0}.

asymptotic normality

√
n
(

�̂ALS − �S
)

→d N∣S∣

(

0,
�2

n
⋅XT

SXS

)

.

The randomised Lasso proposed in Meinshausen & Bühlmann (2010) repeat-

edly produced the penalty parameters as �j = � ⋅W−1
j with Wj following a uni-

form distribution. Then it took the frequency of each variable being estimated to

be non-zero as the variable selection criterion, rather than the estimated coeffi-

cient values themselves. Due to the randomness brought in from the selection of

penalty parameters, the set of variables identified by the randomised Lasso was

shown to be consistent even when the irrepresentable condition was violated.
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2.5.1.3 Elastic net

Zou & Hastie (2005) proposed the elastic net, where the penalisation was imposed

on a linear combination of ∥�̃∥1 and ∥�̃∥22,

min
�̃∈ℝp

∥y−X�̃∥22 + �1∥�̃∥1 + �2∥�̃∥22. (2.34)

Due to its penalty on both l1- and l2-norms, the elastic net attains the grouping

effect, i.e. regression coefficients of a group of highly correlated variables tend to

be equal (up to a sign change if negatively correlated), a property that the Lasso

does not possess.

2.5.1.4 SCAD

Fan & Li (2001) proposed conditions for a penalty function in the PLS estimation

to return an estimator which was unbiased, sparse (i.e. small estimated coeffi-

cients were automatically set to zero) and continuous in the data. It was noted in

the paper that, while lq-penalty with q ∈ (1, 2] did not meet the sparsity condi-

tion, the l1-penalty did not satisfy the unbiasedness, and lq-penalty with q ∈ [0, 1)

did not satisfy the continuity.

Their smoothly clipped absolute deviation (SCAD) penalty function
∑

j p�(�̃j)

was designed to meet all three requirements, and its derivative satisfied

p�(t)
′ = �

{

I(t ≤ �) +
(a�− t) ⋅ I(a� > t)

(a− 1)�
I(t > �)

}

(2.35)

for some a > 2. The SCAD estimator was shown to achieve the aforementioned

oracle property of the adaptive Lasso under some regularity conditions on the

distribution of (xi, yi).

2.5.2 Implementation of PLS estimation

Efron et al. (2004) proposed the least angle regression (LARS) algorithm, whose

simple modification could compute the Lasso solution path for a range of penalty

parameter �. Here we provide a rough description of the LARS algorithm.
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Let A denote the “active set” which represents the variables included in the

current model. Starting with an empty A (i.e., all the coefficients are set to be

zero), the LARS searches for the variable which attains the maximum marginal

correlation (in the absolute value) with the response y. Denoting such variable

by X1, the LARS adds the index 1 to A. Then the current residual z is updated

by taking the largest step possible in the direction of X1 away from y, until some

other variable, say X2, achieves as much marginal correlation with the current

residual as X1. After adding the index 2 to active set A, the current residual

vector z is updated again, by proceeding in the “equiangular” direction between

the two variables X1 and X2, i.e. z keeps the same distance from both X1 and

X2 simultaneously, until the third variable X3 has as much marginal correlation

with z as X1 and X2. The LARS continues its equiangular progression between

X1, X2 and X3, until the fourth index enters A and so forth.

To obtain the Lasso solution path, an additional constraint is needed through-

out the LARS algorithm, on the sign of each non-zero coefficient estimate, say

�̃(A)j, j ∈ A, to agree with that of the corresponding marginal correlations be-

tween Xj , j ∈ A and the current residual z. This Lasso-LARS modification can

also be adopted to compute the solution paths for the Lasso extensions such as

the adaptive Lasso, the randomised Lasso and the elastic net (provided �2 in

(2.34) is fixed).

Another way of implementing the Lasso is the coordinate-wise descent ap-

proach. When there is only one variable X1 in the linear model (2.27) and

∥X1∥2 = 1, the Lasso solution is a soft-thresholded version of the OLS estimate

�̂OLS = XT
1 y, i.e.

�̂L = Tsoft

(

XT
1 y,

�

2

)

= sign(XT
1 y) ⋅

(

∣XT
1 y∣ −

�

2

)

+

, (2.36)

see also (2.31). Based on this observation, an iterative algorithm was proposed

in Friedman et al. (2007) for the general case of multiple variables. It applies

the soft-thresholding step in (2.36) to update each coefficient separately, with

“partial residuals” in place of the response. In other words, for the column-wise
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normalised X (i.e. ∥Xj∥2 = 1), each �̃j is updated as

�̃j ← Tsoft

(

XT
j (y − ỹ(j)),

�

2

)

,

where the partial residuals satisfy ỹ
(j)
i =

∑

k ∕=j �̃kxi,k, i = 1, . . . , n, until all

�̃j , j = 1, . . . , p converge. This coordinate-wise descent algorithm is an attractive

tool whenever a single-parameter problem is easy to solve. For the discussion of

extensions of this approach as well as its computational efficiency, see Friedman

et al. (2007) and the references therein.

For the PLS estimation problems with non-concave penalty functions such as

the SCAD penalty (2.35), Fan & Li (2001) proposed the local quadratic approx-

imation (LQA) algorithm. By locally approximating the penalty function using

a quadratic function as

p�(∣t∣) ≈ p�(∣t∗∣) +
1

2

p′�(∣t∗∣)
∣t∗∣ (∣t∣2 − ∣t∗∣2)

for a given initial value t∗, the PLS estimation problem itself becomes quadratic

and thus admits a closed-form solution. In Zou & Li (2008), it was shown that

a better approximation could be achieved using the local linear approximation

(LLA) algorithm

p�(∣t∣) ≈ p�(∣t∗∣) + p′�(t
∗)(∣t∣ − ∣t∗∣).

It is due to the fact that, although both LLA and LQA are convex majorants of

the SCAD function, the LLA is the minimum (tightest) convex majorant of the

concave function on [0,∞) (Fan & Lv, 2010).

2.5.3 Dantzig selector

The Dantzig selector presented in Candès & Tao (2007) solves the following l1-

regularisation problem

minimise ∥�̃∥1 subject to ∥XT (y −X�̃)∥∞ ≤ �, (2.37)
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assuming that X is column-wise normalised, i.e. ∥Xj∥2 = 1. Candès & Tao

(2007) introduced a condition on the correlation structure of X called the “uni-

form uncertainty principle” (UUP), which was defined using the following two

quantities.

∙ The s-restricted isometry constant �s ofX is the smallest quantity satisfying

(1− �s)∥c∥22 ≤ ∥XDc∥22 ≤ (1 + �s)∥c∥22,

for all the sets D ⊂ J with ∣D∣ ≤ s and all coefficient vectors c ∈ ℝ∣D∣.

∙ The s, s′-restricted orthogonality constant �s,s′ for s + s′ ≤ p is defined as

the smallest quantity which satisfies

∣⟨XDc,XD′c′⟩∣ ≤ �s,s′∥c∥2 ⋅ ∥c′∥2

for all the disjoint sets D,D′ ⊂ J of cardinalities ∣D∣ ≤ s and ∣D′∣ ≤ s′ and

all coefficient vectors c ∈ ℝ∣D∣, c′ ∈ ℝ∣D′∣.

Then the UUP requires �2∣S∣ + �∣S∣,2∣S∣ < 1, under which the Dantzig selector �̂D

satisfies

∥�̂D − �∥22 ≤ C2 ⋅ 2 log p ⋅
(

�2 +

p
∑

j=1

min(�2
j , �

2)

)

(2.38)

with � = �
√
2 log p. We note that �̂D achieves a non-asymptotic oracle inequality

under l2-loss, in the sense that the right-hand side of (2.38) is within a logarith-

mic factor (log p) to the ideal MSE attained with an oracle telling the indices of

non-zero coefficients. We note that essentially, the UUP requires that every sub-

matrix XD, with its number of columns ∣D∣ comparable to ∣S∣, should behave as

if they were orthonormal, a condition that can be stringent in high-dimensional

problems.

The similarities between the Dantzig selector and the Lasso can be drawn by

re-writing (2.37) and (2.30) as

minimise ∥�̃∥1 subject to ∥XTX(�̃ − �̂OLS)∥∞ ≤ �D,
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minimise ∥�̃∥1 subject to ∥X(�̃ − �̂OLS)∥22 ≤ �L,

respectively. Based on this relationship between the Dantzig selector and the

Lasso, James et al. (2009) proposed a new algorithm named DASSO for fitting

the entire solution path of the Dantzig selector at a computational cost similar

to that of the LARS algorithm.

2.5.4 Sure independence screening

Fan & Lv (2008) noted that, when the dimensionality p grew exponentially with

the sample size n, there could exist non-negligible correlations even among those

X1, . . . , Xp generated as i.i.d. Gaussian. If so, conditions such as the irrepre-

sentable condition or the UUP are not likely to be met, and even when the UUP

holds, we may not be able to ignore the multiplicative factor log p in (2.38).

As a way of tackling these difficulties with ultra-high dimensionality, Fan

& Lv (2008) proposed the Sure Independence Screening (SIS) which reduced

the dimensionality of the data from ultra-high level to that below the sam-

ple size in a computationally efficient way. The SIS achieves this by applying

the component-wise regression, i.e. marginal correlation screening. It screens

XTy = (XT
1 y, . . . , X

T
p y)

T , ranks the importance of each variable according to

the magnitude of corresponding marginal correlation, and selects a submodel of

cardinality d = dn as

Âd =
{
1 ≤ j ≤ p : ∣XT

j y∣ is among the first dn largest of all.
}
.

Fan & Lv (2008) showed that under certain conditions, the SIS achieved the sure

screening property

ℙ
(

S ⊂ Âd

)

→ 1.

When this sure screening property is satisfied, we can expect better estimation

accuracy by applying the PLS estimation based methods or the Dantzig selector

to a submodel chosen by the SIS, which is of the dimensionality comparable to

the data size.
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There are some limitations of the SIS, however, which arise from the failure

of marginal correlation screening in the presence of high correlations among the

variables:

(i) some irrelevant variables that are highly correlated with the relevant ones

can have higher priority to be selected by the SIS than other relevant vari-

ables that are relatively weakly related to the response;

(ii) a relevant variable that is marginally uncorrelated but jointly correlated

with the response cannot be picked by the SIS;

(iii) there may exist collinearity between the variables.

To overcome these difficulties, an iterative version of the SIS (ISIS) was proposed,

which applied the SIS based variable selection methods, such as the SIS-Dantzig

selector or the SIS-SCAD, in an iterative manner. In the following section, we

present some other methods which also address this issue of non-negligible correla-

tions among the variables, by using the measures other than marginal correlation

to infer the strength of association between each variable and the response.

2.5.5 High correlations among the variables

One of the major complications encountered in high-dimensional variable selec-

tion is the presence of possibly spurious, non-negligible correlations among the

variables, an example of which is shown in Figure 2.2. We generated an n × p-
matrix X with i.i.d. Gaussian entries, where n = 100 and p = 2000, and plotted

the magnitude of correlations among the columns of X in increasing order. The

figure shows that when p is large, the absolute values of sample correlations even

among i.i.d. variables can be greater than 0.5, which is clearly non-negligible.

As noted in (i)–(iii) of Section 2.5.4, when the variables are highly correlated,

marginal correlation can be misleading as a measure of association between the

variables and the response. We summarise below some iterative algorithms, where

measures other than marginal correlation are adopted to determine which vari-

able(s) should be included in (or removed from) the model at each iteration.

Bühlmann et al. (2009) proposed the PC-simple algorithm, which used partial

correlation instead of marginal correlation in order to iteratively remove irrelevant
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Figure 2.2: Correlations among i.i.d. Gaussian variables in increasing order
when n = 100, p = 2000.

variables from the model. The partial correlation between Xj and y conditional

on XD for some D ⊂ J ∖ {j} is defined as the correlation between the residuals,

which result from the linear regression of Xj with XD and that of y with XD.

Also, we note that “greedy” algorithms such as the traditional forward selec-

tion (see e.g. Chapter 8.5 of Weisberg (1980)) or the forward regression (Wang,

2009) have an interpretation in this context due to their greediness (see below

for an explanation of the term), unlike less greedy algorithms for generating a

solution path such as the LARS.

At each iteration, both the forward selection and the forward regression algo-

rithms update the current residual z after taking the greediest step towards the

variables included in the current model A, i.e., z is obtained as the projection of

y onto the orthogonal complement of the current model space spanned by XA.

This greedy progression can be seen as taking into account the correlations be-

tween the variables which are in the current model and those which are not, as

measuring the marginal correlation between Xj, j /∈ A and the current residual

z = (In − ΠA)y is equivalent to measuring the association between such Xj and

y conditional on Xk, k ∈ A.

As a non-iterative method, the regression framework proposed in Witten &

Tibshirani (2009) accounts for the correlation structure of X using the so-called

“scout” procedure. It first identifies non-negligible partial correlations between
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Xj and Xk conditional on all the other variables Xl, l ∕= j, k for all j ∕= k, which

is achieved by obtaining a shrunken estimate of the inverse covariance matrix of

X, and then applies this estimate for computing a PLS estimate of �.

In Chapter 5, we propose to measure the contribution of each variable to the

response by adaptively taking into account the sample correlation structure for

each Xj, and present an iterative algorithm based on this new measure. A more

detailed description of the methods discussed in this section, in comparison with

our proposed methodology, is provided later in Section 5.3.3.
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Chapter 3

Multiscale and multilevel

technique for consistent

breakpoint detection in piecewise

stationary time series

The (weak) stationarity assumption implies that

∙ the mean and the variance of the underlying process are constant,

∙ and its autocovariance function depends only on the time lag.

Although great efforts in the theoretical treatment of time series analysis have

been made under the stationarity assumption, it may not be a realistic assump-

tion for modelling the time series data which are observed in naturally nonsta-

tionary environments; examples of such datasets include speech signals, Elec-

troencephalography (EEG) data, seismic signals and financial time series.

Piecewise stationarity is arguably the simplest departure from stationarity,

and one task when faced with a time series of this form is to detect breakpoints

in its dependence structure. In this chapter, we propose a procedure for detect-

ing breakpoints in the second-order structure of a piecewise stationary process,

which is linear but otherwise does not follow any particular parametric model.

The nonparametric time series model chosen for this purpose is the locally sta-
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tionary wavelet (LSW) model, which was first proposed by Nason et al. (2000).

Section 2.2.2 of this thesis provides a detailed introduction to the LSW model

as well as its extensions and applications. In this chapter, we use the LSW

model as presented in Fryzlewicz & Nason (2006), which is a modified version

of the model described in Section 2.2.2. Under this LSW model, the piecewise-

constant, second-order structure of a time series is completely described by its

wavelet-based, local periodogram sequences at multiple scales, and these wavelet

periodograms are the basic statistics of our segmentation procedure.

To achieve multiple breakpoint detection, we propose a new binary segmen-

tation method which is applied to wavelet periodogram sequences at each scale

separately. For an overview of binary segmentation algorithm, see Section 2.3.2

and references therein. We then introduce our within-scale and across-scales post-

processing steps which succeed the binary segmentation procedure, and show that

the combined methodology achieves consistent estimation of the breakpoints in

the second-order structure of the original time series, in terms of their total num-

ber and locations.

We note that our method can simultaneously be termed multiscale and mul-

tilevel, as the basic time series model used for our purpose is a wavelet-based

and thus a multiscale model, and the core methodology to segment the wavelet

periodogram sequence at each scale is based on binary segmentation and is thus

a multilevel procedure.

The rest of this chapter is organised as follows. Section 3.1 describes the LSW

model and justifies its choice for our purpose. Our breakpoint detection methodol-

ogy, which consists of a binary segmentation procedure as well as post-processing

steps, is introduced in Section 3.2, where we also demonstrate its theoretical con-

sistency in estimating the total number and locations of breakpoints. In Section

3.3, the outcome of a simulation study is presented, where the performance of

our method is compared with that of the state of the art. In Section 3.4, we

apply our technique to the segmentation of the historical Dow Jones index. All

the proofs of our theoretical results are provided in Section 3.5.

46



3.1 Locally stationary wavelet time series

In this section, we first introduce the time series model first presented in Fry-

zlewicz & Nason (2006), which is a slightly modified version of the LSW time

series model in Section 2.2.2. Then follow its properties and the justification of

this choice of LSW model as an attractive framework for developing our time

series segmentation methodology.

The modified version of LSW model for piecewise stationary time series is as

below.

Definition 3.1. A triangular stochastic array {Xt,T}T−1
t=0 for T = 1, 2, . . . , is in

a class of LSW processes, if there exists a mean-square representation

Xt,T =
−1∑

i=−∞

∞∑

k=−∞

Wi(k/T ) i,t−k�i,k (3.1)

where i ∈ {−1,−2, . . .} and k ∈ ℤ are scale and location parameters respec-

tively,  i = ( i,0, . . . ,  i,ℒi−1)
T are discrete, real-valued, compactly supported,

non-decimated wavelet vectors with support lengths ℒi = O(2−i), and �i,k are

zero-mean, orthonormal, identically distributed random variables.

For each i ≤ −1, there exists a real-valued, piecewise constant functionWi(z) :

[0, 1] → ℝ which has a finite (but unknown) number of jumps. Let Li denote

the total magnitude of jumps in W 2
i (z). The variability of functions Wi(z) is

controlled such that Wi(z) satisfy

∙ ∑−1
i=−∞W 2

i (z) <∞ uniformly in z and

∙ ∑−1
i=−I 2

−iLi = O(log T ) where I = log2 T .

We assume that random variables �i,k follow the standard normal distribution.

Extensions to non-Gaussian distributions may be possible but technically diffi-

cult, and thus not discussed in this thesis. Comparing the above definition with

the Cramér’s representation of stationary processes (see (2.12) in Section 2.2.1),

Wi(k/T ) is a scale- and location-dependent transfer function, the wavelet vectors

 i are analogous to the Fourier exponentials, and the innovations �i,k correspond

to the orthonormal increment process. By assuming that each Wi(z) is piecewise
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constant, we are able to model time series data with a piecewise constant second-

order structure where, between any two breakpoints in Wi(z), the second-order

structure remains constant.

Here we briefly recall some properties of the LSW model provided in Section

2.2.2. For an LSW process, its evolutionary wavelet spectrum (EWS) is defined

as Si(z) = Wi(z)
2. In Nason et al. (2000), it was shown that the EWS had the

following one-to-one correspondence with the asymptotic local autocovariance

function of the process,

c(z, �) = lim
T→∞

cov(X[zT ],T , X[zT ]+�,T ),

see (2.18) for further details. We note the validity ofWi(z) as a transfer function,

since the variance of the resulting time series Xt,T is uniformly bounded over t,

and the one-to-one correspondence between c(z, �) and Si(z) leads to the model

identifiability.

Our objective is to develop a consistent method for detecting breakpoints in

the EWS, and consequently provide a segmentation of the original time series.

The following assumption is placed on the breakpoints present in the EWS, which

implies that there are finite number of breakpoints in the second-order structure

of the process.

Assumption 3.1. The set of those locations z where (possibly infinitely many)

functions Si(z) contain a jump, is finite. That is, let

ℬ = {z : ∃ i for which lim
u→z−

Si(u) ∕= lim
u→z+

Si(u)},

then B = ∣ℬ∣ <∞.

We recall the definition of the wavelet periodogram of Xt,T given in Section

2.2.2, which is essentially a sequence of squared wavelet coefficients of Xt,T .

Definition 3.2. Let Xt,T be an LSW process constructed using the wavelet system

 . Then, the triangular stochastic array

I
(i)
t,T =

∣
∣
∣
∣
∣

∑

s

Xs,T i,s−t

∣
∣
∣
∣
∣

2
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is called the wavelet periodogram of Xt,T at scale i.

We further recall the definition of autocorrelation wavelets

Ψi(�) =
∑

k

 i,k i,k−� ,

and that of the autocorrelation wavelet inner product matrix

A =

(
∑

�

Ψi(�)Ψj(�)

)

i,j<0

.

Then, a function �i(z) is defined as the linear transform of EWS with respect to

the autocorrelation wavelet inner product matrix, i.e.,

�i(z) =

−1∑

j=−∞

Sj(z)Ai,j .

Fryzlewicz & Nason (2006) showed that EI(i)t,T , the expectation of a wavelet peri-

odogram, is “close” to �i(z) in the following sense.

Proposition 3.1 (Propositions 2.1-2.2 of Fryzlewicz & Nason (2006)). Let I
(i)
t,T be

the wavelet periodogram at a fixed scale i. Under Assumption 3.1, the integrated

bias between EI(i)t,T and �i(t/T ) satisfies

T−1

T−1∑

t=0

∣
∣
∣EI

(i)
t,T − �i(t/T )

∣
∣
∣

2

= O(T−12−i) + bi,T , (3.2)

where bi,T depends on the sequence {Li}i. For example, if Li = O(ai) for a > 2

then bi,T = O(T
1

2 log2 a−1
−1
), which implies, in particular, that the rate of conver-

gence in (3.2) is

O

{

T
−min

(

1− 1
2 log2 a−1

,1−'
)

}

uniformly over i = −1, . . . ,−' log2 T .

Further, each �i(z) is a piecewise constant function with at most B jumps,

all of which occur in the set ℬ. Additionally, if there exists C > 0 for which

Si(z) ≤ C2i for all i, we have �i(z) ≤ C uniformly over all i.
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In summary, we conclude that there exists a one-to-one correspondence be-

tween the EWS, asymptotic local autocovariance function c(z, �) and the func-

tions �i(z) (being the asymptotic expectation of the wavelet periodograms).

Therefore, every breakpoint in the second-order structure results in a breakpoint

in at least one of the �i(z)’s and is thus detectable, at least with T → ∞, by

analysing the wavelet periodogram sequences.

We note that EI(i)t,T itself is piecewise constant by definition, except on the

intervals of length C2−i around the discontinuities occurring in ℬ, where C is

a positive constant depending on the wavelet system  used to construct Xt,T .

Given a breakpoint � ∈ ℬ, the computation of I
(i)
t,T for t ∈ [� − C2−i, � + C2−i]

involves the observations from two different stationary segments, which results in

EI(i)t,T being “almost” piecewise constant yet not completely so.

The finiteness of ℬ implies that there exists a fixed index I∗ < ⌊log2 T ⌋, such
that each breakpoint in ℬ can be found in at least one of the functions Si(z) for

i = −1, . . . ,−I∗. Thus, from the invertibility of the matrix (Ai,k)
−I∗

i,k=−1 and the

closeness between �i(z) and EI(i)t,T (as noted in Proposition 3.1), we conclude that

every breakpoint is detectable from the wavelet periodogram sequences at scales

i = −1, . . . ,−I∗, and we only consider I
(i)
t,T at these scales for our breakpoint

detection procedure.

Since I∗ is fixed but unknown, in our theoretical considerations we permit

it to increase slowly to infinity with T , see Section 3.5.1 for more discussion on

the rate at which I∗ is allowed to increase. A further reason for disregarding the

coarse scales i < −I∗ is that the autocorrelation within each wavelet periodogram

sequence becomes stronger at coarser scales. Similarly, the intervals on which

EI(i)t,T is not piecewise constant become longer (being of the length C2−i). In

summary, for coarse scales, wavelet periodograms provide little useful information

about the breakpoints and thus can safely be omitted.

We close this section by listing the rationale behind the choice of the LSW

model as a suitable framework for developing our methodology.

(i) The entire piecewise constant second-order structure of the process is “en-

coded” in the (asymptotically) piecewise constant sequences EI(i)t,T . That

is, any breakpoints in the second-order structure must be detectable by

analysing the wavelet periodograms, which are relatively easy to handle as
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they follow a multiplicative model (see Section 3.2.1) and are localised due

to the compact support of the wavelets used in their computation.

(ii) Due to the “whitening” property of wavelets, the wavelet periodogram

sequences are often much less autocorrelated than the original process.

In Section 9.2.2 of Vidakovic (1999), the whitening property of wavelets

is formalised for a second-order stationary time series Xt with a suffi-

ciently smooth spectral density. Defining its wavelet coefficient as ri,k =
∑

sXs i,s−k, the across-scales and within-scale covariance of the wavelet

coefficients satisfies the following, provided the wavelet used is also suffi-

ciently smooth.

∙ E(ri,kri′,k′) vanishes for ∣i− i′∣ > 1.

∙ E(ri,kri′,k′) is arbitrarily small for ∣i− i′∣ = 1.

∙ E(ri,kri′,k′) decays as o(∣k − k′∣−1) within each scale, i.e. when i = i′.

Although this whitening property of wavelets motivated our choice of the

LSW model, we emphasise that our segmentation method does permit auto-

correlation in the wavelet periodogram sequences, as specified later in Sec-

tion 3.2.1. Therefore, our procedure does not formally rely on the whitening

effect of wavelets on the periodogram sequences.

(iii) The entire array of the wavelet periodograms at all scales is easily and

rapidly computable via the non-decimated wavelet transform (see Section

2.1.3).

(iv) The use of the rescaled time z = k/T in (3.1) and the associated regularity

assumptions on the transfer functions Wi(z) allow us to establish rigorous

asymptotic properties of our procedure.

3.2 Binary segmentation algorithm

In this section, we first note that each wavelet periodogram sequence follows a

multiplicative model, and introduce a binary segmentation algorithm for a generic
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class of multiplicative sequences. Binary segmentation is a computationally ef-

ficient tool which searches for multiple breakpoints in a recursive manner, and

thus can be categorised as a greedy and multilevel algorithm. As noted in Section

2.3.2, Venkatraman (1993) applied the procedure to a sequence of independent,

normal variables with multiple breakpoints in its mean, and showed that the de-

tected breakpoints were consistent in terms of their total number and locations.

In the following, we aim at extending these consistency results to the multiplica-

tive model where dependence between observations is permitted.

3.2.1 Generic multiplicative model

Recall that each wavelet periodogram ordinate is simply a squared wavelet coef-

ficient of a zero-mean Gaussian time series, which is distributed as a scaled �2
1

variable with the following decomposition:

I
(i)
t,T = EI(i)t,T ⋅ Z2

t,T ,

where {Zt,T}T−1
t=0 are autocorrelated standard normal variables. Hence we first

develop a generic breakpoint detection tool for multiplicative sequences

Y 2
t,T = �2

t,T ⋅ Z2
t,T , t = 0, . . . , T − 1. (3.3)

I
(i)
t,T and EI(i)t,T can be viewed as special cases of Y 2

t,T and �2
t,T , respectively. We

assume the following additional conditions, which are satisfied by I
(i)
t,T and EI(i)t,T

under the assumptions in Theorem 3.2 later on.

(i) �2
t,T is deterministic and “close” to a piecewise constant function �2(t/T )

in the sense that

∙ �2
t,T is piecewise constant apart from intervals of length at most C2I

∗

around the discontinuities in �2(z) for some constant C > 0;

∙ the integrated squared bias between �2
t,T and �2(t/T ) satisfies

T−1
T−1∑

t=0

∣�2
t,T − �2(t/T )∣2 = o(log−1 T ),
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where the latter rate comes from the rate of convergence of the inte-

grated squared bias between �i(t/T ) and EI(i)t,T (see Proposition 3.1),

and from the fact that our attention is limited to wavelet periodograms

at I∗ finest scales only.

Further, �2(z) is bounded from above and away from zero, with a finite but

unknown number of jumps.

(ii) {Zt,T}T−1
t=0 is a sequence of standard normal variables and its autocorrelation

sequence is absolutely summable asymptotically. That is, the function

�(�) = sup
t,T
∣cor(Zt,T , Zt−�,T )∣

satisfies �1∞ <∞, where �p∞ =
∑

� ∣�(�)∣
p.

A simple example of {Zt,T}T−1
t=0 satisfying this requirement is a short-memory

stationary process, for which �1∞ =
∑

� ∣cor(Zt,T , Zt−�,T )∣. Then the process

Yt,T is a time-modulated stationary process.

Once the breakpoint detection algorithm for the generic model (3.3) has been

established, it can be applied to segment each wavelet periodogram sequence.

3.2.2 Algorithm

The first step of the binary segmentation procedure is to find the most likely

location of a breakpoint. We locate such a point in the interval (0, T − 1) as the

one which maximises the absolute value of

Yb
0,T−1 =

√

T − b
T ⋅ b

b−1∑

t=0

Y 2
t,T −

√

b

T ⋅ (T − b)

T−1∑

t=b

Y 2
t,T (3.4)

=

√

(T − b) ⋅ b
T

(

1

b

b−1∑

t=0

Y 2
t,T −

1

T − b

T−1∑

t=b

Y 2
t,T

)

. (3.5)

From (3.5), Yb
0,T−1 can be interpreted as a scaled difference between the partial

means of two segments {Y 2
t,T}b−1

t=0 and {Y 2
t,T}T−1

t=b , where the scaling factor is chosen
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such that the variance of Yb
0,T−1 remains constant over b in the idealised case of

Y 2
t,T being i.i.d. Once we find

b1,1 = arg max
b∈(0,T−1)

∣
∣Yb

0,T−1

∣
∣ ,

we use
∣
∣
∣Y

b1,1
0,T−1

∣
∣
∣ to test the null hypothesis of �2(t/T ) being constant over [0, T−1].

The test statistic and its critical value are established such that when a breakpoint

is present in a given interval, the null hypothesis is rejected with probability

converging to 1. If the null hypothesis is rejected, we continue the simultaneous

locating and testing of breakpoints, separately on the two segments to the left

and right of b1,1, in a recursive manner until no further breakpoints are detected.

The algorithm is summarised below, where j is the level index and l is the

location index of the node at each level. We note that the term “level” is used

to indicate the progression of the segmentation procedure, in contrast to “scale”

which is used to describe the multiscale nature of our wavelet model.

Binary segmentation algorithm

Step 0 Begin with (j, l) = (1, 1). Let sj,l = 0 and ej,l = T − 1.

Step 1 Let nj,l = ej,l−sj,l+1. Iteratively compute Yb
sj,l,ej,l

as in (3.4) for b ∈ Dj,l

where

Dj,l =

{

b ∈ (sj,l, ej,l) : max

(√

ej,l − b
b− sj,l + 1

,

√

b− sj,l + 1

ej,l − b

)

≤ c

}

(3.6)

with c ≥ 1 being a fixed constant. Next, find bj,l which maximises the

absolute value of Yb
sj,l,ej,l

, i.e.,

bj,l = arg max
b∈Dj,l

∣
∣
∣Yb

sj,l,ej,l

∣
∣
∣ ,

and compute mj,l =
∑ej,l

t=sj,l
Y 2
t,T/
√
nj,l.

Step 2 Perform hard thresholding on ∣dj,l∣/mj,l with the threshold chosen as
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tj,l = �T �
√

log T/nj,l, such that

d̂j,l =

{

dj,l if ∣dj,l∣ > tj,l ⋅mj,l,

0 otherwise.

The choice of � and � is discussed in Section 3.2.4.

Step 3 If either d̂j,l = 0 or max{bj,l − sj,l + 1, ej,l − bj,l} < ΔT for l, stop the

algorithm on the segment (sj,l, ej,l). If not, divide the segment (sj,l, ej,l) into

two to the left and to the right of the detected breakpoint bj,l as

(sj+1,2l−1, ej+1,2l−1) = (sj,l, bj,l) and (sj+1,2l, ej+1,2l) = (bj,l + 1, ej,l),

and update the level j as j ← j + 1. Again, the choice of ΔT is discussed

in Section 3.2.4.

Step 4 Repeat Steps 1–3.

The set of detected breakpoints from the above algorithm is {bj,l : d̂j,l ∕=
0}. The condition (3.6) imposed on b in Step 1 comes from the fact that the

breakpoints should be sufficiently scattered over time without being too close to

each other. Note that a similar condition is required of the true breakpoints in

�2(t/T ) in Assumption 3.2 of Section 3.2.3.

The test statistic ∣dj,l∣/mj,l is a scaled version of the test statistics used in the

iterative cumulative sum of squares (ICSS) algorithm, which is another binary

segmentation procedure introduced in Inclán & Tiao (1994) for detecting multi-

ple shifts in the variance of observations. However, their test criterion is derived

empirically under the assumption of observations being independent, and thus

there is no guarantee that the ICSS algorithm produces consistent breakpoint

estimates. On the other hand, our algorithm permits the presence of autocorrela-

tion in target sequences, and its test criterion enables the consistent identification

of the total number and locations of breakpoints, which is further discussed in

Section 3.2.3. Kouamo et al. (2010) proposed a CUSUM-type test, which was

applied to wavelet variance at one or several scales to detect the presence of

nonstationarity for a class of processes. We note that, although it also permits

55



correlation in the target statistic, the test procedure is designed for detecting a

single change in the data.

Finally, we note the relationship between our binary segmentation procedure

and the Haar-Fisz technique which was proposed by Fryzlewicz & Nason (2006)

and Fryzlewicz et al. (2006) in different contexts. In the former, the Haar-Fisz

technique was adopted for estimating the time-varying local variance of an LSW

time series, and in the latter for estimating time-varying volatility in a locally

stationary model for financial log-returns. Each Haar-Fisz method has a device

(termed the Fisz transform) for stabilising the variance of the Haar wavelet co-

efficients of the data, such that the distribution of resulting statistics is brought

close to Gaussianity with constant variance. This is similar to Step 2 in our

algorithm, where the differential statistic dj,l is divided by the local mean mj,l

(up to a multiplicative factor
√
nj,l), with the convention 0/0 = 0. However, the

Fisz transform was defined only for the case b = (ej,l + sj,l − 1)/2, i.e. when the

segments were split in half, and it was not used for the purpose of breakpoint

detection.

3.2.2.1 Post-processing within a sequence

We further equip the segmentation procedure with an extra step which is aimed

at reducing the risk of overestimating the number of breakpoints. The ICSS

algorithm has a “fine-tune” step: if more than one breakpoint is found, each

breakpoint is checked against the adjacent ones to reduce the risk of overestima-

tion. We propose a post-processing procedure performing a similar task within

the single-sequence multiplicative model (3.3). That is, at each breakpoint, the

test statistic is re-calculated over the interval between its two neighbouring break-

points and compared with the threshold again.

Denote the breakpoint estimates as �̂p, p = 1, . . . , N̂ and let �̂0 = 0, �̂N̂+1 = T .

For each �̂p, we examine whether

∣
∣
∣Y

�̂p
�̂p−1+1,�̂p+1

∣
∣
∣ > �T �

√

log T ⋅ 1

�̂p+1 − �̂p−1

�̂p+1∑

t=�̂p−1+1

Y 2
t,T , (3.7)

for Yb
s,e defined as in (3.4). If the above inequality does not hold, �̂p is removed
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and the same procedure is repeated with the reduced set of breakpoints until the

set does not change.

Note that the fine-tune step of the ICSS algorithm re-calculates both the loca-

tion and test statistic at each iteration, and therefore the locations of breakpoints

are subject to change after tuning. However in our post-processing procedure,

only the test statistic is re-calculated at existing breakpoints and thus their lo-

cations are preserved. We thus emphasise that our within-scale post-processing

step is in line with the theoretical derivation of breakpoint detection consistency

in the sense that

(a) the extra check in (3.7) is of the same form as Step 2 in the original algo-

rithm, and

(b) the locations of the breakpoints that survive the post-processing are un-

changed.

For more discussion on this point, see our Lemmas 3.5–3.6 and the subsequent

discussion in Section 3.5.1.

3.2.3 Consistency of detected breakpoints

In a breakpoint detection problem, it is desirable that the proposed procedure

should correctly identify the total number and locations of breakpoints. In this

section, Theorem 3.1 first shows the consistency of our algorithm for a multiplica-

tive sequence as in (3.3), which corresponds to the wavelet periodogram sequence

at a single scale. Later, Theorem 3.2 demonstrates how this consistency result

for a single scale carries over to the consistency of our methodology in detecting

breakpoints in the entire second-order structure of the original LSW process Xt,T .

Denote the number of breakpoints in �2(t/T ) by N and the breakpoints them-

selves by

0 < �1 < . . . < �N < T − 1,

with �0 = 0 and �N+1 = T − 1. The following assumption states that the

breakpoints �p should sufficiently be scattered over time without being too close

to each other.
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Assumption 3.2. For � ∈ (1/4, 1/2) and Θ ∈ (� + 1/2, 1), the length of each

segment in �2(t/T ) is bounded from below by �T = CTΘ for some C > 0. Further,

the breakpoints cannot be too close to each other in the sense that there exists a

fixed constant c ≥ 1 satisfying

max
1≤p≤N

{√

�p − �p−1

�p+1 − �p
,

√

�p+1 − �p
�p − �p−1

}

≤ c.

The relationship between Assumption 3.2 and the condition (3.6) imposed in the

binary segmentation algorithm can readily be noted. Then, the following theorem

shows the consistency of binary segmentation algorithm for a sequence following

the multiplicative model in (3.3).

Theorem 3.1. Suppose that {Yt,T}T−1
t=0 follows model (3.3). Assume there exist

M,m > 0 such that

∙ supt ∣�2(t/T )∣ ≤ M and

∙ inf1≤i≤N
∣
∣�2
(
�i+1
T

)
− �2

(
�i
T

)∣
∣ ≥ m.

Then, under Assumption 3.2, the breakpoints detected by our binary segmentation

procedure are consistent in terms of their total number and locations. That is,

ℙ
{

N̂ = N : ∣�̂p − �p∣ ≤ C�T , 1 ≤ p ≤ N
}

→ 1 as T →∞,

where �̂p, p = 1, . . . , N̂ denote the detected breakpoints, �T = T 1/2 log T and C

denotes an arbitrary positive constant.

Interpreting this result in the rescaled time interval [0, 1], we have �T/T =

T−1/2 log T → 0 as T →∞.

3.2.3.1 Post-processing across the scales

As mentioned in Section 3.1, we only consider wavelet periodograms I
(i)
t,T at scales

i = −1, . . . ,−I∗, where I∗ is chosen to satisfy

2I
∗ ≪ �T = T 1/2 log T
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such that the bias between �2
t,T and �2(t/T ) does not influence the derivation of

consistency result in Theorem 3.1.

Recall that any breakpoint in the second-order structure of the original process

Xt,T must be reflected as a breakpoint in at least one of the asymptotic wavelet

periodogram expectations �i(z), i = −1, . . . ,−I∗, and vice versa: a breakpoint

in one of the �i(z)’s implies a breakpoint in the second-order structure of Xt,T .

Thus, it is sensible to combine the estimated breakpoints across the multiple

scales of wavelet periodograms by, roughly speaking, selecting a breakpoint as

significant if it appears in any of the wavelet periodogram sequences. In what

follows, we first provide an algorithm which performs the selection of the final set

of breakpoints as above, and show that it extends the within-scale consistency

results in Theorem 3.1 to the original time series.

Let ℬ̂i be the set of detected breakpoints from the sequence I
(i)
t,T , i.e.

ℬ̂i =
{

�̂(i)p : p = 1, . . . , N̂i

}

, i = −1, . . . ,−I∗.

Then the post-processing finds a subset of ∪−I∗i=−1ℬ̂i, say ℬ̂, as formulated below.

Across-scales post-processing algorithm

Step 1 Arrange all the breakpoints into groups so that those from different se-

quences and within the distance of ΛT from each other are categorised as

belonging to the same group, and denote the groups by G1, . . . ,GB̂.

Step 2 Find the finest scale with the most breakpoints as

i0 = max

{

i : arg max
−I∗≤i≤−1

N̂i

}

.

Step 3 Check whether there exists �̂
(i0)
p0 which satisfies

∣
∣�̂(i)p − �̂(i0)p0

∣
∣ < ΛT ,

for every �̂
(i)
p with i ∕= i0; 1 ≤ p ≤ N̂i. In other worlds, check whether

N̂i0 = B̂ and ℬ̂i0 contains a member of each group G1, . . . ,GB̂. If so, let

59



ℬ̂ = ℬ̂i0 and quit the across-scales post-processing.

Step 4 Otherwise, choose the final set of detected breakpoints as

ℬ̂ =
{

�̂p : p = 1, . . . , B̂
}

,

where each �̂p ∈ Gp is chosen as the member of the group with the maximum

i (finest scale).

We set ΛT = O(�T ) in order to take into account the bias between �̂p and �p which

arises in deriving the results of Theorem 3.1. As argued previously, breakpoints

detected at coarser scales are likely to be less accurate than those detected at

finer scales, and thus Step 4 of the above post-processing algorithm prefers the

latter. The across-scales post-processing procedure preserves the number of dis-

tinct breakpoints as well as their locations determined by the binary segmentation

algorithm. Hence the breakpoints in the final set ℬ̂ are still consistent estimates

of the true breakpoints in the second-order structure of the original process Xt,T .

Although it is not the only possible way of combining the breakpoints across

scales consistently with our theory, the above post-processing algorithm shows

good practical performance in our simulation study.

We denote the set of the true breakpoints in the second-order structure ofXt,T

by ℬ = {�p : p = 1, . . . , B} (with a slight abuse of notation; recall Assumption

3.1), and the finally selected breakpoints from the across-scales post-processing by

ℬ̂ =
{

�̂p : p = 1, . . . , B̂
}

. Then the following theorem states the consistency of

our breakpoint detection methodology, which consists of the binary segmentation

algorithm and two post-processing steps.

Theorem 3.2. Suppose that Xt,T satisfies Assumption 3.1, and that the break-

points �p’s in ℬ satisfy the same condition as that required of �p’s in Assumption

3.2. Further assume that the conditions on �2(z) in Theorem 3.1 hold for each

�i(z). Then, the breakpoints detected as in ℬ̂ are consistent in terms of their total

number and locations. That is, for an arbitrary positive constant C,

ℙ
{

B̂ = B : ∣�̂p − �p∣ ≤ C�T , 1 ≤ p ≤ B
}

→ 1

as T →∞.
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3.2.4 Choice of ΔT , �, � and I∗

To ensure that each estimated segment is of sufficiently large length so as not to

distort our theoretical results, ΔT is chosen to satisfy ΔT ≥ C�T for some C > 0.

However, in practice our method works well for smaller values of ΔT too, e.g. in

the forthcoming simulation experiments, ΔT = C
√
T is used.

As for the choice of � which is constrained to be within (1/4, 1/2), we use

� = 0.251, since we have found that the method works best when � is close to

the lower end of its permitted range. Instead, we elaborate on the choice of � as

below, although our asymptotic theoretical results hold for any fixed positive � .

The selection of � is not a straightforward task, and to get some insight into

its choice, a set of numerical experiments was conducted. A vector of random

variables was generated as x ∼ NT (0,Σ), where x = (X1, . . . , XT )
T , and trans-

formed into sequences of wavelet periodograms I
(i)
t,T . The covariance matrix was

chosen as Σ =
(
�∣i−j∣

)T

i,j=1
such that with varying �, the level of correlations

among the variables Xt, t = 1, . . . , T was controlled. Then we found � ∈ (1, T )

which maximised

Ibi =

∣
∣
∣
∣
∣

√

T − b
T ⋅ b

b∑

t=1

I
(i)
t,T −

√

b

T (T − b)

T∑

t=b+1

I
(i)
t,T

∣
∣
∣
∣
∣
, b ∈ (1, T ),

and computed

Ui,�,T = I�i ⋅ {T−1
T∑

t=1

I
(i)
t,T ⋅ T �

√

log T}−1.

This was repeatedly conducted with varying choice of the covariance matrix

(� = 0, 0.3, 0.6, 0.9) and sample size (T = 512, 1024, 2048), 100 times for each

combination.

The quantity Ui,�,T is the ratio between our test statistic and the data size-

dependent factor T �
√
log T , which appears in our threshold defined in the algo-

rithm of Section 3.2.2. Ui,�,T is computed under the null hypothesis of constant

second-order structure of Xt, and thus its magnitude serves as a guideline so as

to the choice of � for each scale i, preventing spurious breakpoint detection in

the null hypothesis case.

The results showed that the values of Ui,�,T and their ranges tended to increase
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Table 3.1: Values of � for each scale i = −1, . . . ,−4.
scale i −1 −2 −3 −4
�i,1 0.39 0.46 0.67 0.83
�i,2 0.48 0.52 0.75 0.96

for coarser scales, due to the increasing dependence in the wavelet periodogram

sequences. In comparison to the scale factor i, the parameters � or T had rela-

tively little impact on Ui,�,T .

Based on the above numerical experiments, we propose to use different values

of scale-dependent �i, in Step 2 of the binary segmentation algorithm (Section

3.2.2), and in the within-scale post-processing procedure (Section 3.2.2.1). De-

noting the former by �i,1 and the latter by �i,2, we choose �i,1 as the 95% quantile,

and �i,2 as the 97.5% quantile of Ui,T for given i and T . The disappearance of

� in the subscript indicates that Ui,�,T for different values of � are all combined.

By way of example, the values of � when T = 1024 are summarised in Table 3.1.

Finally, we discuss the choice of I∗, the coarsest wavelet periodogram scale

at which we still apply our breakpoint detection procedure. The default choice

of I∗ is given as ⌊log2 T/3⌋. Therefore, we first detect breakpoints in wavelet

periodograms at scales i = −1, . . . ,−⌊log2 T/3⌋, and perform the across-scale

post-processing as described in Section 3.2.3.1, to obtain the set of breakpoints

ℬ̂ =
{

�̂p : p = 1, . . . , B̂
}

.

Then, for the wavelet periodogram at the next finest scale i = −(⌊log2 T/3⌋+1),

we compute the quantities Vp, p = 1, . . . , B̂ + 1 as

Vp = max
b∈(�̂p−1,�̂p)

∣
∣
∣
∣
∣
∣

√
�̂p−b

(�̂p−�̂p−1)⋅(b−�̂p−1)

∑b
t=�̂p−1+1 I

(i)
t,T −

√
b−�̂p−1

(�̂p−�̂p−1)⋅(�̂p−b)

∑�̂p
t=b+1 I

(i)
t,T

∑�̂p
�̂p−1+1 I

(i)
t,T/(�̂p − �̂p−1)

∣
∣
∣
∣
∣
∣

where �̂0 = −1 and �̂B̂+1 = T − 1. Note that Vp is again of the same form as our

basic test statistic in Step 2 of the binary segmentation algorithm.

Then each Vp is compared to �i,1 ⋅ T �
√
log T to see whether there are any

further breakpoints yet to be detected in I
(i)
t,T which have not been included in ℬ̂.
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If any Vp exceeds the threshold, I∗ is updated as I∗ ← I∗ + 1, and we apply our

breakpoint detection methodology to the wavelet periodogram at the updated

scale −I∗, eventually updating ℬ̂. This procedure is repeatedly conducted until

either no further changes are made, or I∗ reaches I∗ = ⌊log2 T/2⌋.
We note the similarity between this approach and the within-scale post-

processing. Both make use of the test statistics which are of the same form

as the basic test statistic of the binary segmentation procedure (in the former for

determining the progression to the next finest scale, while in the latter for check-

ing the validity of detected breakpoints within each scale). Thus this procedure

for updating I∗ is also in line with the theoretical consistency of our breakpoint

detection procedure. That is, Vp being of the same form as the test statistic of

our binary segmentation algorithm, Lemma 3.6 in Section 3.5.1 implies that, if

there are no more breakpoints to be detected from I
(i)
t,T for i < −I∗ other than

those already included in ℬ̂, then Vp does not exceed the threshold, and vice

versa by Lemma 3.5.

3.3 Simulation study

In Davis et al. (2006), the performance of the Auto-PARM procedure was assessed

and compared with the Auto-SLEX procedure (Ombao et al., 2001) through sim-

ulation in various settings (for a brief description of both methods, see Section

2.3). They reported the superior performance of the Auto-PARM in identify-

ing both dyadic and non-dyadic breakpoints in piecewise stationary time series.

Some examples in the following are adopted from their paper for the comparative

study between the methodology developed in this chapter and the Auto-PARM,

alongside some other new examples.

We also applied the breakpoint detection method based on minimising a

penalised Gaussian likelihood (Lavielle & Teyssière, 2005, referred to as L&T

henceforth) to the same simulated processes, using the Matlab code available on

http://www.math.u-psud.fr/˜lavielle/programmes_lavielle.html. Over-

all, the performance of L&T was found to be inferior to that of both Auto-PARM

and our method for these particular examples. Therefore, the results from L&T

are reported in Tables 3.2–3.3, yet comments on the behaviour of breakpoint
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detection procedures for specific simulation models are restricted to our method

and the Auto-PARM.

In the simulations below, Haar wavelets were used to compute wavelet peri-

odograms. The number of observations in all examples was T = 1024. Therefore

the default value for I∗ was set as 3(= ⌊log2 T/3⌋) at the start of each applica-

tion of our methodology, and then I∗ was updated automatically if necessary, as

described in Section 3.2.4. Simulation outcome from (A) is given in Table 3.2

and that from the rest of models in Table 3.3, which report the total number of

detected breakpoints over 100 simulations.

(A) Stationary AR(1) process with no breakpoints

We consider a stationary AR(1) process,

Xt = aXt−1 + �t for 1 ≤ t ≤ 1024,

where �t ∼ i.i.d.N(0, 1) (as in all the following examples unless specified oth-

erwise). This model is chosen to evaluate the performance of breakpoint

detection methods in not returning any “false alarm” under the null hy-

pothesis of constant second-order structure. For a range of values of a, we

summarise the breakpoint detection outcome in Table 3.2.

(B) Piecewise stationary AR process with clearly observable changes

This example is taken from Davis et al. (2006). The target nonstationary

process is generated from the model below,

Xt =

⎧

⎨

⎩

0.9Xt−1 + �t for 1 ≤ t ≤ 512,

1.68Xt−1 − 0.81Xt−2 + �t for 513 ≤ t ≤ 768,

1.32Xt−1 − 0.81Xt−2 + �t for 769 ≤ t ≤ 1024,

where the AR parameters change over time in a piecewise constant manner.

As seen in Figure 3.1 (a), there is a clear visual difference between the

three stationary segments in this model. Figure 3.1 (b) shows the wavelet

periodogram at scale −4 and the estimation results, where the dotted lines

indicate the true breakpoints (�1 = 512, �2 = 768) while the dashed lines

indicate the detected ones (�̂1 = 519, �̂2 = 764). Note that although
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initially the binary segmentation algorithm returned three breakpoints, the

within-sequence post-processing successfully removed the false one.

(C) Piecewise stationary AR process with less clearly observable changes

In this example, the piecewise stationary AR model in (B) is revisited, but

its breakpoints are less clear-cut, as seen in Figure 3.2.

Xt =

⎧

⎨

⎩

0.4Xt−1 + �t for 1 ≤ t ≤ 400,

−0.6Xt−1 + �t for 401 ≤ t ≤ 612,

0.5Xt−1 + �t for 613 ≤ t ≤ 1024.

Figure 3.2 (b) shows the wavelet periodogram at scale −1 for the realisa-

tion in the left panel with its breakpoint estimates (�̂1 = 403, �̂2 = 622).

Table 3.3 shows that both our method and the Auto-PARM achieved good

performance, identifying exactly two breakpoints in over 95% of the cases.

(D) Piecewise stationary AR process with a short segment

This example is again from Davis et al. (2006), which is designed such that

there is a single breakpoint and one resulting segment is much shorter than

the other.

Xt =

{

0.75Xt−1 + �t for 1 ≤ t ≤ 50,

−0.5Xt−1 + �t for 51 ≤ t ≤ 1024.

A typical realisation of the above model, its wavelet periodogram at scale

−3 and the estimation outcome are shown in Figure 3.3, where the jump

at �1 = 50 was identified as �̂1 = 49. Even though one segment is sub-

stantially shorter than the other, our procedure was able to detect exactly

one breakpoint in 97% of the cases and underestimation did not occur even

when it failed to detect exactly one.

(E) Piecewise stationary near-unit-root process with changing variance

Financial time series, such as stock indices, individual share or commodity

prices, or currency exchange rates, are for certain purposes (such as e.g.

pricing of derivative instruments) often modelled as a random walk with

a time-varying variance. Motivated by this, we generated a piecewise sta-
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tionary, near-unit-root example following the model below, where its AR

parameter, being very close to 1, remains constant, while the variance has

two breakpoints over time. Note that within each stationary segment, the

process can be seen as a special case of the local stationary alternative to a

unit-root process (Phillips & Perron, 1988),

Xt = (1 + c/T )Xt−1 + �t with c < 0. (3.8)

A typical realisation generated from this model is given in Figure 3.4 (a).

Xt =

⎧

⎨

⎩

0.999Xt−1 + �t, �t ∼ i.i.d.N(0, 1) for 1 ≤ t ≤ 400,

0.999Xt−1 + �t, �t ∼ i.i.d.N(0, 1.52) for 401 ≤ t ≤ 750,

0.999Xt−1 + �t, �t ∼ i.i.d.N(0, 1) for 751 ≤ t ≤ 1024.

Recall that the Auto-PARM was designed to find the best fitting AR model

for a given time series, by adopting an algorithm which mimicked the pro-

cess of natural evolution. However, due to the stochastic nature of this al-

gorithm, the Auto-PARM occasionally fails to return consistent estimates.

This instability was emphasised in this example, as each run of the Auto-

PARM often returned different breakpoints. For one typical realisation, it

detected t = 21, 797 as breakpoints and then only t = 741 in the next run

on the same sample path.

Overall, our method performed better than the Auto-PARM for this par-

ticular example, and here we briefly discuss the reasons behind its good

performance. Note that it was at scale −1 of the wavelet periodogram that

both breakpoints were consistently identified the most frequently by our

procedure. The computation of the wavelet periodogram at scale −1 with

Haar wavelets is a differencing operation, and naturally “whitens” the near-

unit-root process in this example to clearly reveal any changes of variance

in the sequence.

(F) Piecewise stationary AR process with high autocorrelation

The features of the following AR model are: high degree of autocorrelation

and less obvious breakpoints compared to previous examples. Its typical
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realisation is shown in Figure 3.5 (a).

Xt =

⎧

⎨

⎩

1.399Xt−1 − 0.4Xt−1 + �t, �t ∼ i.i.d.N(0, 0.82) for 1 ≤ t ≤ 400,

0.999Xt−1 + �t, �t ∼ i.i.d.N(0, 1.22) for 401 ≤ t ≤ 750,

0.699Xt−1 + 0.3Xt−1 + �t, �t ∼ i.i.d.N(0, 1) for 751 ≤ t ≤ 1024.

Again, the instability of Auto-PARM was notable for this example, with

the second breakpoint at t = 750 often left undetected. Our procedure

correctly identified both breakpoints in 84% of the cases.

(G) Piecewise stationary ARMA(1, 1) process

In this simulation study, we generated piecewise stationary ARMA pro-

cesses from the following model,

Xt =

⎧

⎨

⎩

0.7Xt−1 + �t + 0.6�t−1 for 1 ≤ t ≤ 125,

0.3Xt−1 + �t + 0.3�t−1 for 126 ≤ t ≤ 532,

0.9Xt−1 + �t for 533 ≤ t ≤ 704,

0.1Xt−1 + �t − 0.5�t−1 for 705 ≤ t ≤ 1024.

As illustrated in Figure 3.6 (a), the first breakpoint t = 125 is less apparent

than the other two. The Auto-PARM procedure often left this breakpoint

undetected, while our procedure found all three in 76% of cases.

We note that it was scale i = −4 at which t = 125 was detected most

frequently by our procedure. With a time series of length T = 1024, default

scales provided by our algorithm are i = −1,−2,−3, and therefore this

example demonstrates the effectiveness of the updating procedure for I∗

described in Section 3.2.4. That is, after completing the examination of I
(i)
t,T

for i = −1,−2,−3, our procedure checked if there were more breakpoints

to be detected from I
(i)
t,T for the next finest scale i = −4, and since it was

the case, updated I∗ to 4. Figure 3.6 (b) shows the wavelet periodogram at

scale −4 for the time series example in the left panel.
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Figure 3.1: (a) A realisation of model (B), and true (red dotted) and detected (blue dashed) breakpoints; (b) I
(i)
t,T at

i = −4, its estimate (solid) and true (red dotted) and detected (blue dashed) breakpoints.
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Figure 3.2: (a) A realisation of model (C), and true (red dotted) and detected (blue dashed) breakpoints; (b) I
(i)
t,T at

i = −1, its estimate (solid) and true (red dotted) and detected (blue dashed) breakpoints.
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Figure 3.3: (a) A realisation of model (D), and true (red dotted) and detected (blue dashed) breakpoints; (b) I
(i)
t,T at

i = −3, its estimate (solid) and true (red dotted) and detected (blue dashed) breakpoints.
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Figure 3.4: (a) A realisation of model (E), and true (red dotted) and detected (blue dashed) breakpoints; (b) I
(i)
t,T at

i = −1, its estimate (solid) and true (red dotted) and detected (blue dashed) breakpoints.
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Figure 3.5: (a) A realisation of model (F), and true (red dotted) and detected (blue dashed) breakpoints; (b) I
(i)
t,T

at i = −1, its estimate (solid) and true (red dotted) and detected (blue dashed) breakpoints; (c) I
(i)
t,T at i = −2, its

estimate (solid) and true (red dotted) and detected (blue dashed) breakpoints.
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Figure 3.6: (a) A realisation of model (G), and true (red dotted) and detected (blue dashed) breakpoints; (b) I
(i)
t,T

at i = −4, its estimate (solid) and true (red dotted) and detected (blue dashed) breakpoints.
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Table 3.2: Summary of breakpoint detection from Simulation (A); Our segmentation method (Seg), Auto-PARM
(AP) and Lavielle & Teyssière (2005). Results over 100 simulations.

number of breakpoints

a 0.7 0.4 0.1 -0.1 -0.4 -0.7

Seg AP L&T Seg AP L&T Seg AP L&T Seg AP L&T Seg AP L&T Seg AP L&T

0 100 100 70 100 100 80 100 100 80 99 100 73 99 100 71 94 100 64

1 0 0 0 0 0 0 0 0 1 1 0 3 1 0 2 5 0 1

≥ 2 0 0 30 0 0 20 0 0 19 0 0 24 0 0 27 1 0 35

total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Table 3.3: Summary of breakpoint detection from Simulations (B)–(G); Our segmentation method (Seg), Auto-
PARM (AP) and Lavielle & Teyssière (2005). Results over 100 simulations.

number of breakpoints
model (B) model (C) model (D) model (E) model (F) model (G)

Seg AP L&T Seg AP L&T Seg AP L&T Seg AP L&T Seg AP L&T Seg AP L&T
0 0 0 1 0 0 59 0 0 55 1 42 87 1 20 5 0 0 0
1 0 0 1 0 0 2 97 100 24 0 31 0 14 68 9 1 16 1
2 93 99 51 96 100 20 3 0 3 97 16 1 84 7 8 6 55 5
3 4 1 12 3 0 6 0 0 5 2 9 0 1 3 11 76 29 43
4 3 0 10 1 0 4 0 0 1 0 0 0 0 1 16 17 0 10

≥ 5 0 0 25 0 0 9 0 0 12 0 2 12 0 1 51 0 0 41
total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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3.4 U.S stock market data analysis

Many authors, including Stărică & Granger (2005), argued in favour of nonsta-

tionary modelling of financial returns. In this section, we analyse the Dow Jones

Industrial Average index by regarding it as a process with an extremely high de-

gree of autocorrelation (such as in the near-unit-root model of Phillips & Perron

(1988), see (3.8)) and a time-varying variance, similar to the simulation model in

Section 3.3 (E).

(A) Dow Jones weekly closing values 1970–1975

The time series of weekly closing values of the Dow Jones Industrial Aver-

age index between July 1971 and August 1974 was studied in Hsu (1979)

and revisited by Chen & Gupta (1997). Historical data are available on

www.google.com/finance/historical?q=INDEXDJX:.DJI, where daily and

weekly prices can be extracted for any time period. Both papers concluded

that there was a change in the variance of the index around the third week

of March 1973.

For the ease of computation of the wavelet periodograms, we chose the same

weekly index between 1 July 1970 and 19 May 1975 so that the data size was

T = 256 and the aforementioned time period was contained in this interval.

In this dataset, the third week of March 1973 corresponds to t = 141 and

our procedure detected �̂ = 142 as a breakpoint, as illustrated in Figure

3.8.

As for the other breakpoint detection method used in our simulation study,

the Auto-PARM did not return any breakpoint. Since Lavielle & Teyssière

(2005), when analysing financial time series, applied their segmentation pro-

cedure (L&T) to the log-returns (log(Xt/Xt−1)) of the data rather than the

original data Xt themselves, we followed this practice and applied L&T to

the log-returns of the Dow Jones data. It returned t = 141 as a breakpoint,

which is very close to �̂ detected by our procedure.

(B) Dow Jones daily closing values 2007–2009

We further investigated more recent, daily data from the same source, be-
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tween 8 January 2007 and 16 January 2009. Over this period, the global

financial market experienced one of the worst crises in history.

Our breakpoint detection algorithm estimated two breakpoints (see Figure

3.9), one in the last week of July 2007 (�̂1 = 135), and the other in mid-

September 2008 (�̂2 = 424). The Auto-PARM returned three breakpoints

on average, although the estimated breakpoints were unstable as noted

in Section 3.3 (E). t = 35, 426, 488 were detected most frequently as

breakpoints, and t = 100 or t = 140 were detected in place of t = 35 on

other occasions. L&T, when applied to the log-returns (log(Xt/Xt−1)) of

the data as in the above (A), detected t = 127, 424 as breakpoints, which

are very close to �̂1 and �̂2 by our method.

The first breakpoint �̂1 coincided with the outbreak of the worldwide “credit

crunch”, as subprime mortgage backed securities were discovered in portfo-

lios of banks and hedge funds around the world. The second breakpoint �̂2

coincided with the bankruptcy of Lehman Brothers, a major financial ser-

vices firm, an event which brought even more volatility to the market. One

evidence supporting our breakpoint detection outcome is the TED spread

(available on http://www.bloomberg.com/apps/quote?ticker=.tedsp:ind),

which is an indicator of perceived credit risk in the general economy. As

shown in Figure 3.7, it spiked up in late July 2007, remained volatile for

a year, then spiked even higher in September 2008, and these movements

coincide almost exactly with our detected breakpoints.

3.5 Proofs

3.5.1 The proof of Theorem 3.1

The consistency of our algorithm is first proved for the sequence below,

Ỹ 2
t,T = �2(t/T ) ⋅ Z2

t,T , t = 0, . . . , T − 1, (3.9)

where the true piecewise constant function �2(t/T ) replaces �2
t,T in (3.3).
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Figure 3.7: TED spread between January 2007 and January 2009 and the break-
points detected by our procedure (blue dashed).

We denote n = e− s + 1 and define

Ỹb
s,e =

√

e− b
n(b− s+ 1)

b∑

t=s

Ỹ 2
t,T −

√

b− s+ 1

n(e− b)

e∑

t=b+1

Ỹ 2
t,T ,

S̃bs,e =

√

e− b
n(b− s+ 1)

b∑

t=s

�2(t/T )−
√

b− s+ 1

n(e− b)

e∑

t=b+1

�2(t/T ), and

Sbs,e =

√

e− b
n(b− s+ 1)

b∑

t=s

�2
t,T −

√

b− s+ 1

n(e− b)

e∑

t=b+1

�2
t,T .

Note that these quantities are simply inner products of the respective sequences

and a vector

(0, ⋅ ⋅ ⋅ , 0
︸ ︷︷ ︸

s−1

,
√

e−b
n(b−s+1)

,⋅⋅⋅,
√

e−b
n(b−s+1)

︸ ︷︷ ︸

b−s+1

, −
√

b−s+1
n(e−b)

,⋅⋅⋅,−
√

b−s+1
n(e−b)

︸ ︷︷ ︸

e−b

, 0, ⋅ ⋅ ⋅ , 0
︸ ︷︷ ︸

T−e

)T ,

whose support starts at s, is constant and positive until b, then constant negative

until e and normalised such that it sums to zero and sums to one when squared.
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Figure 3.8: (a) Weekly average values of the Dow Jones IA index (July 1970–May 1975); (b) Wavelet periodogram
at scale −1, its estimate (solid) and a detected breakpoint (blue dashed).

79



80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0

time

2007 2008 2009

(a) X_t

0e
+0

0
1e

+0
5

2e
+0

5
3e

+0
5

4e
+0

5
time

2007 2008 2009

(b) WP at scale −1

Figure 3.9: (a) Daily average values of the Dow Jones IA index (Jan 2007–Jan 2009); (b) Wavelet periodogram at
scale −1, its estimate (solid) and detected breakpoints (blue dashed).
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Let s, e satisfy

�p0 ≤ s < �p0+1 < . . . < �p0+q < e ≤ �p0+q+1

for 0 ≤ p0 ≤ B− q. It is shown throughout the proof that this will always be the

case at all stages of the algorithm. In Lemmas 3.1–3.5 below, we impose at least

one of following conditions:

s < �p0+r − C�T < �p0+r + C�T < e for some 1 ≤ r ≤ q, (3.10)

{(�p0+1 − s) ∧ (s− �p0)} ∨ {(�p0+q+1 − e) ∧ (e− �p0+q)} ≤ C�T , (3.11)

where ∧ and ∨ are the minimum and maximum operators, respectively, and

C denotes an arbitrary positive constant (as in what follows unless specified

otherwise).

Recall that throughout the algorithm, a segment is defined by previously

detected breakpoints s and e. Then (3.10) implies that when there is at least

one true breakpoint within the segment (s, e) which has not been detected yet,

it is of sufficient distance from both s and e. On the other hand, (3.11) implies

that for each s and e, there exists a true breakpoint within a sufficiently short

distance. In the proofs of following lemmas, it is shown that both conditions

(3.10) and (3.11) hold throughout the algorithm for all those segments starting

at s and ending at e. As Lemma 3.6 concerns the case when all breakpoint have

already been detected, it does not use either of these conditions.

The proof of the Theorem is constructed as follows. Once Lemma 3.1 is shown,

the result is used in the proof of Lemma 3.2, which in turn is used alongside

Lemma 3.3 in the proof of Lemma 3.4. From the result of Lemma 3.4, we derive

Lemma 3.5 and finally, Lemmas 3.5 and 3.6 are used to prove Theorem 3.1.

Lemma 3.1. Let s and e satisfy (3.10), then there exists 1 ≤ r∗ ≤ q such that

∣
∣
∣S̃
�p0+r∗

s,e

∣
∣
∣ = max

s<t<e
∣S̃ts,e∣, and (3.12)

∣
∣
∣S̃
�p0+r∗

s,e

∣
∣
∣ ≥ C�T /

√
T . (3.13)

Proof. (3.12) is proved by Lemmas 2.2 and 2.3 of Venkatraman (1993). For
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the inequality part in (3.13), we note that in the case of a single breakpoint in

�2(z), r in (3.10) coincides with r∗ and we can use the constancy of �2(z) to the

left and to the right of the breakpoint to show that

∣
∣
∣S̃
�p0+r

s,e

∣
∣
∣ =

∣
∣
∣
∣
∣

√
�p0+r − s+ 1

√
e− �p0+r√

n

(

�2
(�p0+r

T

)

− �2

(
�p0+r + 1

T

))
∣
∣
∣
∣
∣
,

which is bounded from below by C�T/
√
T . In the case of multiple breakpoints,

we remark that for any r satisfying (3.10), the above order remains the same and

thus (3.13) follows. □

Lemma 3.2. Suppose s and e satisfy (3.10) and further assume that S̃
�p0+r

s,e > 0

for some 1 ≤ r ≤ q. Then for any b satisfying ∣�p0+r − b∣ = C�T , we have

S̃
�p0+r

s,e ≥ S̃bs,e + 2 log T

for large T .

Proof. Without loss of generality, assume �p0+r < b. As done in Lemma 3.1,

we first derive the result in the case of a single breakpoint in �2(z). The following

holds;

S̃bs,e =

√
�p0+r − s+ 1

√
e− b

√
e− �p0+r

√
b− s+ 1

S̃
�p0+r

s,e , and (3.14)

S̃
�p0+r

s,e − S̃bs,e =

(

1−
√
�p0+r − s + 1

√
e− b

√
e− �p0+r

√
b− s+ 1

)

S̃
�p0+r

s,e

=

√

1 +
b− �p0+r

�p0+r − s+ 1
−
√

1− b− �p0+r
e− �p0+r

√

1 +
b− �p0+r

�p0+r − s+ 1

⋅ S̃�p0+r

s,e

≥

(

1 +
c1�T
2�T

)

−
(

1 +
c2�T
2�T

)

+ o

(
�T
�T

)

√
2

⋅ S̃�p0+r

s,e

≥ C
�T
�T
⋅ �T√

T
≥ 2 log T
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for large T , where c1 and c2 are positive constants. The Taylor expansion

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − ⋅ ⋅ ⋅ , for ∣x∣ < 1,

is applied to derive the first inequality and Lemma 3.1 to the second inequality.

Similar arguments are applicable when b < �p0+r. Since the order of (3.14)

remains the same in the case of multiple breakpoints, the lemma is proved. □

Lemma 3.3. There exists C > 1 such that, with probability converging to 1 with

T ,
∣
∣
∣Ỹb

s,e − S̃bs,e

∣
∣
∣ ≤ C log T

uniformly over (s, b, e) ∈ D, where D is defined as

D = {(s, b, e) : 1 ≤ s < b < e ≤ T, n = e− s+ 1 ≥ C�T and

max

{√

b− s+ 1

e− b ,

√

e− b
s− b+ 1

}

≤ c

}

for the same c ≥ 1 used in Assumption 3.2.

Proof. We need to show that

ℙ

(

max
(s,b,e)∈D

1√
n

∣
∣
∣
∣
∣

e∑

t=s

�2(t/T )(Z2
t,T − 1) ⋅ ct

∣
∣
∣
∣
∣
> C log T

)

→ 0, (3.15)

where we define

ct =

√
e− b√

b− s+ 1
for t ∈ [s, b] and ct =

√
b− s + 1√
e− b

otherwise.

Let {Ut}et=s be i.i.d. standard normal variables, and define an n × n-matrix

V = (vi,j)
n
i,j=1 and an n× n-diagonal matrix W = (wi,j)

n
i,j=1 with their elements

satisfying

vi,j = cor (Zi+s−1,T , Zj+s−1,T ) and wi,i = �2

(
i+ s− 1

T

)

⋅ ci+s−1,

respectively. By standard results (see e.g. Johnson & Kotz (1970), page 151),

83



showing (3.15) is equivalent to showing that the following holds

∣
∣
∣
∣
∣

e∑

t=s

�t−s+1(U
2
t − 1)

∣
∣
∣
∣
∣
< C
√
n log T

uniformly over (s, b, e) ∈ D with probability converging to 1, where �i are eigen-

values of the matrix VW. Due to the Gaussianity of Ut, it can be shown that

�t−s+1(U
2
t −1) satisfies the Cramér’s condition, i.e., there exists a constant C > 0

such that

E
∣
∣�t−s+1(U

2
t − 1)

∣
∣
p ≤ Cp−2p!E

∣
∣�t−s+1(U

2
t − 1)

∣
∣
2
, p = 3, 4, . . . .

Therefore we can apply Bernstein’s inequality (Bosq, 1998) and obtain

ℙ

(∣
∣
∣
∣
∣

e∑

t=s

1√
n
�2(t/T )(Z2

t,T − 1) ⋅ ct
∣
∣
∣
∣
∣
> C log T

)

≤ 2 exp

(

− n log2 T

4
∑n

i=1 �
2
i + 2maxi ∣�i∣C

√
n log T

)

. (3.16)

Note that
n∑

i=1

�2i = tr (VW)2 ≤ c2max
z
�4(z)n�2∞.

Also it follows that

max
i
∣�i∣ ≤ cmax

z
�2(z)∥V∥,

where ∥⋅∥ denotes the spectral norm of a matrix. SinceV is non-negative definite,

we have ∥V∥ ≤ �1∞ and then (3.15) is bounded by

∑

(s,b,e)∈D

2 exp

(

− n log2 T

4c2maxz �4(z)n�2∞ + 2cmaxz �2(z)
√
n log T�1∞

)

≤ CT 3 exp
(
− log2 T

)
→ 0. (3.17)

The convergence in (3.17) follows from the fact that �p∞ ≤ C2I
∗
and this can be

made to be of order log T , since the only requirement on I∗ is that it converges

to infinity but no particular speed is specified. Thus the lemma follows. □
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Lemma 3.4. Assume that (3.10) and (3.11) hold. Then for b = argmaxs<t<e ∣Ỹt
s,e∣,

there exists 1 ≤ r ≤ q such that, for large T ,

∣b− �p0+r∣ ≤ �T . (3.18)

Proof. Let S̃s,e = maxs<t<e ∣S̃ts,e∣. From Lemma 3.3, we have

Ỹb
s,e ≥ S̃s,e − log T and S̃bs,e ≥ Ỹb

s,e − log T

for large T . Hence it can be derived that S̃bs,e ≥ S̃s,e − 2 log T .

Assume that (3.18) does not hold and thus b ∈ (�p0+r+�T , �p0+r+1−�T ) for any
r. From Lemma 2.2 in Venkatraman (1993), S̃ts,e is either monotonic or decreasing

and then increasing on [�p0+r, �p0+r+1], which implies that S̃
�p0+r

s,e ∨ S̃�p0+r+1
s,e > S̃bs,e.

Suppose S̃
�p0+r

s,e > S̃bs,e. Then there exists b′ ∈ (�p0+r, �p0+r + �T ] satisfying

S̃
�p0+r

s,e − 2 log T ≥ S̃b
′

s,e from Lemma 3.2. Since b > b′, we also get S̃
�p0+r+1
s,e > S̃bs,e

(as S̃ts,e is locally increasing at t = b), and there will again be a b′′ ∈ [�p0+r+1 −
�T , �p0+r+1) satisfying S̃

�p0+r

s,e − 2 log T ≥ S̃b
′′

s,e. Since b′′ > b, it contradicts that

S̃bs,e ≥ S̃s,e − 2 log T . Similar arguments are applicable when b < �p0+r and

therefore the lemma follows. □

Lemma 3.5. Under (3.10) and (3.11),

ℙ

(
∣
∣
∣Ỹb

s,e

∣
∣
∣ < �T �

√

log T ⋅ n−1
e∑

t=s

Ỹ 2
t,T

)

→ 0 (3.19)

for b = argmaxs<t<e ∣Ỹt
s,e∣.

Proof. From Lemma 3.4, there exists some r such that ∣b − �p0+r∣ < �T .

Denote

d̃ = Ỹb
s,e = d̃1 − d̃2 and m̃ =

1√
n

e∑

t=s

Ỹ 2
t,T = c1d̃1 + c2d̃2,

where

d̃1 =

√

e− b
n(b− s+ 1)

e∑

t=1

Ỹ 2
t,T , d̃2 =

√

b− s+ 1

n(e− b)

e∑

t=1

Ỹ 2
t,T ,
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c1 =

√

b− s+ 1

e− b and c2 =

√

e− b
b− s+ 1

.

For simplicity, we assume c2 > c1. Further, let �i = Ed̃i and wi = var(d̃i) for

i = 1, 2 and define � = Ed̃ and w = var(d̃). Finally, tn denotes the threshold

dependent on n as tn = �T �
√

log T/n. Then showing (3.19) is equivalent to

showing that ℙ(∣d̃∣ ≤ tn ⋅ m̃)→ 0.

We first note that wi ≤ 2c2 supz �
4(z)�2∞ and �i ≤ c

√
n supz �

2(z). Using

Markov’s and the Cauchy-Schwarz inequalities,

ℙ(d̃ ≤ tn ⋅ m̃) ≤
ℙ
{

(d̃1 − �1)(c1tn − 1) + (d̃2 − �2)(c2tn + 1) + 2c1tn�1 + (c2 − c1)tn�2 ≥ (1 + c1tn)�
}

≤ 4�−2(1 + c1tn)
−2
{
(c1tn − 1)2w1 + (c2tn + 1)2w2 + 4c21t

2
n�

2
1 + (c2 − c1)2t2n�2

2

}

≤ O

{

�−2c2 sup
z
�4(z)

(
�2∞ + � 2T 2� log T

)
}

,

and since for large T ,

� = S̃bs,e ≥ �T/
√
T ≥ TΘ−1/2 ≫ T �

√

log T ,

the conclusion follows. □

Lemma 3.6. For some positive constants c1, c2, let s, e satisfy either

(i) there exists p ∈ {1, . . . , B} such that s ≤ �p ≤ e and (�p−s+1)∧ (e−�p) ≤
c1�T , or

(ii) there exists p ∈ {1, . . . , B} such that s ≤ �p < �p+1 ≤ e and (�p − s + 1) ∨
(e− �p+1) ≤ c2�T .

Then

ℙ

(
∣
∣
∣Ỹb

s,e

∣
∣
∣ > �T �

√

log T ⋅ n−1
e∑

t=s

Ỹ 2
t,T

)

→ 0

for large T , where b = argmaxs<t<e ∣Ỹt
s,e∣.
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Proof. First we assume (i) holds. Define two events A1 and A2 as

A1 =

{
∣
∣
∣Ỹb

s,e

∣
∣
∣ > �T �

√

log T ⋅ n−1
e∑

t=s

Ỹ 2
t,T

}

,

A2 =

{

1

n

∣
∣
∣
∣
∣

e∑

t=s

(

Ỹ 2
t,T − EỸ 2

t,T

)
∣
∣
∣
∣
∣
< ℎ ≡ (�p − s+ 1)�2

1 + (e− �p)�2
2

2n

}

,

where �2
1 = �2 (�p/T ) and �

2
2 = �2 ((�p + 1)/T ). Then, it follows

ℙ (A1) = ℙ (A1 ∩A2) + ℙ (A1 ∣Ac
2 )ℙ (Ac

2) ≤ ℙ (A1 ∩A2) + ℙ (Ac
2) .

The first probability is bounded as

ℙ (A1 ∩A2) ≤ ℙ

(
∣
∣
∣Ỹb

s,e

∣
∣
∣ > �T �

√

log T ⋅ n−1
e∑

t=s

(

EỸ 2
t,T − ℎ

)
)

. (3.20)

From Lemma 3.3, we have ∣Ỹb
s,e− S̃bs,e∣ ≤ log T for large T . Also Lemmas 2.2 and

2.3 of Venkatraman (1993) indicate that

max
s<t<e

∣S̃ts,e∣ = ∣S̃�p ∣ ≤
√

c1�T (n− c1�T )/n ≤ C
√
�T .

Therefore ∣Ỹb
s,e∣ ≤ ∣S̃�p ∣+log T ≤ C

√
�T for some C > 0 and by applying Markov’s

inequality, (3.20) is bounded by

E
(

Ỹb
s,e

)2

� 2T 2� log T ⋅ ℎ2 ≤ CT 1/2−2� → 0.

Turning our attention to ℙ (Ac
2), we need to show that

ℙ

(

1

n

∣
∣
∣
∣
∣

e∑

t=s

�2(t/T )(Z2
t,T − 1)

∣
∣
∣
∣
∣
> ℎ

)

→ 0,

which is achieved by applying Bernstein’s inequality as in (3.16) (in the proof of

Lemma 3.3). Similar arguments are applied when (ii) holds, and thus the lemma

is proved. □
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We now prove the consistency of the binary segmentation procedure for the

model given in (3.9). At the start of the algorithm, as s = 0 and e = T − 1,

all conditions for Lemma 3.5 are met. Therefore, by Lemma 3.4, the binary

segmentation procedure finds a breakpoint within the distance of C�T from a

true breakpoint. Under the conditions on the distance between the two adjacent

breakpoints (Assumption 3.2), both (3.10) and (3.11) are satisfied within each

segment defined by previously detected breakpoints, until every breakpoint in

�2(t/T ) is identified. Then, either of two conditions (i) or (ii) in Lemma 3.6 is

met within each segment, and therefore no further breakpoint is detected with

probability converging to 1.

Next, we study how the bias present in EI(i)t,T (= �2
t,T ) affects the consistency.

Proposition 3.1 states that EI(i)t,T is close to �i(t/T )(= �2(t/T )) in the sense that

the integrated bias between EI(i)t,T and �i(t/T ) converges to zero (Proposition 3.1).

Suppose the interval [s, e] includes a true breakpoint �p as in (3.10), and let

b = arg max
t∈(s,e)

∣S̃ts,e∣ and b̂ = arg max
t∈(s,e)

∣
∣Sts,e

∣
∣ .

Recall that EI(i)t,T remains constant within each stationary segment, apart from

short (of length C2−i) intervals around the discontinuities in �i(t/T ). Suppose

a jump occurs at t = �p in �i(t/T ) yet there is no change in EI(i)t,T for t ∈
[�p−C2−i, �p+C2−i]. Then the integrated bias is bounded from below by C ′�T/T

from Assumption 3.2, and it contradicts Proposition 3.1.

Therefore there will be a change in EI(i)t,T as well on such intervals around

t = �p such that

EI(i)t1,T ∕= EI(i)t2,T for t1 ≤ �p − C2−i and t2 ≥ �p + C2−i.

Although the bias of EI(i)t,T in relation to �i(t/T ) may cause a discrepancy between

b̂ and b, it is expected that

∣b̂− b∣ ≤ C2I
∗ ≪ �T

for I∗ = O(log log T ), which is an admissible rate for I∗. Besides, once one
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breakpoint is detected in such intervals, the algorithm by its construction does

not allow any more breakpoints to be detected within the distance of ΔT from

the detected breakpoint. Hence the bias in EI(i)t,T does not affect the results of

Lemmas 3.1–3.6 for wavelet periodograms at finer scales, and the consistency still

holds for Y 2
t,T in (3.3), in place of Ỹ 2

t,T .

Finally, we note that the within-scale post-processing step in Section 3.2.2.1

is in line with the theoretical consistency of our procedure.

∙ Lemma 3.5 implies that our test statistic exceeds the threshold when there

is a breakpoint � within a segment [s, e], which is of sufficient distance from

both s and e and thus remained to be detected.

∙ Lemma 3.6 shows that it does not exceed the threshold when (s, �, e) does

not satisfy the conditions required in Lemma 3.5.

3.5.2 The proof of Theorem 3.2

From Assumption 3.1 and the invertibility of the autocorrelation wavelet inner

product matrix A, there exists at least one sequence of wavelet periodograms

among I
(i)
t,T , i = −1, . . . ,−I∗ from which any breakpoint in ℬ is detected.

Suppose there is only one such scale, i0, for �p ∈ ℬ and denote the detected

breakpoint as �̂
(i0)
p0 . After the across-scales post-processing, �̂

(i0)
p0 is selected as �̂p,

since no other �̂
(i)
q , i ∕= i0, is within the distance of ΛT = C�T from either �̂p or

�̂
(i0)
p0 , and thus

∣
∣�p − �̂(i0)p0

∣
∣ = ∣�p − �̂p∣ ≤ �T

with probability converging to 1 from Theorem 3.1.

On the other hand, suppose that there areD(≤ I∗) breakpoints detected for �p

detected from D different wavelet periodogram sequences I
(i)
t,T , i = −i1, . . . ,−iD,

and denote them as �̂
(i1)
p1 , . . . , �̂

(iD)
pD . For any 1 ≤ a < b ≤ D, it holds that

∣
∣�̂(ia)pa − �̂(ib)pb

∣
∣ ≤

∣
∣�̂(ia)pa − �p

∣
∣+
∣
∣�̂(ib)pb

− �p
∣
∣ ≤ C�T

by Theorem 3.1, and therefore all �̂
(i1)
p1 , . . . , �̂

(iD)
pD are classified as belonging to

the same group, say G. Then, our across-scales post-processing procedure is con-
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structed to select only the one from the finest scale as �̂p among those breakpoints

in G. Hence the post-processing preserves the consistency for the breakpoints se-

lected as its outcome in terms of their total number and locations.
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Chapter 4

Multiscale interpretation of

piecewise constant estimators:

taut string and Unbalanced Haar

techniques

Both the Unbalanced Haar (UH) technique (Fryzlewicz, 2007) and the taut string

(TS) based method (see e.g. Barlow et al. (1972) and Davies & Kovac (2001))

estimate a one-dimensional function f from noisy observations {yt}nt=1 by means

of piecewise constant functions under the following additive model:

yt = f

(
t

n

)

+ �t, t = 1, ⋅ ⋅ ⋅ , n. (4.1)

Both techniques are computationally fast, achieve theoretical consistency, and ex-

hibit good performance in numerical simulation studies. The UH method involves

the decomposition of the data with respect to an adaptively chosen, Haar-like

wavelet basis and therefore it is easy to comprehend its multiscale nature. On

the other hand, being a penalised least squares estimator, the multiscale charac-

ter of the TS method is not so obvious and has not previously been noted in the

literature to our best knowledge.

In this chapter, our interest lies in studying the two methods and establish-
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ing a link between the two and as the first step, we present a unified estimation

methodology which both the UH and the TS techniques are instances of. It is

this unified framework that provides ground for a multiscale interpretation of the

TS technique, as well as better understanding of the similarities and differences

between the two methods. Then taking advantage of this common framework,

we derive lessons which either method can learn from the other. Further, be-

ing located between the chapters addressing two different problems, time series

segmentation (Chapter 3) and high-dimensional variable selection (Chapter 5),

this chapter concludes by connecting these problems using the UH and the TS

techniques, with emphasis on the unifying theme of this thesis, sparsity.

The rest of the chapter is organised as follows. In Section 4.1, we first pro-

vide an overview of the UH and TS techniques as well as their algorithms in the

form of flowcharts within the unified framework, which offer an insight into the

relationship between their physical interpretations. Then follows a comparison

study, including the understanding of the two techniques in the context of break-

point detection (Section 4.2). In Section 4.3, we list some ways of improving and

extending both techniques, which suggest avenues for possible future research,

and finally in Section 4.4, we link this chapter to other applications of sparse

modelling and estimation discussed in Chapter 3 and Chapter 5.

4.1 Unbalanced Haar and taut string techniques

4.1.1 Unbalanced Haar technique

The UH technique consists of three steps: the transformation of observations

{yt}nt=1 with respect to an adaptively chosen UH wavelet basis, hard-thresholding

of the wavelet coefficients, and the inverse UH transformation of the thresholded

coefficients. The principles of traditional wavelet thresholding estimation, which

does not have the adaptive basis selection step, can be found in Section 2.4.1.

Before introducing the UH wavelets, we first recall the wavelet function  of
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the Haar wavelet

 (t) =

⎧

⎨

⎩

1 for t ∈ [0, 1/2),

−1 for t ∈ [1/2, 1),

0 otherwise,

(4.2)

which clearly shows that Haar wavelets have a breakpoint in the middle of their

supports.

The UH wavelets were first studied in Girardi & Sweldens (1997) as an ex-

tended version of classical Haar wavelet vectors, the extension being that the

breakpoint was permitted to occur anywhere within their support. Let s and e

denote the start and the end of a generic interval, respectively, and let b ∈ (s, e)

denote the location of the breakpoint. Then, we denote a UH vector which is

supported on the interval [s, e] and has a breakpoint b by  s,b,e, with its elements

 s,b,e(l) satisfying

 s,b,e(l) =

√

e− b
(e− s+ 1) ⋅ (b− s + 1)

⋅ I[s,b](l)−
√

b− s+ 1

(e− s+ 1) ⋅ (e− b) ⋅ I[b+1,e](l).

Classical Haar wavelet vectors are a special case with b = (s+ e− 1)/2.

Note that on a given support {s, . . . , e}, the choice of breakpoints b defines

the choice of a UH vector. Fryzlewicz (2007) presented an adaptive way of UH

basis selection, which can be seen as iteratively detecting a breakpoint within a

segment defined by the breakpoints detected at the previous iterations. Denote

the vector of observations as ỹ = (y1, . . . , yn)
T and its subvector on a generic

support {s, . . . , e} as ỹs,e = (ys, . . . , ye)
T . Then the first breakpoint b1,1 is chosen

from {1, . . . , n} such that the inner product between ỹ and  1,b1,1,n is maximised

in absolute value, i.e.

b1,1 = arg max
b∈{1,...,n}

∣⟨ỹ,  1,b,n⟩∣ . (4.3)

The explicit expression of the UH wavelet coefficient is given later in (4.8). The

next breakpoints are chosen similarly on the supports defined by the previously

chosen breakpoint, i.e. {1, . . . , b1,1} and {b1,1+1, . . . , n}, and the same procedure

93



is repeated until it is no longer possible to divide any support into two.

Then ỹ is transformed with respect to the orthonormal basis defined by these

selected breakpoints. Once the UH transform is finished, the next step of UH

technique is hard-thresholding the wavelet coefficients by setting to zero those

which fall below the universal threshold �
√
2 logn. In practice, �, the standard

deviation of the noise �t, is likely to be unknown yet can be estimated as the me-

dian of the sequence
{
∣yt − yt−1∣/

√
2, t = 2, . . . , n

}
divided by the 0.75-quantile

of the standard normal distribution (which is approximately equal to 0.6745).

Finally, the inverse transform of the thresholded wavelet coefficients is taken

to obtain the final estimate f̂UH. It is shown that f̂UH is mean-square consistent

for a wide range of functions, uniformly over those UH bases (however they have

been selected) which are not “too unbalanced” in the following sense: there exists

a fixed c ∈ [1/2, 1) such that each basis vector should satisfy

max

{
b− s+ 1

e− s+ 1
,

e− b
e− s+ 1

}

≤ c. (4.4)

Thus in practice, the maximisation of the inner products as described above (see

e.g. (4.3)) is performed in such a way that each time, the maximum is taken

over only those wavelets which satisfy condition (4.4), to ensure mean-square

consistency of the resulting estimator.

We note that at the beginning of the UH basis selection procedure, the entire

observation vector is scanned in the search for b1,1. However, the scope of the

search is iteratively narrowed down, as each “parent” vector of observations ỹs,e

gets iteratively divided into two “children”, i.e. the subvectors to the left and

right of the previously detected breakpoint ỹs,b and ỹb+1,e. Because of this natural

parent-child structure of the search, the UH estimation technique can be viewed

as multiscale.

The recursive, binary nature of the UH technique shows its connection to

the CART methodology, which is also a greedy binary splitting procedure (see

Section 2.4.2). However, the UH technique is more than a binary decision tree;

the key ingredient of the UH technique is that it furnishes a decomposition of the

data into wavelet coefficients, which can then be further processed depending on

the aim of the analysis, and thus fully enjoys the benefits of its being a wavelet
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technique.

We also note that the binary decision tree is only one, “top-down”, way of

adaptively choosing a UH basis. Another way, which can be referred to as a

“bottom-up” approach, was introduced in Fryzlewicz (2007). Besides, even the

top-down UH estimator and the CART differ significantly in that the former

employs the usual universal wavelet thresholding, whereas the latter employs

a “hereditary” structure by which further splitting is stopped on a subinterval

which is judged to be a node. An interesting connection between the dyadic

(“balanced”) Haar approach and the dyadic CART is given in Donoho (1997),

where again, it is noted that the dyadic CART estimator differs from the Haar

thresholding estimator due to its heredity rule imposed on the tree structure.

In Section 4.1.3, a more physical interpretation of the UH technique is pro-

vided along with its flowchart representation.

4.1.2 Taut strings

The TS technique was introduced in Barlow et al. (1972) in the context of isotonic

(monotonic) function estimation. For the more general model (4.1), it is shown

that a taut string solves a penalised least squares functional, where the penalty

is based on the total variation norm (Davies & Kovac, 2001; Mammen & van de

Geer, 1997). That is, the TS technique searches for a f̂TS which satisfies

f̂TS = argmin
f̃

{
n∑

t=1

(f̃t − yt)2 + 
∑

t

∣f̃t+1 − f̃t∣
}

, (4.5)

where  is a tuning parameter. Then, f̂TS is a piecewise constant function whose

number of breakpoints is a non-increasing function of .

One way of describing the computation of f̂TS is using the following “string”

and “tube” arguments, which is referred to as the uniscale TS algorithm through-

out this chapter. Denote the integrated process of observations {yt}nt=1 as Y =

{Yt}nt=1, i.e.,

Yt =
t∑

u=1

yu with Y0 = 0.
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Then the graph of Y on the interval [0, 1] connects {(t/n, Yt), 0 ≤ t ≤ n}. Now,
imagine a tube of radius, say � > 0, which surrounds the graph of Y. This tube

consists of the lower bound lt = Yt− � and the upper bound ut = Yt + �, and its

radius � is related to the penalty parameter  from (4.5).

Then, suppose there is a string connecting (0, Y0) and (1, Yn), while being

constrained to lie within the tube. The string is now pulled until it is taut, thus

the name taut string, touching the tube on either lower or upper side at possibly

multiple “knots”. In other words, the taut string has the smallest length among

the functions z̃ satisfying

z̃ : [0, 1]→ ℝ; z̃0 = Y0, z̃n = Yn and lt ≤ z̃t ≤ ut,

and its derivative coincides with the above f̂TS for an appropriately chosen �

(Davies & Kovac, 2001).

Note that between the two knots at which the string only touches the upper

bound u, it coincides with the greatest convex minorant (GCM) of u. Similarly,

between the two knots where the string only touches the lower bound l, it is

the least concave majorant (LCM) of l. Finally where the string switches from

touching u to touching l, a local maximum occurs in its derivative and a local

minimum occurs in the opposite manner.

Davies & Kovac (2001) proposed the taut string multiresolution method for

nonparametric regression with emphasis on consistent estimation of the number

and locations of local extremes. Its final estimate f̂ is obtained from a TS estimate

f̂TS, by further squeezing f̂TS locally such that the empirical residuals {yt−f̂t}nt=1

would satisfy

max
I∈ℐ

1
√

∣I∣

∣
∣
∣
∣
∣

∑

t∈I

(yt − f̂t)
∣
∣
∣
∣
∣
≤ �, (4.6)

where ℐ denotes a collection of every support set {s, s+1, . . . , e} for 1 ≤ s ≤ e ≤ n.

The authors also introduced an algorithm to obtain f̂TS, which simultaneously

computed the GCM of u and the LCM of l to find the knots from left (t = 0) to

right (t = n).

In Section 4.1.3, we provide an alternative algorithm accompanied by a flowchart,
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which reveals the multiscale nature of the TS method. It is this multiscale in-

terpretation of the TS algorithm through which we derive the similarities and

differences between the UH and TS techniques in Section 4.2.

4.1.3 Unified multiscale description of UH and TS algo-

rithms

In introducing the unified framework for both UH and TS techniques, we revisit

the concept of a string and its knots. Using the same notation as in Section 4.1.2,

consider a string, denoted by z, which connects (0, Y0) and (1, Yn) with a straight

line.

We note that the algorithm for the UH technique is established in an adjusted

y-axis. We define a multiplying factor �UH on t ∈ [s, e) as

�UH(t; s, e) =

√

e− s+ 1

(t− s+ 1)(e− t) , (4.7)

which is applied to the string z and the integrated process Y in order to yield

their adjusted versions z∗ and Y∗ as

z∗t = �UH(t; s, n) ⋅ zt and Y ∗
t = �UH(t; s, e) ⋅ Yt.

The adjusting factor �UH comes from the UH wavelet basis which is used to

compute the wavelet coefficient. It is designed such that the wavelet coefficient

defined on the support {s, . . . , e} with a breakpoint at t is equal to the product of

�UH(t; s, e) and the differential term between the local sum (
∑t

u=s yu = Yt−Ys−1)

and the scaled global sum ( t−s+1
e−s+1

⋅ (Ye − Ys−1)) of the observations, see (4.8) for

further details.

Next, consider a tube of radius r surrounding the integrated process Y (or its

adjusted version Y∗ in the UH technique). This time, the radius is chosen to be

large enough that the string z (or z∗) does not touch the tube surrounding the

integrated process Y ± r (or Y∗ ± r). With this starting set-up, our algorithmic

interpretation of the UH and TS techniques is summarised in the flowcharts

provided in Figures 4.1–4.2. Based on these flowcharts, Section 4.2 provides
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a detailed comparison study between the UH and TS techniques.

The two algorithms proceed similarly by “squeezing” the tube and “re-arranging”

the string simultaneously. By squeezing the tube, the first knot is detected at,

say t = b, as the point where the tube first touches z (z∗). If the radius of the

squeezed tube is greater than a pre-specified value � > 0, the string is re-arranged

in a manner that is described in the point (ii) below, and two segments are de-

fined by the previously detected knot at t = b, i.e. [0, b/n] and [(b+1)/n, 1]. The

same tube squeezing (in other words, knot detection) and string re-arrangement

steps are repeated on each segment separately, as long as

Case 1. the length of the segment is large enough for further division of the

segment to be possible in the next iteration, and

Case 2. the squeezed tube radius is greater than � on the given segment.

If, on any segment, the tube is squeezed to have its radius less than �, we set its

radius back to �. The estimation procedure is finished once the progression of

the algorithm is terminated on every segment by the violation of either Case 1 or

Case 2 above, and the final estimate is obtained as the derivative of the string z.

In both algorithms, the current parent segment is always split into two children

subsegments. Therefore the same procedure is applied to the data at multiple

scales and thus we can conclude that not only the UH technique but also the TS

technique is multiscale.

While the above description shows the similarities between the basic steps of

the two algorithms, they differ in the following details.

(i) The tube squeezing in the UH algorithm is performed in the adjusted y-axis

with its adjusting factor defined in (4.7), while that in the TS algorithm is

performed in the original y-axis.

(ii) When a knot is detected with the squeezed tube having its radius larger

than �, the string re-arrangement is done differently. On a generic segment

[s/n, e/n], the UH algorithm arranges z (in the original y-axis) to connect

(s/n, Ys) and (b/n, Yb) with a straight line, as well as (b/n, Yb) and (e/n, Ye)

with a straight line.
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 process Y*
 tube (l, u)
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 until it touches z* at t=b/n
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Figure 4.1: Flowcharts of UH algorithm.
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Figure 4.2: Flowcharts of TS algorithm.
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On the other hand, the TS algorithm attaches z to the tube at the detected

knot, and further squeezing of the tube is applied with z still being attached

to it. Note that the tube itself remains as a symmetric band around the

integrated process Y throughout the algorithm. However, since z consists

of straight lines connecting two neighbouring knots (including (0, Y0) and

(1, Yn)), the slope of each line changes constantly as the radius of the tube

decreases, and as a result, it is a constantly changing function on [0, 1]. The

attachment of z to the tube can be observed in Figure 4.5, where the upper

right and lower middle figures show the state in between the detection of

two knots.

In summary, our TS algorithm returns its final estimate as the derivative

of the string z, which is attached to the tube of radius � at zero, one, or

multiple knots and connects neighbouring knots with straight lines.

As opposed to the uniscale TS algorithm presented in Section 4.1.2, the TS

algorithm from our unified approach is referred to as the multiscale TS algorithm.

We emphasise that the multiscale TS algorithm returns exactly the same estima-

tor as that obtained from the uniscale TS algorithm, and thus it also solves the

penalised least squares problem in (4.5). In the application of the multiscale TS

algorithm, suppose that the first knot is detected with the tube squeezed just

enough to touch the string. If the radius of the tube at such a state is �1, the

string in that state is equal to the string from the uniscale TS algorithm with the

tube radius equal to �1. Then recursively applying the same argument, it can

be seen that the multiscale TS algorithm produces exactly the same state of the

tube and the string as the uniscale TS algorithm.

We note that the UH algorithm as presented in the flowchart (Figure 4.1)

is a slight modification of the UH technique described in Section 4.1.1. The

modification simplifies the graphical representation as well as the comparison

between the UH and TS techniques. In the flowchart, the algorithm terminates

on a segment if the squeezed tube radius is smaller than � (Case 2), which can

be seen as imposing the heredity rule discussed in Section 4.1.1. On the other

hand, the original algorithm terminates only when the segment is too short to be

further divided into two (Case 1), and then applies hard-thresholding with � as
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Figure 4.3: A toy example: observations yt (grey dots), unknown function f (solid
line), UH estimate f̂UH (dashed line), TS estimate f̂TS (dotted line).

the threshold. This difference can affect the adaptivity of the final estimate f̂UH

depending on the shape of underlying function f , and it is further discussed in

Section 4.3 under the heading Local squeezing.

We also note that the algorithm in Figure 4.1 does not take into account

the condition imposed in (4.4) when selecting b ∈ (s, e), unlike the original UH

algorithm as proposed in Fryzlewicz (2007). However, this condition can easily be

incorporated in both UH and TS algorithms and is only omitted for the simplicity

of presentation.

We conclude this section by presenting, in Figures 4.4–4.5, iteration-by-iteration

progression of both algorithms from our unified approach, as applied to the toy

example from Figure 4.3. Iteration (j, k) indicates that the knot is detected in

the jth iteration on the kth segment from the left.
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Figure 4.4: An application of UH algorithm to the model in Figure 4.3: adjusted integrated process Y∗ (black solid),
string z∗ (blue dashed), tube Y∗ ± r (green dotted) and the locations of the knots (vertical, red dotted)
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Figure 4.5: An application of TS algorithm to the model in Figure 4.3: integrated
process Y (black solid), string z (blue dashed), tube Y ± r (green dotted) and
the locations of the knots (vertical, red dotted); the upper left figure shows the
state of the tube and string at the beginning of algorithm; the upper right and
lower middle figures show the state in between the detection of knots.
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4.2 Comparison of UH and TS techniques

Based on the multiscale algorithms established in the previous section, we now

provide a detailed comparison study between the UH and TS techniques. Firstly,

in Section 4.2.1, we define the “locating” functions for both techniques, which are

used to find the locations of a knot within a given segment. Then the comparison

study continues in Section 4.2.2 in the framework of breakpoint detection, which

provides a theoretical insight into reasons why the UH and TS techniques often

perform differently.

4.2.1 Locating functions of UH and TS techniques

In the UH technique, the selection of a UH basis on a generic interval (s, e)

involves the computation of the inner product between ỹs,e and a set of UH

wavelet vectors  s,t,e for t ∈ (s, e). The break b ∈ (s, e) in a wavelet vector  s,b,e

corresponds to the knot on the segment (s/n, e/n) in the UH algorithm, and it

is located as

b = arg max
t∈(s,e)

∣⟨ỹs,e,  s,t,e⟩∣

= arg max
t∈(s,e)

∣
∣
∣
∣
∣

√

e− t
(e− s + 1)(t− s+ 1)

(Yt − Ys−1)−
√

t− s+ 1

(e− s+ 1)(e− t) (Ye − Yt)
∣
∣
∣
∣
∣

= arg max
t∈(s,e)

∣
∣
∣
∣
∣

√

e− s + 1

(t− s + 1)(e− t)

{
t− s+ 1

e− s+ 1
(Ye − Ys−1)− (Yt − Ys−1)

}
∣
∣
∣
∣
∣

(4.8)

= arg max
t∈(s,e)

�UH(t; s, e).

As note in Section 4.1.3, (4.8) can be seen as the product between the adjusting

factor �UH and the differential term between the local sum
(∑t

u=s yu
)
and the

scaled global sum
(
t−s+1
e−s+1

∑e
u=s yu

)
. In what follows, we denote this differential

term by Dt
s,e, i.e.,

D
t
s,e =

t− s+ 1

e− s+ 1
(Ye − Ys−1)− (Yt − Ys−1)
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In summary, �UH(b; s, e) can be seen as the radius of the tube in its adjusted

y-axis when it touches the string at b/n, as well as having the interpretation of

being the UH wavelet coefficient of ỹs,e with respect to  s,b,e in absolute value.

Therefore the step comparing the squeezed tube radius to � is equivalent to the

hard-thresholding of wavelet coefficients, and it justifies setting � equal to the

universal threshold.

We now derive the locating function for the TS algorithm. Conditional on

the string touching the tube at t/n, let gt indicate whether it touches its upper

bound (gt = 1) or lower bound (gt = −1). Initially, as the bounds of the tube

approach the string, we note that the first knot is chosen as

b = argt∈(0,n) max
gt=±1

gt ⋅
(
t

n
Yn − Yt

)

. (4.9)

With the convention that g0 = gn = 0, further knots on a generic interval (s, e)

are located as

b = argt∈(s,e) max
gt=±1

�TS(t; s, e), where

�TS(t; s, e) =

{

gt ⋅Dt
s,e if gs−1 = ge,

e−s+1
(e−s+1)(gt−gs−1)−(t−s+1)(ge−gs−1)

⋅Dt
s,e if gs−1 ∕= ge.

To compare the factors multiplied to the differential term Dt
s,e in �UH and

�TS, we quote the following lemma from Venkatraman (1993). Supposing the

signal f is piecewise constant and there is no noise present in the observations,

Lemma 4.1 implies that the maximum of �UH is then attained only at the true

breakpoints of f at every iteration of the UH algorithm.

Lemma 4.1 (Lemma 2.2 of Venkatraman (1993)). Let m > 0 be an integer and

0 = a0 < a1 < . . . < am < am+1 = 1. We choose �i, i = 0, . . . , m such that

�i ∕= �i+1 and
m∑

i=0

(ai+1 − ai)�i = 0.

Then we can define a piecewise constant function f whose breakpoints are denoted
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by ai, i = 1, . . . , m as

f(x) = �i for x ∈ (ai, ai+1], i = 0, . . . , m.

Define the function ΦUH as

ΦUH(x) =

∑i
j=1(aj − aj−1)�j−1 + (x− ai)�i

√

x(1− x)
, (4.10)

for x ∈ [ai, ai+1]; 0 ≤ i ≤ m. Denote

Φ∗ = max
x∈(0,1)

∣
∣ΦUH(x)

∣
∣ and x∗ = arg max

x∈(0,1)

∣
∣ΦUH(x)

∣
∣

such that ΦUH(x∗) = Φ∗. Then there exists 1 ≤ i ≤ m such that ai = x∗, i.e., the

maximum of ∣ΦUH ∣ can only be attained at one of ai’s.

Simple algebra shows that ΦUH is equivalent to �UH for x = t/n ∈ (0, 1). The

equivalent of ΦUH for the TS technique is defined using the notation of Lemma

4.1 as

ΦTS(x) =

∑i
j=1(aj − aj−1)�j−1 + (x− ai)�i

�1x+ �2(1− x)
(4.11)

for x ∈ [ai, ai+1]; 0 ≤ i ≤ m, where �1, �2 ∈ {0,±1,±2} subject to the condition

∣�1+�2∣ = 2. The particular values taken by �1, �2 depend on whether the string

touches the lower or upper bound at the start and end of the segment defined by

[ai, ai+1].

Figure 4.6 shows interesting characteristics of the two locating functions,

where the UH and TS algorithms are applied to both noiseless and noisy ob-

servations of n = 300, which are generated from the following model,

f(u) =

⎧

⎨

⎩

−4 for u ∈ (0, 1/3],

0 for u ∈ (1/3, 2/3],

5 for u ∈ (2/3, 1].

(4.12)

First, consider the example with noiseless observations (dashed lines). The upper
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Figure 4.6: (a), (b)
∣
∣�UH(t; s, e)

∣
∣ at iteration 1, 2; (c), (d)

∣
∣�TS(t; s, e)

∣
∣ at iteration

1, 2; red dotted (vertical): true breakpoints, blue dashed: noiseless observations,
black solid: noisy observations.
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panel shows �UH at first two iterations ((s, e) : (1, 300) → (1, 200)), where it

is clear that the (local) maxima are attained exactly at the true breakpoints

(t = 100, 200). The lower panel shows �TS at first two iterations, where two

different shapes of the locating function are observed. �TS is piecewise linear at

the first iteration, while at the second iteration, it reaches a plateau at t = 100

and remains constant on [100, 200).

For a piecewise constant signal function f , either shape can occur at each

iteration of the TS algorithm, depending on which side of the tube the string has

been attached to in previous iterations, i.e. on the values of gs, ge and gb. In either

case, it is clear that �TS does not “point out” the locations of true breakpoints

as distinctively as �UH does, since the change in the derivative of �TS is not as

dramatic as in that of �UH around each breakpoint. Thus we conclude that there

is no theoretical equivalent of Lemma 4.1 for ΦTS. This difference may lead to the

TS estimate reflecting the true breakpoint structure less accurately than the UH

estimate when the underlying function f is piecewise constant, and we expand

more on this point in the context of breakpoint detection in the next section.

4.2.2 Link to breakpoint detection

A theoretical study of a family of test statistics for breakpoint detection was made

in Brodsky & Darkhovsky (1993). Their study, in light of the relationship of these

test statistics to �UH and �TS, supports our observations of the previous section

on the “alertness” of the locating function of the UH technique in comparison

with that of the TS technique.

In Chapter 3.5 of the book, the problem of a posteriori (retrospective) break-

point detection was considered, where the task was to find an abrupt change in

the mean value of a random sequence. Section 2.3 of this thesis provides a de-

scription of a posteriori breakpoint detection in contrast to the on-line approach

as well as a survey of the retrospective breakpoint detection methods.

Let {xt}nt=1 be a realisation of a Gaussian process with at most one breakpoint

in its mean and otherwise i.i.d., and let Xt be the integrated process of xt, i.e.

109



Xt =
∑t

u=1 xu. Then, a family of test statistics indexed by � was proposed as

d�(t) =

{
t

n

(

1− t

n

)}�

⋅
{
1

t
Xt −

1

n− t (Xn −Xt)

}

, (4.13)

where t ∈ {1, . . . , n− 1} and � ∈ [0, 1]. A breakpoint candidate is chosen as

b̂� = argmax
t
∣d�(t)∣

and if ∣d�(b̂�)∣ exceeds a test criterion, b̂� becomes the estimated breakpoint. It

can be shown with simple algebra that d1/2 corresponds to �UH. In the case of

d1, it corresponds to �TS only when the string is attached to the same side of

tube at t = s/n and t = e/n, i.e. at the first iteration of the TS algorithm and

each time when gs = ge later on.

Below we summarise the asymptotic results from Brodsky & Darkhovsky

(1993) on the probabilities of type I error (false alarm, i.e. the test statistic

exceeding the test criterion although there is no breakpoint), type II error (false

tranquillity, i.e. the test statistic being smaller than the test criterion although

there is a breakpoint) and the estimation error in the distance between the de-

tected and true breakpoints. Note that the single breakpoint in the following (b),

(c) is constrained to exist within [a1, a2] where 0 < a1 < a2 < 1, which is in accor-

dance with the assumption (4.4) made in Fryzlewicz (2007) for the consistency

of the UH technique.

(a) When there is no breakpoint present in the observations, the asymptotic

rate of convergence for the probability of a type I error increases in �, i.e.

d1 is asymptotically the best in not causing any false alarm.

(b) When there is a single breakpoint, the asymptotic rate of convergence for

the probability of a type II error decreases in �, i.e. d0 is asymptotically

the best at detecting that there is a breakpoint.

(c) When there is a single breakpoint, say b, the asymptotic rate of convergence

for the estimation error probability ℙ
(∣
∣
∣b̂� − b

∣
∣
∣ > �

)

→ 0 is maximised when

� = 1/2, i.e., d1/2 is asymptotically the best at estimating the location of

the breakpoint.
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Note that the above (a) and (b) are obtained under the assumption that the

same critical value is used for all d�(t), � ∈ [0, 1]. Then, for a fixed critical

value, the rate of convergence for the probabilities of type I and type II errors

are optimised when � = 0 and � = 1, respectively.

Suppose now that we choose the critical value C� (depending on �) such that

the probability of a type I error is fixed at �. Provided the i.i.d. noise satisfies

�t ∼ N(0, 1), Theorem 3.5.1 of Brodsky & Darkhovsky (1993) implies that

C0 =

√

2A

Δn
, C1/2 =

√

2A

n
and C1 =

√

A

2n
, (4.14)

where A = − log� and Δ = min(a1(1− a1), a2(1− a2)).
With the above critical values, we can compare the rate of convergence at

which the probability of a type II error tends to 0 for different choices of �. Let

��(n) denote the probability of a type II error for each �. Further, denote the

magnitude of the jump at the breakpoint b by ℎ, and define p = b(1 − b) ≤ 1/4.

It was noted in Brodsky & Darkhovsky (1993) that when the critical value did

not satisfy C� < ℎp�, the probability of a type II error was positive for all n and

tended to 1 as n → ∞. Therefore assuming C� < ℎp�, we obtain the following

from their Theorem 3.5.2.

��(n) ∼ exp

(

−n(ℎp
� − C�)2

2p2�−1

)

= exp

(

−nΘ�

2

)

. (4.15)

By plugging in C� from (4.14), each Θ� is obtained as

Θ0 =

(

ℎ
√
p−

√

2pA

Δn

)2

, Θ1/2 =

(

ℎ
√
p−

√

2A

n

)2

, Θ1 =

(

ℎ
√
p−

√

A

2pn

)2

.

Recalling that the true breakpoint (if it exists) satisfies b ∈ [a1, a2], we have

p ≥ Δ and thus 2p/Δ ≥ 2 and 1/(2p) ≥ 2. Therefore we derive that Θ1/2 ≥ Θ�,

� = 0, 1, i.e. when the type 1 error probability is fixed, the rate of convergence

for probability of a type II error is better for � = 1/2 than for � = 0, 1.

In the above sense, �UH is more alert at breakpoint detection, in detecting

both its presence and location, compared with �TS. Combined with the ob-
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servation made in Section 4.2.1, we conclude that when estimating a piecewise

constant signal with the emphasis on breakpoint detection, it is likely that the

UH technique would perform better than the TS technique.

4.3 Possible lessons and directions for future re-

search

While the comparison study between the UH and TS techniques is interesting in

itself, it also provides, by establishing links between them, common ground on

which the two methods can learn lessons from each other. Below we list some

of such lessons that can potentially lead to new developments in the area of

nonparametric function estimation.

Choice of threshold

The UH algorithm uses the universal threshold �
√
2 logn as the critical

radius �. By comparing the multiplying factors of �UH and �TS, we can

derive the corresponding critical radius for the multiscale TS algorithm.

The equivalent of �UH for the multiscale TS algorithm, say �TS, satisfies

�TS(b; s, e)

�UH(b; s, e)
= Cs,e

√
e− s+ 1,

where Cs,e is a constant depending on (b − s + 1)/(e − s + 1), gs and ge.

Therefore Cs,e�
√
2n logn can be used as a stopping radius in the multiscale

TS algorithm.

In Davies & Kovac (2001), the use of C0�
√
n as the global radius was

proposed for the uniscale TS algorithm, where C0 was chosen as a certain

quantile of the sup-norm of standard Brownian motion. In order to achieve

consistency (in the sense that e.g. constant signals are estimated as constant

with probability tending to 1), C0 may need to converge slowly to infinity,

which leads to the two radii (or thresholds) being comparable in terms of

their order of magnitude.

UH basis selection
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The mean-square consistency result given in Fryzlewicz (2007) holds for

any UH basis as long as the breakpoint in each wavelet vector is not too

“unbalanced” in the sense of (4.4). The TS algorithm provides yet another

way of constructing a UH basis besides the top-down selection method

proposed in Fryzlewicz (2007).

Local squeezing

To improve the convergence rate at local extremes, Davies & Kovac (2001)

combined the TS technique with a multiresolution method (see (4.6)), ap-

plying an additional local squeezing step to the TS estimate. It may be

possible to derive a similar theoretical result on the estimated UH residuals

{yt − f̂UHt }nt=1 and apply an analogous local squeezing to obtain a sharper

estimate.

On the other hand, although it does not contain explicit local squeezing,

the original UH algorithm as described in Section 4.1.1 (and by Fryzlewicz

(2007)) obtains the UH wavelet decomposition down to the finest scale, and

then applies the hard-thresholding of wavelet coefficients. This can be seen

as a replacement for / equivalent of the local squeezing used in Davies &

Kovac (2001), as it enhances the adaptivity of the UH estimator. Similar

modification can readily be made to our version of the TS algorithm.

Controlling the total variation

The total variation penalty in (4.5) restricts the string to be attached to

one of the bounds of the tube at a knot, rather than connecting thus found

knot and its adjacent knots with straight lines. Therefore, by modifying

the re-arrangement step in the UH algorithm, similar control over the total

variation of the estimated function could be achieved.

Extensions to non-Gaussian error distributions

In practice, the assumption of Gaussian noise imposed on �t, t = 1, . . . , n

is violated in many nonparametric estimation problems, such as Poisson

intensity or volatility estimation. In Dümbgen & Kovac (2009), extensions

of taut strings were discussed under the assumption that the noise followed a

distribution from the exponential family. Their final estimate was obtained
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as the transformation of f̂TS, the estimate from the least squares setting in

(4.5), via a known function. The same arguments may be applied to f̂UH

when the prior knowledge on the noise distribution is available.

On the other hand, for the cases where the exact form of the relationship

between the mean and variance of noise distribution is unknown, a data-

driven, wavelet-based estimation technique was proposed in Fryzlewicz et al.

(2008), where the use of UH wavelets is readily applicable. By treating the

variance stabilisation step of the proposed technique as the adjustment of

the y-axis, its extension to the TS technique is also attainable via applying

an appropriate adjusting factor to the string and the integrated process.

4.4 Link to Chapter 3 and Chapter 5

The connection between the piecewise constant estimation and the time series

segmentation problems can easily be drawn; in Chapter 3, it is assumed that

the autocovariance functions of the time series change over time in a piecewise

constant manner. A less apparent link between the problem discussed in this

chapter and the high-dimensional variable selection problem, which is addressed

in Chapter 5, is shown later in this section by treating the additive model in (4.1)

as a linear regression model.

We first show that the UH technique has a close relationship with the time

series segmentation methodology developed in Chapter 3, especially with its bi-

nary segmentation step. Recalling how a breakpoint candidate � is found in the

binary segmentation algorithm in Section 3.2.2,

� = arg max
b∈(s,e)

∣
∣
∣
∣
∣

√

e− b
(e− s+ 1) ⋅ (b− s+ 1)

b∑

t=s

Y 2
t,T −

√

b− s+ 1

(e− s+ 1) ⋅ (e− b)

e∑

t=b+1

Y 2
t,T

∣
∣
∣
∣
∣
,

it is clear that � is chosen among b ∈ (s, e) at which the inner product between

an Unbalanced Haar vector  s,b,e and
{
Y 2
t,T

}e

t=s
is maximised. Thus from (4.8),

we can derive the connection between the breakpoint detection methodology and

the basis selection step of the UH technique.

Chapter 3 shows the consistency of the detected breakpoints in terms of their
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total number and locations, which is in line with the arguments on the alertness

of the locating function �UH in Section 4.2.2. However, the test criterion of our

breakpoint detection method is greater than that of the UH method. This can be

understood from the fact that, when the aim of analysis is to obtain consistent

breakpoint estimates from correlated observations, we need a test criterion greater

than that for producing a consistent piecewise constant estimate of an unknown

function, which may or may not be piecewise constant itself.

We now discuss the TS technique in the context of both breakpoint detection

and high-dimensional variable selection problems. One way to re-write the model

in (4.1) is in the following linear regression form,

y = X� + �,
⎛

⎜
⎜
⎜
⎜
⎝

y1

y2
...

yn

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 ⋅ ⋅ ⋅ 0

1 1 0 ⋅ ⋅ ⋅ 0
...

. . .
...

1 1 1 ⋅ ⋅ ⋅ 1

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

f1

f2 − f1
...

fn − fn−1

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

�1

�2
...

�n

⎞

⎟
⎟
⎟
⎟
⎠

. (4.16)

Under the assumption that the mean of {yt}nt=1 does not change too frequently

(i.e. the breakpoints in {ft}nt=1 are sparse and only a small number of �t = ft−ft−1

are nonzero), we can view this function estimation problem as both segmentation

problem and high-dimensional linear regression problem with a sparse coefficient

vector (the dimensionality of (4.16) being equal to the number of observations

and thus growing with n).

We note that controlling the total variation of f as in (4.5) is equivalent to

controlling the l1-norm of � in (4.16), which is an approach commonly taken in the

variable selection literature (see Section 2.5 for more details). Then, solving the

penalised least squares problem in (4.5) corresponds to finding a Lasso solution

for the linear regression model in (4.16), see Section 2.5.1.2 for more details of

Lasso.

Another variable selection method with l1-penalty is the Dantzig selector (Sec-

tion 2.5.3), whose application in this framework has a natural interpretation of

imposing a bound over the empirical residuals {yt − f̂t}nt=1 of the final estimate

f̂ . Originally adopted by Davies & Kovac (2001) in order to control the num-
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ber of local extremes (see (4.6) and Section 4.3, Local squeezing), this bound

results from the particular structure of the design matrix X in (4.16). Since its

column-wise normalised version is

X∗ =

⎛

⎜
⎜
⎜
⎜
⎝

1/
√
n 0 0 ⋅ ⋅ ⋅ 0

1/
√
n 1/

√
n− 1 0 ⋅ ⋅ ⋅ 0
...

. . .
...

1/
√
n 1/

√
n− 1 1/

√
n− 2 ⋅ ⋅ ⋅ 1

⎞

⎟
⎟
⎟
⎟
⎠

,

the condition imposed on y−X�̂ = y− f̂ in (2.37) can be re-written as

∥X∗T (y −X�̂)∥∞ = max
1≤k≤n

1√
n− k + 1

∣
∣
∣
∣
∣

n∑

t=k

(yt − f̂t)
∣
∣
∣
∣
∣
≤ �. (4.17)

There is more than one way to re-write the model (4.16) as a linear regression

model, and therefore we can impose the multiresolution bound over numerous

sums of empirical residuals of the form (4.17).

In fact, our proposed variable selection methodology in Chapter 5 is not re-

lated to these l1-norm regularisation methods. Also, due to high correlations

among the columns of X, the conditions imposed for the consistency of the Lasso

or the Dantzig selector (e.g. the irrepresentable condition or the uniform un-

certainty principle) are not likely to be met by the design matrix in (4.16), and

thus this approach to the function estimation problem may not be successful in

terms of identifying the breakpoints in piecewise constant functions f . However,

we emphasise that the main objective of this section is to connect the seemingly

different problems discussed throughout this thesis by means of the piecewise

constant estimators studied in this chapter, and to unify them eventually under

the common theme of sparse modelling and estimation.
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Chapter 5

High-dimensional variable

selection via tilting

5.1 Introduction

Inferring the relationship between the response and the explanatory variables in

linear models has been widely studied from the point of view of both practical

applications and theory. We recall the linear regression model described in Section

2.5

y = X� + �, (5.1)

where y = (y1, . . . , yn)
T ∈ ℝn is an n-vector of the response, X = (X1, . . . , Xp) is

an n× p design matrix and � = (�1, . . . , �n)
T ∈ ℝn is an n-vector of i.i.d. random

errors.

As noted in Section 2.5, the necessity for an efficient way of handling high-

dimensional data has increased dramatically in many fields of sciences, engineer-

ing and humanities. For example, a DNA microarray consists of microscopic

spots of DNA “features” and it is often the case that the number of features

ranges from thousands to tens of thousands, all of which can be viewed as poten-

tial explanatory variables (Fan & Lv, 2010). To tackle the challenging problem

of estimating the coefficient vector � in high-dimensional situations, substantial

progress has been made over the last two decades under the assumption that only
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a small number of variables actually contribute to the response, i.e.,

S = {1 ≤ j ≤ p : �j ∕= 0}

is of cardinality much smaller than p. Under such an assumption, identifying S

leads to the improvement of both model interpretability and estimation accuracy,

and Section 2.5 of this thesis provides a survey of the literature devoted to the

high-dimensional variable selection problem under the sparsity assumption.

One of the difficulties in high-dimensional variable selection is the presence

of (possible spurious) non-negligible correlations among the variables. Below we

list typical complications encountered in high-dimensional problems due to high

correlations among the variables, which were originally pointed out by Fan & Lv

(2008).

(a) Irrelevant variables which are highly correlated with the relevant ones can

have high marginal correlations with the response.

(b) A relevant variable can be marginally uncorrelated but jointly correlated

with the response.

(c) Collinearity can exist among the variables, i.e., ∣XT
j Xk∣ for j ∕= k can be

close to 1.

In summary, (a)–(c) imply that marginal correlation screening can be mis-

leading as a measure of association between the variables and the response, es-

pecially in analysing high-dimensional data. In Section 2.5.5, we review some

methods which approach the variable selection problem by taking into account

non-negligible correlations among the variables. They examine the strength of

association between each variable and the response using measures that are a

step further from simple marginal correlation.

We propose another way of measuring the contribution of each variable to the

response, which also accounts for the correlation structure among variables. It is

accomplished by tilting each column Xj such that the impact of other variables

Xk, k ∕= j on the tilted correlation between Xj and y is reduced, and thus the

relationship between the jth covariate and the response can be identified more
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accurately. One main ingredient of this methodology is the adaptive choice of

those variables Xk whose impact on Xj is to be removed, which is achieved by

hard-thresholding the sample correlation matrix of X.

Other key steps in our methodology are: projection of each variable onto a

subspace chosen in the hard-thresholding step, and rescaling of such projected

variables to obtain a measure of association between the variables and the re-

sponse which we refer to as the tilted correlation. We show that under certain

conditions, the tilted correlation can discriminate between relevant and irrelevant

variables, and thus can be used as a tool for variable selection. We also propose

an iterative algorithm based on tilting and present its unique features in relation

to other existing methods.

The remainder of this chapter is organised as follows. In Section 5.2, we

introduce the tilting procedure and study the theoretical properties of tilted cor-

relation in various scenarios. Then in Section 5.3, we propose the TCS algorithm,

which iteratively screens the tilted correlations to identify the relevant variables,

and compare it to other existing methods. Section 5.4 reports the outcome of a

comparative simulation study and Section 5.5 concludes the chapter. Proofs of

theoretical results are in Section 5.6.

5.2 Tilting: motivation, definition and proper-

ties

5.2.1 Notation and model description

We recap the notation introduced in Section 2.5 as well as providing a description

of our model in (5.1). For an n-vector u ∈ ℝn, we define the l1- and l2-norms

as ∥u∥1 =
∑

i ∣ui∣ and ∥u∥2 =
√∑

i u
2
i , and the latter is often referred to as the

norm. We denote the ith row of X by xi = (Xi,1, . . . , Xi,p). Let D denote a

subset of the index set J = {1, . . . , p}. Then XD denotes an n×∣D∣-submatrix of

X with Xj , j ∈ D as its columns for any n × p matrix X. In a similar manner,

�D denotes a ∣D∣-subvector of a p-vector � with �j, j ∈ D as its elements. For

a given submatrix XD, we denote the projection matrix onto the column space
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of XD by ΠD. We use the expression ∣an∣ ≫ ∣bn∣ to describe that ∣anb−1
n ∣ → ∞.

Finally, C and C ′ are frequently used to denote generic positive constants.

In what follows, we assume that each column of X is normalised to have unit

norm, and thus the sample correlation matrix of X is defined as C = XTX =

(cj,k)
p
j,k=1. Further, �i, i = 1, . . . , n are assumed to be i.i.d. random noise follow-

ing a normal distribution N(0, �2/n) with �2 <∞. We note that in the relevant

literature, without the unit norm imposed on the columns of X, the sample corre-

lation matrix of X is defined as C = n−1XTX. It implies that this normalisation

step can be seen as dividing every element of X by
√
n, and therefore the term

n−1 in the noise variance is justified.

5.2.2 Motivation and definition of tilting

In this section, we introduce the procedure of tilting a variable and define the

tilted correlation between each variable and the response.

First, we note that the marginal correlation between each variable Xj and y

has the following decomposition.

XT
j y = XT

j

(
p
∑

k=1

�kXk + �

)

= �j +
∑

k∈S∖{j}

�kX
T
j Xk +XT

j �, (5.2)

It shows that the issues (a) and (b) noted in Section 5.1 arise when the un-

derlined summand in (5.2) is non-negligible, due to the large values of ∣XT
j Xk∣

for k ∈ S ∖ {j}. The main idea behind tilting is to transform each Xj in such

a way that the corresponding underlined summand for the transformed Xj is

zero or negligible, while not distorting the contribution of the jth covariate to

the response. Treating the underlined summand as a “bias” term, it is appar-

ent that by projecting Xj onto the space orthogonal to those Xk’s which attain

large ∣XT
j Xk∣, a corresponding bias term for a thus-transformed Xj would be

significantly reduced.

For each Xj , denote the set of such Xk’s by Cj. Without prior knowledge of

S, one way of selecting Cj for each Xj is to identify those variables Xk, k ∕= j

which have non-negligible correlations with Xj. A careful choice of Cj is especially
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important when the dimensionality p is high. Informally speaking, when X has

more columns than rows (p > n), an n-vector (whether it is Xj or y) may well

be approximated by a large number of columns Xk, k ∕= j, which leads to the

conclusion that including too many variables in Cj would distort the association

between the jth covariate and the response. However, we also observe that intu-

itively, those Xk’s having small sample correlations with Xj do not significantly

contribute to the underlined bias term, and thus can safely be omitted from the

set Cj . Therefore, it appears natural to include in Cj only those variables Xk

whose correlations with Xj exceed a certain threshold in magnitude, and this

hard-thresholding step is an important element of our methodology.

Based on the above observation, we propose a procedure for selecting Cj adap-

tively for each j depending on the sample correlation structure of X. We first

find �n ∈ (0, 1) which acts as a threshold on each off-diagonal entry cj,k, j ∕= k

of the sample correlation matrix C, identifying whether the sample correlation

between Xj and Xk is non-negligible. Then, the subset Cj for each variable Xj is

obtained as

Cj = {k ∕= j : ∣XT
j Xk∣ = ∣cj,k∣ > �n}.

Tilting a variable Xj is defined as the procedure of projecting Xj onto the or-

thogonal complement of the space spanned by Xk, k ∈ Cj, which reduces to zero

the impact of those Xk’s on the association between the projected version of Xj

and y.

Hard-thresholding was previously adopted for the estimation of a high-dimensional

covariance matrix, although this has not been done in the context of variable se-

lection to the best of our knowledge. In Bickel & Levina (2008), an estimator

obtained by hard-thresholding the sample covariance matrix was shown to be con-

sistent with the choice of C
√

log p/n as the threshold, provided the covariance

matrix was appropriately sparse and the dimensionality p satisfied log p/n → 0.

A similar result was reported in El Karoui (2008) with the threshold of magnitude

Cn− for some  ∈ (0, 1/2). Our theoretical choice of threshold �n is described in

Section 5.2.3, where we also briefly compare it to the aforementioned thresholds.

In practice, �n is chosen from the off-diagonal elements of the sample correlation

matrix C by controlling the false discovery rate, as presented in Section 5.3.4.
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Now we describe the effect of tilting. Let X̃j denote a submatrix of X with

Xk, k ∈ Cj as its columns, and Πj the projection matrix onto the space spanned

by Xk, k ∈ Cj, i.e.,

Πj = X̃j(X̃
T
j X̃j)

−1X̃T
j .

The tilted variable X∗
j for each Xj is defined as

X∗
j = (In − Πj)Xj .

Then, the correlation between the tilted variable X∗
j and Xk, k ∈ Cj is reduced

to zero, and therefore such Xk’s no longer have any impact on (X∗
j )
Ty. However,

(X∗
j )
Ty cannot directly be used as a measure of association between Xj and y,

since the norm of the tilted variable X∗
j , provided Cj is non-empty, satisfies

∥X∗
j ∥2 = XT

j (In − Πj)Xj < XT
j Xj = 1.

Therefore, we need to rescale (X∗
j )
Ty so as to make it a reliable criterion for

gauging the contribution of each Xj to y.

Let aj and ajy denote the squared proportion of Xj and y (respectively)

represented by Xk, k ∈ Cj, i.e.,

aj =
∥ΠjXj∥22
∥Xj∥22

and ajy =
∥Πjy∥22
∥y∥22

.

We denote the tilted correlation between Xj and y with respect to a rescaling

factor sj by

c∗j(sj) = s−1
j ⋅ (X∗

j )
Ty,

and propose two rescaling rules below.

Rescaling 1. Decompose (X∗
j )
Ty as

(X∗
j )
Ty = XT

j (In −Πj)y = XT
j

{
p
∑

k=1

�k(In −Πj)Xk + (In − Πj)�

}

= �jX
T
j (In − Πj)Xj +

∑

k∈S∖Cj ,k ∕=j

�kX
T
j (In − Πj)Xk +XT

j (In − Πj)�. (5.3)
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Provided the second and third summands in (5.3) are negligible in com-

parison with the first, rescaling the inner product (X∗
j )
Ty by 1 − aj =

XT
j (In −Πj)Xj can isolate �j , which amounts to the contribution of Xj to

y, in the sense that (X∗
j )
Ty/(1−aj) can be represented as �j plus a “small”

term (our theoretical results later make this statement more precise). Mo-

tivated by this, we use the rescaling factor �j = (1−aj) to define a rescaled

version of X∗
j as

X∙
j = (1− aj)−1 ⋅X∗

j

and the corresponding tilted correlation as

c∗j(�j) = (1− aj)−1 ⋅ (X∗
j )
Ty = (X∙

j )
Ty.

Rescaling 2. Since In − Πj is also a projection matrix, we note that (X∗
j )
Ty is

equal to the inner product between X∗
j = (In−Πj)Xj and y∗

j = (In−Πj)y,

with their norms satisfying ∥X∗
j ∥2 =

√
1− aj and ∥y∗

j∥2 =
√
1− ajy ⋅ ∥y∥2.

By rescaling X∗
j and y∗

j by
√

1− aj and
√
1− ajy respectively, we obtain

the vectors

X∘
j = (1− aj)−1/2 ⋅X∗

j and y∘
j = (1− ajy)−1/2 ⋅ y∗

j ,

whose norms satisfy ∥X∘
j ∥2 = ∥Xj∥2 and ∥y∘

j∥2 = ∥y∥2. Therefore, with

the rescaling factor set equal to Λj = {(1 − aj)(1 − ajy)}1/2, we define the

tilted correlation as

c∗j(Λj) = {(1− aj)(1− ajy)}−1/2 ⋅ (X∗
j )
Ty = (X∘

j )
Ty∘

j .

Figure 5.1 illustrates the above rescaling steps visualised in a three-dimensional

space, where a variable Xj is assumed to attain a non-negligible correlation with

Xk, k ∕= j (i.e. ∣XT
j Xk∣ > �n). In the left panel, c∗j (�j) (rescaling 1) is equal to

the inner product between X∙
j and y, while in the right panel, c∗j(Λj) (rescaling

2) is equivalent to the inner product between X∘
j and y∘

j .

We note that, with the rescaling factor �j (rescaling 1), the tilted correlation

c∗j (�j) coincides with the ordinary least squares estimate of �j from regressing y
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XjXj

XkXk yy

X∗
jX∗

j

X∙
j

X∘
jy∗

j

y∘
j

I− ΠjI− Πj

Figure 5.1: 3-dimensional visualisation of the rescaling methods. Rescaling 1:
c∗j (�j) = ⟨X∙

j ,y⟩ (left); rescaling 2: c∗j (Λj) = ⟨X∘
j ,y

∘
j ⟩ (right); X∗

j and y∗
j are

dotted vectors, while their rescaled versions X∙
j , X

∘
j and y∘

j are dashed vectors.

onto Xk, k ∈ Cj ∪ {j}. When rescaled by Λj (rescaling 2), the tilted correlation

coincides with the sample partial correlation between Xj and y given Xk, k ∈ Cj

(denoted by �̂n(j,y∣Cj)), up to a constant multiplicative factor ∥y∥2, i.e.,

c∗j(Λj) = ∥y∥2 ⋅ �̂n(j,y∣Cj).

Although partial correlation is also used in the PC-simple algorithm (see Section

2.5.5), we emphasise that there exists a crucial difference between tilting and PC-

simple algorithm, since tilting has an adaptive way of selecting the conditioning

subset Cj for each Xj as described earlier in this section. A detailed discussion

on the difference between the two methods is provided in Section 5.3.3. In what

follows, whenever the tilted correlation is denoted by c∗j without specifying the

rescaling factor sj, the relevant statement is valid for either of the rescaling factors

�j and Λj.

Finally, we note that if the set Cj turns out to be empty for a certain index j,

then for such Xj , its tilted correlation with either of the rescaling factors would

reduce to standard marginal correlation, which in this case is expected to work

well (in measuring the association between the jth covariate and the response)

since no other variables are significantly correlated with Xj. In summary, our pro-
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posed tilting procedure enables an adaptive “switch” between the use of marginal

correlation and tilted correlation for each variable Xj , depending on the sample

correlation structure of X.

In the following section, we study some properties of tilted correlation and

show that the corresponding properties do not always hold for marginal corre-

lation. This prepares ground for the algorithm proposed in Section 5.3.1 which

adopts tilted correlation for variable screening.

5.2.3 Properties of the tilted correlation

In the high-dimensional linear regression literature, various assumptions on the

correlation structure of the variables have been made for the theoretical treat-

ment of proposed methods. When establishing such assumptions, two different

approaches have been adopted frequently: imposing the conditions either at the

“population” level or at the “sample” level. For example, Fan & Li (2001) took

the former approach and assumed that the observations (xi, yi) were indepen-

dent and identically distributed with probability density obeying some regularity

conditions. On the other hand, the irrepresentable condition (Zhao & Yu, 2006)

and the sparse Riesz condition (Zhang & Huang, 2008) for the lasso, the uni-

form uncertainty principle (UUP) for the Dantzig selector (Candès & Tao, 2007)

and the asymptotic identifiability condition for the extended BIC (Chen & Chen,

2008) impose restrictions on the behaviour of design matrix X itself, regardless

of its being deterministic or a realisation from a random distribution (detailed

descriptions of these conditions can be found in Section 2.5.1.2 and Section 2.5.3

of this thesis). To investigate the implications of their conditions, Candès & Tao

(2007) showed that a random matrix with i.i.d. Gaussian entries would satisfy

the UUP with high probability, and similar arguments were made by Zhang &

Huang (2008) as well in support of the sparse Riesz condition.

In studying the theoretical properties of tilted correlation, we make the follow-

ing assumptions (A1)–(A6) on the linear model in (5.1). Where X is concerned,

we follow the latter approach and impose the restrictions directly on the design

matrix itself. Then follow some comments on our conditions in comparison with

other assumptions from the relevant literature, either at the population level or
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not, to study their implications.

(A1) The number of non-zero coefficients ∣S∣ satisfies ∣S∣ = O(n�) for � ∈ [0, 1/2).

(A2) The number of variables satisfies log p = O(n�) with � ∈ [0, 1 − 2) for

 ∈ (�, 1/2).

(A3) With the same  as in (A2), the threshold is chosen as �n = C1n
− for some

positive constant C1. Then, we assume that there exists C > 0 such that

Cj = {k ∕= j : ∣cj,k∣ > �n}

is of cardinality ∣Cj∣ ≤ Cn� uniformly over all j, where � ∈ [0, 2( − �)).

(A4) Non-zero coefficients satisfy

max
j∈S
∣�j∣ < M and n� ⋅min

j∈S
∣�j∣ → ∞

for M ∈ (0,∞) and � ∈ [0,  − � − �/2).

(A5) There exists � ∈ (0, 1) satisfying, for all j,

1−XT
j ΠjXj = 1− aj > �.

(A6) For those j whose corresponding Cj satisfies S ⊈ Cj , we have

n� ⋅ ∥(In − Πj)XS�S∥22
∥XS�S∥22

→∞,

for � satisfying �/2 + � ∈ [0,  − � − �/2).

We note that the assumptions (A3), (A5) and (A6), which are imposed on the

sample correlation structure of X, are not directly comparable with the sparse

Riesz condition or the UUP in the sense that, our assumptions are subject to the

specific choice of Cj for each Xj , while the others are imposed on the submatrices

of X, denoted by XD, uniformly over every D ⊂ J whose cardinality is bounded

by C∣S∣ for some C > 0. Below we further discuss the implications of (A1)–(A6).
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In (A1) and (A2), we let the sparsity ∣S∣ and the dimensionality p of the

linear model grow with the sample size n. The choice of �n = C1n
− in (A3) is in

agreement with Bickel & Levina (2008) and El Karoui (2008) as their proposed

thresholds are also greater than n−1/2. We note that this theoretical threshold

is not easily applicable, as the rate parameter  is bounded but unknown. In

practice, �n is chosen by controlling the false discovery rate (Section 5.3.4). The

cardinality of Cj needs to be bounded to guarantee the existence of the projection

matrix Πj as well as to prevent tilted correlations from being distorted (see Section

5.2.2). We now give an example of when (A3) is satisfied.

Suppose for instance that each observation xi, i = 1, . . . , n is independently

generated from a multivariate normal distribution Np(0,Σ) with Σj,k = '∣j−k∣ for

some ∣'∣ ∈ [0, 1). Then summarising the Lemma 1 and the subsequent arguments

of Kalisch & Bühlmann (2007), we have

max
j ∕=k

ℙ
(
∣cj,k − Σj,k∣ > C2n

−
)
≤ Cn exp

(

−C2(n− 4)n−2

2

)

for some C2 ∈ (0, C1) and C > 0, which implies that

ℙ

(

max
j ∕=k
∣cj,k − Σj,k∣ ≤ C2n

−

)

≥ 1− Cnp(p− 1)

2
⋅ exp

(

−C2(n− 4)n−2

2

)

.(5.4)

The right-hand side of (5.4) tends to 1, provided log p = O(n�) with � ∈ [0, 1/2−
). Then (A3) holds with probability converging to 1, since for ∣j − k∣ ≫ logn,

∣cj,k∣ ≤ ∣'∣∣j−k∣ + C2n
− < �n.

Intuitively, if some non-zero coefficients converge to zero too rapidly, iden-

tifying the corresponding variables as relevant is very difficult. (A4) imposes a

lower bound on the non-zero coefficients, which still allows the minimum of the

magnitude of non-zero coefficients to decay to 0 as n grows. It also imposes an

upper bound, which is needed to ensure that the ratio between the maximum and

minimum non-zero coefficients in absolute value does not grow too quickly with

n.
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(A5) is required to rule out strong collinearity among the variables. Since

0 < � < 1− aj =
det
(

XT
Cj∪{j}

XCj∪{j}

)

det
(

X̃T
j X̃j

) ,

we can find a connection between (A5) and the condition requiring strict positive

definiteness of the population covariance matrix of X, which is often found in the

variable selection literature including Bühlmann et al. (2009) and Zou (2006).

Chen & Chen (2008) introduced a new asymptotic identifiability condition for

high-dimensional problems, which can be re-written as below (after taking into

account the column-wise normalisation of X),

lim
n→∞

min
D⊂J,∣D∣≤∣S∣,D∕=S

n(log n)−1 ⋅ ∥(In − ΠD)XS�S∥22
∥XS�S∥22

→∞. (5.5)

Chen & Chen (2008) showed that this identifiability condition was weaker than

(i.e. implied by) the sparse Riesz condition. The similarity between (5.5) and

(A6) can readily be seen. The difference is that (5.5) is a uniform condition

over the entire collection of sets D, whereas (A6) is only required to hold for Cj;

however, the rate n−� is less favourable than logn/n. Even with this slower rate

replacing logn/n in (5.5), our condition (A6) is still weaker than the sparse Riesz

condition for a certain configuration of � and �.

As far as variable selection is concerned, if the absolute values of tilted cor-

relations for j ∈ S are markedly larger than those for j /∈ S, we can use the

tilted correlations for the purpose of variable screening. In the following Sections

5.2.3.1–5.2.3.3, we study the conditions under which the tilted correlations (with

either rescaling factor) satisfy such properties.

5.2.3.1 Scenario 1

In the first scenario, we assume the following condition on X.

Condition 5.1. There exists C > 0 such that

∣
∣(ΠjXj)

TXk

∣
∣ ≤ Cn−
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for all j ∈ J and k ∈ S ∖ Cj, k ∕= j.

This condition implies that when Xj is projected onto the space spanned by

Xl, l ∈ Cj, any Xk ∈ S which is not close to Xj (in the sense that k ∈ S ∖ Cj)
remains not “too close” to the projected Xj (= ΠjXj). In Section 5.6.1.1, it is

shown that Condition 5.1 holds asymptotically when each column Xj is generated

independently as a random vector on a sphere of radius 1, which is the surface of

the Euclidean ball

Bn
2 =

{

x ∈ ℝn :
n∑

i=1

x2i ≤ 1

}

.

The following theorem states that, under Condition 5.1, the tilted correlations

of the relevant variables dominate those of the irrelevant variables.

Theorem 5.1. Under assumptions (A1)–(A6), if Condition 5.1 holds, then ℙ(ℰ1)→
1 where

ℰ1 =

{ ∣c∗k(sk)∣
minj∈S ∣c∗j(sj)∣

→ 0 for all k /∈ S

}

, (5.6)

regardless of the choice of the rescaling factor (that is, with sj = �j or sj = Λj).

On the event ℰ1, the following holds.

∙ n� ⋅ c∗j → 0 for j /∈ S.

∙ n� ⋅ ∣c∗j ∣ → ∞ for j ∈ S.

∙ With the rescaling 1, c∗j(�j)/�j → 1 when �j ∕= 0.

5.2.3.2 Scenario 2

Let K denote a subset of J such that Xk, k ∈ K are either relevant (k ∈ S) or

highly correlated with at least one of the relevant variables (k ∈ ∪j∈SCj). That

is,

K = S ∪ {∪j∈SCj} ,

and we impose the following condition on the sample correlation structure of XK.

Condition 5.2. For each j ∈ S, if k ∈ K ∖ {Cj ∪ {j} }, then Ck ∩ Cj = ∅.
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In other words, this condition implies that for each relevant variableXj , ifXk, k ∈
K is not highly correlated with Xj , there does not exist an Xl, l ∕= j, k, which

achieves sample correlations greater than the threshold �n with both Xj and Xk

simultaneously.

Suppose that the sample correlation matrix of XK is “approximately band-

able”, i.e., ∣cj,k∣ > �n for any j, k ∈ K satisfying ∣j − k∣ ≤ B and ∣cj,k∣ < �n

otherwise, with the band width B satisfying B∣S∣2/p→ 0. Then, if S is selected

randomly from J with each j ∈ J having equal probability to be selected in S,

Condition 5.2 holds with probability bounded from below by

(

1− 4B

p− 1

)

⋅
(

1− 8B

p− 2

)

⋅ ⋅ ⋅
(

1− 4(∣S∣ − 1)B

p− ∣S∣+ 1

)

≥
(

1− 4∣S∣B
p− ∣S∣+ 1

)∣S∣−1

→ 1.

Another example satisfying Condition 5.2 is when each column ofXK is generated

as a linear combination of common factors in such a way that every off-diagonal

element of the sample correlation matrix of XK exceeds the threshold �n.

Under this condition, we can derive a similar result as in Scenario 1, with the

dominance of the tilted correlations for the relevant variables restricted within

K.

Theorem 5.2. Under (A1)–(A6), if Condition 5.2 holds, then ℙ(ℰ2)→ 1 where

ℰ2 =

{ ∣c∗k(sk)∣
minj∈S ∣c∗j(sj)∣

→ 0 for all k ∈ K ∖ S
}

,

regardless of the choice of the rescaling factor (that is, with sj = �j or sj = Λj).

On the event ℰ2, the following holds.

∙ n� ⋅ c∗j → 0 for j /∈ S.

∙ n� ⋅ ∣c∗j ∣ → ∞ for j ∈ S.

∙ With the rescaling 1, c∗j(�j)/�j → 1 when �j ∕= 0.

5.2.3.3 Scenario 3

Finally, we consider a case when X satisfies a condition weaker than Condition

5.2.
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Condition 5.3. (C1) For each j ∈ S, if k ∈ K ∖ {Cj ∪ S }, then Ck ∩ Cj = ∅.

(C2) The marginal correlation between X∗
j = (In − Πj)Xj for j ∈ S and Ey =

XS�S satisfies

n� ⋅ inf
j∈S

∣
∣(X∗

j )
TXS�S

∣
∣→∞.

It is clear that Condition 5.2 is stronger than (C1), as the latter does not impose

any restriction between Cj and Ck if both j, k ∈ S. Bühlmann et al. (2009)

placed a similar lower bound as that in (C2) on the population partial correlation

�n(j,y∣D) of the relevant variables Xj , j ∈ S for any subset D ⊂ J∖{j} satisfying
∣D∣ ≤ ∣S∣. Combined with the assumptions (A4)–(A5), (C2) rules out the ill-posed

case where the configuration of non-zero parameters �j, j ∈ S cancels out the

“tilted covariance” among the relevant variables. We clarify this statement more

precisely in the proof of Theorem 5.3. It is shown in Section 5.6.3 that Condition

5.3 is satisfied if Condition 5.2 holds, and thus Condition 5.3 itself is weaker than

Condition 5.2.

With Condition 5.3, we can show similar results to those in Theorem 5.2.

Theorem 5.3. Under (A1)–(A6), if Condition 5.3 holds, then ℙ(ℰ3)→ 1 where

ℰ3 =

{ ∣c∗k(sk)∣
minj∈S ∣c∗j(sj)∣

→ 0 for all k ∈ K ∖ S
}

,

regardless of the choice of the rescaling factor (that is, with sj = �j or sj = Λj).

On the event ℰ3, the following holds.

∙ n� ⋅ c∗j → 0 for j /∈ S.

∙ n� ⋅ ∣c∗j ∣ → ∞ for j ∈ S.

In contrast to Scenario 2, tilted correlations c∗j(�j) no longer necessarily converge

to �j as n→∞ in this scenario.

Marginal correlations XT
j y for j ∈ S cannot be expected to have the same

dominance over those for j /∈ S as in Theorems 5.1–5.3, unless every off-diagonal

element of the sample correlation matrix C is uniformly small, which is an unre-

alistic assumption especially in high-dimensional problems. On the other hand,
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Conditions 5.1–5.3 specify when the tilted correlation can satisfy the desired

properties, while allowing the presence of high correlations among the variables.

Below we further expand on this point with a simple example.

The following set-up is consistent with Condition 5.3: p = 3, S = {1, 2},
noise is not present, ∣c1,3∣ and ∣c2,3∣ exceed the threshold. In this case, even when

c1,2, c1,3, c2,3 and the non-zero coefficients �1, �2 are chosen so that the marginal

correlation screening fails in the sense that

∣XT
3 y∣ > max(∣XT

1 y∣, ∣XT
2 y∣),

we have ∣(X∗
3 )
Ty∣ = 0 and thus tilted correlation screening is successful.

Scenarios 1–3 do not imply tilting fails when the conditions therein are not

met. Rather, they are imposed in order to study when tilting can succeed and

what can be expected in such cases. In the next section, we use the theoretical

properties of tilted correlations derived in this section to construct a variable

screening algorithm.

5.3 Application of tilting

Recalling the issues (a)–(c) listed at the beginning of Section 5.1, which are typ-

ically encountered in high-dimensional problems, it is clear that tilting is specifi-

cally designed to tackle the occurrence of (a) and (b).

First turning to (a), for an irrelevant variable Xj which attains high marginal

correlation with y due to its high correlations with the relevant variables Xk, k ∈
Cj∩S, the impact of those high correlations is reduced to 0 in the tilted correlation

of Xj and y, and thus tilted correlation provides a more accurate measure of its

association with y. Similar arguments apply to (b), where tilting is capable of

fixing small marginal correlations between relevant variables and y. As for (c),

it is common practice to impose assumptions which rule out strong collinearity

among variables, and we have also followed this route.

In what follows, we present one way of exploiting our theoretical study in

Section 5.2.3, in the form of an algorithm which iteratively applies the tilting

procedure.
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5.3.1 Tilted correlation screening algorithm

In Scenario 3, under a relatively weaker condition than those in Scenarios 1–2,

it is shown that the tilted correlations of relevant variables dominate those of

irrelevant variables within K. Even though K is unknown in practice, as its

knowledge involves that of S, we can exploit the theoretical results by iteratively

screening both marginal correlations and tilted correlations within a carefully

chosen subset of variables.

When every off-diagonal entry of the sample correlation matrix is small,

marginal correlation screening can be used as a reliable way of measuring the

strength of association between each Xj and y, and indeed, c∗j for the variable Xj

with an empty Cj is equal to the marginal correlationXT
j y regardless of the choice

of the rescaling factor sj. Therefore if a variable Xk with Ck = ∅ achieves the

maximum marginal correlation in absolute value, such Xk is likely to be relevant.

On the other hand, if Ck ∕= ∅, then the high marginal correlation between Xk and

y may have resulted from the high correlations of Xk with Xj, j ∈ Ck ∩ S, even

when Xk itself is not relevant. In this case, by screening the tilted correlations

of Xj , j ∈ Ck ∪ {k}, we can choose the variable attaining the maximum ∣c∗j ∣ as
a relevant variable. In either way, one variable is selected and we add it to the

“active set” A which represents the currently chosen model.

As the next step, we update the linear model by projecting it onto the or-

thogonal complement of the current model space XA, i.e.,

(In −ΠA)y = (In − ΠA)X� + (In −ΠA)�. (5.7)

With the updated response and design matrix, we continue the above screening

procedure iteratively. Below we summarise the above arguments in the form of

an algorithm, which is referred to as the tilted correlation screening algorithm

(TCS algorithm) throughout the chapter.

TCS algorithm

Step 0 Start with an empty active set A = ∅, current residual z = y, and current

design matrix Z = X.
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Step 1 Find the variable which achieves the maximum marginal correlation with

z in absolute value, and let

k = argmax
j /∈A
∣ZT

j z∣.

Identify Ck = {j /∈ A, j ∕= k : ∣ZT
k Zj∣ > �n} and if Ck = ∅, let k∗ = k and

go to Step 3.

Step 2 If Ck ∕= ∅, screen the tilted correlations c∗j between Zj and z for j ∈
Ck ∪ {k} and find

k∗ = arg max
j∈Ck∪{k}

∣c∗j ∣.

Step 3 Add k∗ to A, and update the current residual z and the current design

matrix Z as

z← (In − ΠA)y and Z← (In − ΠA)X,

respectively. Further, rescale each column Zj , j ∕∈ A of Z to have unit

norm.

Step 4 Repeat Steps 1–3 until the cardinality of active set ∣A∣ reaches a pre-

specified m < n.

As noted at the beginning of this section, the results in Theorems 5.2–5.3 are

restricted within K ⊂ J, which is unknown without the knowledge of S. However,

Steps 1–2 can be interpreted as an attempt to remain within the set K, since we

either

∙ directly choose an index k which is believed to lie in the set S (its corre-

sponding Zk attains the maximum marginal correlation with the current

residual z), or

∙ screen the tilted correlations within Ck ∪ {k} which is likely to contain at

least one relevant variable, recalling that K = S ∪ {∪j∈SCj}.

In Step 4, we need to specify m which acts as a stopping index in the TCS

algorithm. The TCS algorithm iteratively builds a solution path of the active

set A(1) ⊂ ⋅ ⋅ ⋅ ⊂ A(m) = A, and therefore the final model Ŝ can be chosen as
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either one of the submodels A(i) or a subset of A. We discuss the selection of Ŝ

in Section 5.3.2.

5.3.1.1 Updating step in the TCS algorithm

During the application of the TCS algorithm, the linear regression model (5.1) is

updated in Step 3 by projecting both y and X onto the orthogonal complement

of the current model space spanned by XA. Therefore it is interesting to observe

that in Step 1, with a non-empty active set A, the subset of indices j /∈ A, j ∕= k

whose corresponding Zj(= (In−ΠA)Xj) attain non-negligible sample correlations

with Zk(= (In − ΠA)Xk) is equal to the following set

Ck∣A = {j /∈ A, j ∕= k : �̂n(j, k∣A) > �n}, (5.8)

where �̂n(j, k∣A) denotes the sample partial correlation between Xj and Xk con-

ditional on XA. Then, with a non-empty A, the tilted correlation c∗j in Step

2 measures the association between Xj and y conditional on both the current

model XA and the subset of variables Xl, l ∈ Cj∣A adaptively chosen for each

j ∈ Ck∣A ∪ {k},
While (A1)–(A2) and (A4) remain unchanged after the updating step, the

assumptions (A3), (A5)–(A6) can be re-written for the updated current residual

and current design matrix as below.

(A3’) We assume that there exists C > 0 such that Cj∣A defined as in (5.8) is of

cardinality ∣Cj∣A∣ ≤ Cn� uniformly over all j /∈ A.

(A5’) There exists � ∈ (0, 1) satisfying, for all j /∈ A,

XT
j (In −ΠA∪Cj∣A

)Xj

XT
j (In − ΠA)Xj

> �.

(A6’) For those j /∈ A whose corresponding Cj∣A satisfies S ∖A ⊈ Cj∣A, we have

n� ⋅
∥(In −ΠA∪Cj∣A

)XS�S∥22
∥(In − ΠA)XS�S∥22

→∞.
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As noted in Section 5.2.3, (A5’) is related to the condition requiring strict pos-

itive definiteness of the population covariance matrix of X. Also we can draw

the connection between (A6’) and the asymptotic identifiability condition (5.5)

introduced in Chen & Chen (2008). By assuming an extended version of (5.5) as

lim
n→∞

min
D⊂J,∣D∣≤C∣S∣,D∕=S

n� ⋅ ∥(In − ΠD)XS�S∥22
∥XS�S∥22

→∞,

we can expect (A6’) to hold as the algorithm progresses, provided ∣A∣ ≤ C∣S∣ and
� ≤ � (in conjunction with the fact that the “bias” term of XT

j y in (5.2) consists

of �kX
T
j Xk for k ∈ S ∖ {j}, requiring ∣Cj∣ ≤ ∣S∣ is reasonable).

As for Conditions 5.1–5.3, they may also be extended to account for the

updating of X during the application of the TCS algorithm. This would lead to

deriving conditions under which the TCS algorithm is screening consistent, i.e.

ℙ(S ⊂ A)→ 1

after a certain number of iterations. In this case, m acts as a stopping rule, which

cannot be too large for the updating step to be meaningful, while at the same

time, it cannot be too small as a sufficient number of iterations need to be taken

for every relevant variable to be included in A.

While it is an interesting research topic to extend the theoretical results in

Scenarios 1–3 to the screening consistency of the TCS algorithm, we do not

pursue this direction of research here, since the main objective of this chapter is

to develop a new measure of association between the variables and the response

in a linear model. Instead, the following section presents two methods for the

final model selection which are readily applicable to our framework.

136



5.3.2 Final model selection

5.3.2.1 Extended BIC

In Bogdan et al. (2004) and Chen & Chen (2008), an extended version of Bayesian

information criterion (BIC) was proposed as

BIC(A) = log

{
1

n
∥(In − ΠA)y∥22

}

+
∣A∣
n

(log n+ 2 log p). (5.9)

This new BIC takes into account high dimensionality of the data by adding a

penalty term dependent on p. Chen & Chen (2008) noted that if p ≈ n1/2, the

maximum (spurious) inflation in the log-likelihood was of order 0.5 logn, and

therefore in the case of S = ∅, the probability of selecting a wrong, one-variable

model would be positive with the original BIC.

They also showed the consistency of this new BIC under stronger conditions

than those imposed in (A1), (A2) and (A4): the level of sparsity was ∣S∣ =
O(1), the dimensionality was p = O(nC) for C > 0, and non-zero coefficients

satisfied minj∈S ∣�j∣ > C ′ for C ′ > 0. Then, under the asymptotical identifiability

condition in (5.5), the modified BIC was shown to be consistent in the sense that

ℙ

(

min
∣D∣≤m, D∕=S

BIC(D) > BIC(S)

)

→ 1 for m ≥ ∣S∣,

i.e., the probability of selecting any model other than S converges to zero.

Since the TCS algorithm generates a solution path which consists of m sub-

models A(1) ⊂ ⋅ ⋅ ⋅ ⊂ A(m) = A, a natural way of combining our algorithm with

the BIC in (5.9) is to choose the final model as Ŝ = A(m∗), where

m∗ = arg min
1≤i≤m

BIC(A(i)).

At the price of replacing log n/n with n−� in (5.5), the consistency of the new

BIC can be shown with the level of sparsity growing with n as in (A1) and the

dimensionality increasing exponentially with n as in (A2). The proof of this

statement follows the exact line of proof in Chen & Chen (2008) and so we omit

the details.
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5.3.2.2 Multi-stage variable selection

Wasserman & Roeder (2009) proposed a multi-stage procedure for high-dimensional

variable selection, which was shown to be able to control the type I error (false

positive) at a desired level �, when combined with the Lasso, the forward selection

or the SIS-type marginal correlation screening, i.e.

lim sup
n→∞

ℙ(Sc ∩ Ŝ ∕= ∅) ≤ �.

In this multi-stage procedure, the data is divided into two or three parts such

that each part is used either at the model screening stage or at the “cleaning”

stage as described below.

Once m variables have been identified in the active set A, we can obtain an

estimate of � by regressing y on XA as

�̂A = (XT
AXA)

−1XAy,

and set �̂j = 0 if j /∈ A. Then the final Ŝ ⊂ A is selected at the cleaning stage

by examining the t-statistic of each �̂j , j ∈ A, i.e.

Ŝ = {j ∈ A : ∣Tj∣ > z�/2m}, (5.10)

where Tj denotes the usual t-statistic of �̂j and zu is chosen such that ℙ(Z > zu) =

u for Z ∼ N(0, 1). Although our framework does not have the data splitting step,

this can easily be incorporated in applying the TCS algorithm.

5.3.3 Relation to existing literature

In Section 2.5.5, we briefly discuss a list of methods which account for correlations

among the variables in measuring the association between each variable and the

response. Now having been equipped with the complete picture of the TCS

algorithm, we provide a detailed comparison between our methodology and the

aforementioned methods.

Bühlmann et al. (2009) proposed the PC-simple algorithm, which iteratively

removed the variables identified as having small association with the response
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by partial correlation screening. Behind the adoption of partial correlation lies

the concept of partial faithfulness, which implies that, at the population level, if

the partial correlation between Xj and y conditional on XD was zero for some

D ⊂ J ∖ {j} (i.e. �n(j,y∣D) = 0), then �n(j,y∣J ∖ {j}) = 0. In their PC-simple

algorithm, sample partial correlations �̂n(j,y∣D) were used as the measure of

association between Xj and y, where D was any subset of the active set A (those

variables still remaining in the current model excluding Xj) with its cardinality

∣D∣ equal to the number of iterations taken so far.

In details, the PC-simple algorithm starts with A = J and iteratively repeats

the following:

∙ calculate sample partial correlations �̂n(j,y∣D) for all j ∈ A and for all D

satisfying the above cardinality condition,

∙ apply the Fisher’s Z-transform for testing the null hypothesesH0 : �n(j,y∣D) =

0, i.e. see if

√

n− ∣D∣ − 3

2
⋅
∣
∣
∣
∣
log

(
1 + �̂n(j,y∣D)

1− �̂n(j,y∣D)

)∣
∣
∣
∣
> Φ−1

(

1− �

2

)

(5.11)

where Φ(⋅) denotes the standard normal cumulative distribution function,

∙ remove those variables which do not satisfy (5.11) from A, until ∣A∣ falls
below the number of iterations taken so far.

Recalling the definition of the rescaling factor Λj, we can see the connection

between c∗j (Λj) and �̂n(j,y∣D), as both are (up to a multiplicative factor ∥y∥2)
the partial correlations between Xj and y conditional on a subset of variables.

However, a significant difference comes from the fact that, the PC-simple algo-

rithm takes every D ⊂ A ∖ {j} with fixed ∣D∣ at each iteration, whereas our TCS

algorithm adaptively selects Cj (or Cj∣A when A ∕= ∅) for each j. Also, while

�j is also a valid rescaling factor in our tilted correlation methodology, partial

correlations are by definition computed using Λj only.

As for the forward regression (Wang, 2009, FR) and the forward selection (FS),

although the initial stage of the two techniques is simple marginal correlation

screening, their progression has a new interpretation given a non-empty active
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Table 5.1: Comparison of variable selection methods.

TCS algorithm PC-simple FR FS
Step 0 A = ∅ A = J A = ∅ A = ∅
action

one multiple one one
selected removed selected selected

conditioning set D
A ∪ Cj∣A remaining current current

= A ∪ {k /∈ A, k ∕= j : variables, model model
∣�̂n(j, k∣A)∣ > �n} ∣D∣ fixed A A

rescaling �j or Λj Λj �j none

set (A ∕= ∅). Both algorithms obtain the current residual z by projecting the

response y onto the orthogonal complement of the current model space, i.e.,

z = (In−ΠA)y. That is, they also measure the association between each Xj , j /∈
A and y conditional on the current model XA and thus take into account the

correlations between Xj , j /∈ A and Xk, k ∈ A.

The difference between the FR and the FS comes from the fact that the

FR updates not only the current residual z but also the current design matrix as

Z = (In−ΠA)X (as in Step 3 of the TCS algorithm). Therefore the FR eventually

screens the rescaled version of XT
j (In − ΠA)y with the rescaling factor defined

similarly to �j but replacing Cj with A, i.e., XT
j (In − ΠA)Xj = 1 − XT

j ΠAXj.

On the other hand, there is no rescaling step in the FS and it screens the terms

XT
j (In − ΠA)y, j /∈ A, themselves.

We note that unlike the FR and the FS, which always screen the marginal

correlations ∣ZT
j z∣, j /∈ A (or ∣XT

j z∣ in the FS) at each stage of their progression

(after updating both or either of z and Z), our method is able to adaptively

“switch” between the use of marginal correlation and tilted correlation, depend-

ing on the sample correlation structure of the current design matrix Z. Other

crucial differences are as already mentioned above in the context of the PC-simple

algorithm: the data-driven choice of the conditioning set Cj and the validity of

the two rescaling methods in tilting.

In conclusion, the TCS algorithm, the PC-simple algorithm, the FR and the

FS share the common ingredient of measuring the contribution of each variable

Xj to y conditional on certain other variables; however, there are also important

differences between them as reported in Table 5.1.
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Finally, we note the relationship between the TCS algorithm and the covariance-

regularised regression method proposed in Witten & Tibshirani (2009). When

the active set A is not empty, the selection of Cj in Step 1 of the TCS algorithm

is essentially the identification of non-negligible partial correlations among the

variables conditional on the current model XA, see Section 5.3.1.1. The scout

procedure introduced in Witten & Tibshirani (2009) also has a step identifying

the variables which have non-negligible partial correlation with each other (i.e.,

�n(j, k∣J ∖ {j, k}) ∕= 0). However, in the scout procedure, such identification is

achieved by obtaining a regularised estimate of the inverse covariance matrix of

X via penalised likelihood estimation, rather than hard-thresholding as in tilt-

ing. Also, thus-obtained estimate is applied to estimate �, again by maximising

a penalised least squares problem. By contrast, we note that our tilted corre-

lation method is an iterative technique which does not involve any optimisation

problems.

5.3.4 Choice of threshold

In this section, we discuss the practical choice of the unknown threshold �n

from the sample correlation matrix C. Bickel & Levina (2008) proposed a cross-

validation method for this purpose, while El Karoui (2008) conjectured the use-

fulness of a procedure based on controlling the false discovery rate (FDR). Since

our aim is not at the accurate estimation of the correlation matrix itself, we pro-

pose a threshold selection procedure which is a modified version of the approach

taken in the latter paper. In the following, we assume that X is a realisation of a

random matrix with each row generated as xi ∼i.i.d. (0,Σ), where each diagonal

element of Σ satisfies Σj,j = 1.

Our threshold selection method is a multiple hypothesis testing procedure and

thus requires p-values of d = p(p − 1)/2 hypotheses H0 : ∣Σj,k∣ = 0 defined for

all j < k. We propose to compute the p-values as follows. First, an n× p-matrix

with i.i.d. Gaussian entries is generated, and sample correlations {rl,m : 1 ≤ l <

m ≤ p} among its columns are obtained as a “reference”. Then, the p-value for
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each null hypothesis H0 : ∣Σj,k∣ = 0 is defined as

Pj,k = d−1 ⋅ ∣{rl,m, 1 ≤ l < m ≤ p : ∣rl,m∣ ≥ ∣cj,k∣}∣ .

The next step is to apply the testing method proposed in Benjamini & Hochberg

(1995) to control the false discovery rate, i.e. the expected proportion of incor-

rectly rejected null hypotheses. Denoting P(1) ≤ . . . ≤ P(d) as the p-values in

increasing order, we find the largest i for which

P(i) ≤ i/d ⋅ �∗

and reject all H(j), j = 1, . . . , i. Then �̂tℎr is chosen as the absolute value of

the correlation corresponding to P(i). If the hypotheses tests were independent,

Benjamini & Hochberg (1995) proved that the FDR was controlled at level �∗.

Although it was not the case in our framework, our simulation study confirmed

good practical performance of the above threshold selection procedure with the

choice of �∗ = p−1/2 as suggested in El Karoui (2008).

We conclude this section by remarking on the choice of �∗. Using (5.4), we

can bound the probability that the maximum spurious sample correlation among

p independent Gaussian variables U1, . . . , Up exceeds the threshold �n = C1n
−

as

ℙ

(

max
j ∕=k

∣
∣UT

j Uk
∣
∣ > �n

)

≤ Cnp(p− 1)

2
⋅ exp

(

−C1(n− 4)n−2

2

)

. (5.12)

Interpreting �∗ as the permissible ratio of spuriously large sample correlations

(among independent variables) which would not be thresholded by �n, we can

derive the particular choice of �∗ = p−1/2 from (5.12): under our assumption (A2),

there exists C3 > 0 for which log p < C3n
1−/2, and therefore the right-hand side

of (5.12) is bounded from above by p2−C1/(2C3) for large p, which can be made to

be comparable to p−1/2 when C1/C3 = 5. Whether spurious or not, the presence

of large sample correlations can distort the association between the variables and

the response in marginal correlation, as noted in Section 5.2.2. By allowing those

spurious off-diagonal elements of C = XTX to pass the thresholding step, tilting

can successfully remove their influence in tilted correlation.
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5.4 Simulation study

In this section, we study the performance of the TCS algorithm applied to sim-

ulated data and compare it to other related methods discussed in Section 5.3.3,

which are the PC-simple algorithm, the FR and the FS, as well as some specific

cases of penalised least squares estimation: the Lasso and the elastic net (Zou &

Hastie, 2005) (see Section 2.5.1 for the details of the two methods).

The TCS algorithm was applied using both rescaling methods, with the max-

imum cardinality of the active set A (Step 4) set at m = ⌊n/2⌋, a value also

used in the FR method. We used the R package pcalg to apply the PC-simple

algorithm; the FS and the Lasso solution paths were generated by the R package

lars, and those of the elastic net by the R package elasticnet, with a varying

l1 penalty parameter and a fixed l2 penalty parameter.

5.4.1 Simulation models

In this section, we describe our simulation models. With the exception of (D)–

(E), the procedure for generating the sparse coefficient vectors � is outlined below

the following list.

(A) Factor model with 2 factors: Let �1 and �2 be two independent stan-

dard normal variables. Each variable Xj, j = 1, . . . , p, is generated as

Xj = fj,1�1+fj,2�2+�j , where fj,1, fj,2, �j are also generated independently

from a standard normal distribution. The model is taken from Meinshausen

& Bühlmann (2010).

(B) Factor model with 10 factors: Identical to (A) but with 10 instead of 2

factors.

(C) Factor model with 20 factors: Identical to (A) but with 20 instead of 2

factors.

(D) Taken from Fan & Lv (2008) Section 4.2.2:

y = �X1 + �X2 + �X3 − 3�
√
'X4 + �,
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where � ∼ Nn(0, In) and (Xi,1, . . . , Xi,p)
T are generated from a multivariate

normal distribution Nn(0,Σ) independently for i = 1, . . . , n. The popula-

tion covariance matrix Σ = (Σj,k)
p
j,k=1 satisfies Σj,j = 1 and Σj,k = ', j ∕= k,

except Σ4,k = Σj,4 =
√
', such that X4 is marginally uncorrelated with y

at the population level. In the original model of Fan & Lv (2008), � = 5

and ' = 0.5 were used, but we chose � = 2.5 and ' = 0.5, 0.95 to investi-

gate the performance of the variable selection methods in more challenging

situations.

(E) Taken from Fan & Lv (2008) Section 4.2.3:

y = �X1 + �X2 + �X3 − 3�
√
'X4 + 0.25�X5 + �,

with the population covariance matrix ofX for this model is identical to (D)

except Σ5,k = Σj,5 = 0, such that X5 is uncorrelated with any Xj, j ∕= 5,

and relevant. However, it has only a very small contribution to y.

(F) Leukemia data analysis: Golub et al. (1999) analysed the Leukaemia dataset

from high-density Affymetrix oligonucloeotide arrays, which has 72 ob-

servations and 7129 genes (i.e. variables). The dataset is available on

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi. In Fan

& Lv (2008), this dataset was used to investigate the performance of Sure

Independence Screening in a feature selection problem. Here, instead of

using the actual response from the dataset, we used the design matrix to

create simulated models as follows.

Each column Xj of the design matrix was normalised to ∥Xj∥22 = n, and out

of 7129 such columns, p were randomly selected to generate an n×p-matrix

X. Then we generated a sparse p-vector � and the response y as in (5.1). In

this manner, the knowledge of S could be used to assess the performance of

the competing variable selection techniques. A similar approach was taken

in Meinshausen & Bühlmann (2010) to generate simulation models from

real datasets.

With the exception of (D)–(E), we generated the sparse coefficient vectors � by

randomly sampling the indices of S from 1, . . . , p, with ∣S∣ = 10. Then the non-
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zero coefficient vector �S was drawn from a zero-mean normal distribution such

that

CS,S�S ∼ N∣S∣(0, n
−1I∣S∣),

where CS,S denotes the sample correlation matrix of XS. In this manner,

argmax
j∈J
∣XT

j (XS�X)∣

may not always be attained within S, which makes the correct identification of

relevant variables more challenging. The noise level � was chosen (except (D)–(E)

where it was fixed at 1) to set R2 = var(xTi �)/var(yi) at 0.3, 0.5, or 0.9, adopting

a similar approach to that made in Wang (2009). In the models (A)–(E), the

number of observations was fixed at n = 100 while the dimensionality p varied

from 500 to 2000 (except (D)–(E) where it was fixed at 1000), and finally, 100

replicates were generated for each set-up.

5.4.2 Simulation results

We evaluate the performance of the variable selection techniques using the re-

ceiver operating characteristic (ROC) curves, which plot the true positive rate

(TPR) against the false positive rate (FPR). Bühlmann et al. (2009) also adopted

the ROC curves, noting that they could assess the capacity for variable selection

of different techniques independently from the issue of choosing good tuning pa-

rameters. A steep slope of the ROC curve indicates that relevant variables were

selected before including many irrelevant variables. In Figures 5.2–5.15, ROC

curves of different methods are compared, with vertical dotted lines indicating

when the FPR reaches 2.5∣S∣/p.
Not surprisingly, variable selection methods turn out to work better for data

with relatively lower dimensionality and higher R2, in terms of the steepness of

the ROC curves. Compared with other methods, the TCS algorithm and the FR

achieve high TPR more quickly without including too many irrelevant variables

for all models. While the PC-simple algorithm attains low FPR, its TPR is also

low even when the significant level for the testing procedure is set to be high. The

Lasso and the elastic net tend to result in high TPR at the cost of high FPR,
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and their ROC curves are below those of the TCS algorithm or the FR for small

FPR.

As can be seen from Figures 5.2-5.4, for the two factor example (A), the

TCS algorithm and the FR work equally well with their ROC curves showing

steep slopes, although the former achieves higher TPR for the case p = 2000

and R2 = 0.9. The FS works almost as well as the above two methods for lower

dimensional examples (p = 500), but with increasing dimensionality, it fails to

achieve as high a TPR as that of the TCS algorithm or the FR, which is also the

case for models (B) and (C).

As the number of factors used to generate X increases (see Figures 5.5-5.7 for

the model with 10 factors and Figures 5.8-5.10 for the model with 20 factors),

the TCS algorithm performs better than the FR, attaining higher TPR for a

similar level of FPR. From substantial numerical experiments, we observed that

the increase in the number of factors resulted in an increased chance of marginal

correlation screening being misleading at the very first iteration, in the sense that

argmax
j
∣XT

j y∣ /∈ S.

In such set-ups, the adaptive choice of Cj used by the TCS algorithm turns out

to be helpful in correctly identifying a relevant variable more often than marginal

correlation screening. For model (C), although the TPR of the Lasso often reaches

the highest level (especially when R2 is low), the ROC curves of the Lasso remain

below those of the TCS algorithm, the FR or the FS for small FPR. Between

the two rescaling methods, rescaling 2 works better than rescaling 1 for models

(A)–(C). Recalling that rescaling 2 is adopted by the FR (see Table 5.1), it is

interesting to see that overall the TCS algorithm with rescaling 2 outperforms

the FR for these models.

As for the models (D) and (E), the TCS algorithm and the FR outperform the

rest when ' = 0.5, rapidly identifying all the relevant variables before the FPR

reaches 2.5∣S∣/p (see the left columns of Figures 5.11–5.12). However when the

correlations among the variables increase with ' = 0.95 (see the right columns

of Figures 5.11–5.12), the TCS algorithm with rescaling 1 is the only method

that can identify all the relevant variables. Other methods, including the TCS
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algorithm with rescaling 2 and the FR, often neglect to include X4 due to its high

correlations with the other variables,
√
' being almost 0.975.

For the examples generated from the Leukemia dataset ((F), Figures 5.13–

5.15), the TCS algorithm with either of the rescaling methods always performs the

best, with its ROC curves always dominating those of others. The FR performs

the second best and the FS, the Lasso and the elastic are not able to identify as

many relevant variables as the TCS algorithm or the FR even for high FPR.

5.5 Concluding remarks

In this chapter, a new way of measuring the association between the variables and

the response is proposed for high-dimensional linear regression, which adaptively

takes into account correlations among the variables. We conclude the discussion

by listing some new contributions made in this chapter.

∙ Although tilting is not the only procedure which measures the association

between a variable and the response conditional on other variables, its se-

lection of the conditioning variables is a step further from simply using the

current model itself or its submodels, as is done in existing iterative al-

gorithms. The hard-thresholding step in the tilting procedure enables an

adaptive choice of the conditioning subset Cj for each variable Xj , depend-

ing on the sample correlation structure of X. Recalling the decomposition

of the marginal correlation in (5.2), this adaptive choice can be seen as

a vital step in isolating the contribution of each variable to the response.

Also, in case of Cj = ∅, tilted correlation is identical to marginal correlation,

which is an example showing the adaptivity of our procedure.

∙ We have proposed two rescaling factors to obtain the tilted correlation c∗j ,

which are also adopted by other methods (rescaling 1 by the forward regres-

sion and rescaling 2 by the PC-simple algorithm). However, tilting is the

only method to meaningfully use both rescaling factors in the sense that,

our theoretical results in Section 5.2.3 are valid for either of the two fac-

tors. It would be of interest to identify a way of combining the two rescaling
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methods, possibly depending on the correlation structure of X, which we

leave as a topic for future research.

∙ The separation of relevant and irrelevant variables achieved by tilted corre-

lation (as in our Theorems 5.1–5.3), cannot always be achieved by marginal

correlation in the same scenarios, and similar results to these theorems

have not been reported previously to the best of our knowledge. Not unex-

pectedly, conditions which are imposed on the linear model (5.1) for these

separation properties to hold, take a different form from those imposed

for consistency of other variable selection methods, such the sparse Riesz

condition for the Lasso or the UUP for the Dantzig selector.

∙ The proposed TCS algorithm is designed to fully exploit the theoretical

properties of the tilted correlation. Numerical experiments confirm its good

performance, showing that it can achieve high true positive rate without

including many irrelevant variables. The algorithm is easy to implement

and does not require the use of advanced computational tools.

5.6 Proofs

5.6.1 Proof of Theorem 5.1

The proof of Theorem 5.1 is divided into Steps 1–3. Recalling the decomposi-

tion of (X∗
j )
Ty in (5.3), we first control the inner product between X∗

j and �

uniformly over all j in Step 1. In Steps 2–3, we control the second summand

I =
∑

k∈S∖Cj ,k ∕=j
�kX

T
j (In − Πj)Xk for j falling into two different categories, and

thus derive the results in Theorem 5.1.

Step 1 For � ∼ Nn(0, n
−1�2 ⋅ In), with probability converging to 1,

max
1≤j≤p

∣⟨�, Zj⟩∣ ≤ �
√

2 log p/n

for Z1, . . . , Zp ∈ ℝn having unit norm as ∥Zj∥2 = 1. From (A2), we have

�
√

2 log p/n ≤ Cn− for some C > 0, and from (A5), ∥X∗
j ∥2 >

√
� > 0.
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Figure 5.2: ROC curves for the simulation model (A) with n = 100 and p = 500: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Figure 5.3: ROC curves for the simulation model (A) with n = 500 and p = 1000: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Figure 5.4: ROC curves for the simulation model (A) with n = 500 and p = 2000: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Figure 5.5: ROC curves for the simulation model (B) with n = 100 and p = 500: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Figure 5.6: ROC curves for the simulation model (B) with n = 500 and p = 1000: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Figure 5.7: ROC curves for the simulation model (B) with n = 500 and p = 2000: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Figure 5.8: ROC curves for the simulation model (C) with n = 100 and p = 500: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Figure 5.9: ROC curves for the simulation model (C) with n = 500 and p = 1000: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Figure 5.10: ROC curves for the simulation model (C) with n = 500 and p = 2000: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Figure 5.11: ROC curves for the simulation model (D): TCS algorithm with rescaling 1 (black solid), TCS algorithm
with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple algorithm (blue longdash), Lasso
(light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted vertical); left: ' = 0.5, right:
' = 0.95.
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Figure 5.12: ROC curves for the simulation model (E): TCS algorithm with rescaling 1 (black solid), TCS algorithm
with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple algorithm (blue longdash), Lasso
(light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted vertical); left: ' = 0.5, right:
' = 0.95.
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Figure 5.13: ROC curves for the simulation model (F) with n = 72 and p = 500: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Figure 5.14: ROC curves for the simulation model (F) with n = 72 and p = 1000: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Figure 5.15: ROC curves for the simulation model (F) with n = 72 and p = 2000: TCS algorithm with rescaling
1 (black solid), TCS algorithm with rescaling 2 (black dashed), FR (red dotted), FS (green dotdash), PC-simple
algorithm (blue longdash), Lasso (light blue thin dashed), elastic net (magenta thin dotted); FPR= 2.5∣S∣/p (dotted
vertical); left: R2 = 0.3, middle: R2 = 0.5, right: R2 = 0.9.
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Therefore by defining

ℰ0 = {max
j
∣(X∗

j )
T �∣ < Cn−},

it follows that ℙ(ℰ0)→ 1.

Step 2 In this step, we turn our attention to those j whose Cj satisfies S∖{j} ⊆ Cj

and thus the corresponding I = 0 and (X∗
j )
Ty = �j(1− aj) + (X∗

j )
T �.

Rescaling 1. With the rescaling factor �j = (1 − aj) which is bounded

away from 0 by (A5), it can be shown that if such j belongs to S,

its tilted correlation satisfies c∗j (�j)/�j → 1 on ℰ0, as ∣�j ∣ ≫ n−�.

On the other hand, if j /∈ S, we have �j(1 − aj) = 0 which leads to

n� ⋅ c∗j(�j) ≤ n� ⋅ Cn− → 0 on ℰ0.

Rescaling 2. Note that j whose Cj include all the members of S cannot

be a member of S itself, and in such case, (In − Πj)y is reduced to

(In−Πj)�. Since (A3) assumes that each Cj has its cardinality bounded

by Cn�, it can be shown that

ℙ

(

max
j
∥Πj�∥2 ≤ C ′�n−(−�/2)

)

→ 1 (5.13)

for some C ′ > 0, similarly as in Step 1. Also, Lemma 3 from Fan &

Lv (2008) implies that

ℙ
(
�−2 ⋅ ∥�∥22 < 1− !

)
→ 0 (5.14)

for any ! ∈ (0, 1). Combining these observations with (A1) and (A4),

we derive that

1− ajy =
∥(In −Πj)�∥22
∥y∥22

≥ Cn−�

with probability tending to 1, and eventually we have Λj ≥ C ′n−�/2

from (A5). Therefore, if S ⊆ Cj for some j /∈ S, its corresponding

tilted correlation satisfies n� ⋅ c∗j(Λj) ≤ n� ⋅ Cn−(−�/2) → 0 on ℰ0.
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In the case of S ⊈ Cj, we can derive from (A6), (5.13) and (5.14) that

for such j,

1− ajy =
∥(In − Πj)y∥22
∥y∥22

≫ n−�,

which, combined with (A5), implies that Λj ≫ n−�/2. Then the fol-

lowing holds for such j on ℰ0: n
� ⋅ ∣c∗j(Λj)∣ ≥ n� ⋅ C∣�j ∣ → ∞ if j ∈ S,

while n� ⋅ c∗j (Λj) ≤ n� ⋅ Cn−(−�/2) → 0 if j /∈ S.

Step 3 We now consider those j ∈ J for which S ∖ {j} ⊈ Cj and consequently the

corresponding term I ∕= 0 in general. From (A3) and Condition 5.1, we

derive that for each j, there exists some C > 0 satisfying the following for

all k ∈ S ∖ Cj, k ∕= j,

∣XT
j (In − Πj)Xk∣ ≤ ∣XT

j Xk∣+ ∣(ΠjXj)
TXk∣ ≤ Cn− . (5.15)

Then from (A1) and (A4), we can bound I as ∣I∣ ≤ C ′n−(−�). Also when

S ∖ {j} ⊈ Cj, (A5)–(A6) imply that Λj ≫ n−�/2.

In summary, we can show that the following claims hold on ℰ0, similarly

as in Step 2: if j /∈ S, with either of the rescaling factors, n� ⋅ c∗j (�j) ≤
n� ⋅ Cn−(−�−�/2) → 0, whereas if j ∈ S, its coefficient satisfies ∣�j∣ ≫ n−�

and therefore n� ⋅ ∣c∗j ∣ ≥ n� ⋅ C∣�j∣ → ∞ with c∗j (�j)/�j → 1 for j ∈ S. □

5.6.1.1 An example satisfying Condition 5.1

In this section, we verify the claim made in Section 5.2.3.1, which states that

Condition 5.1 holds with probability tending to 1 when each column Xj is gener-

ated independently as a random vector on a n-dimensional unit sphere. We first

introduce a result from modern convex geometry reported in Lecture 2 of Ball

(1997), which essentially implies that, as the dimension n grows, it is not likely

for any two vectors on a n-dimensional unit sphere to be within a close distance

to each other.

Lemma 5.1. Let Sn−1 denote the surface of the Euclidean ball Bn
2 = {x ∈ ℝn :

∑n
i=1 x

2
i ≤ 1} and u ∈ ℝn be a vector on Sn−1 such that ∥u∥2 = 1. Then the
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proportion of spherical cone defined as {v ∈ Sn−1 : ∣uTv∣ ≥ !} for any u is

bounded from above by exp(−n!2/2).

We first note that any Xk, k ∕= j can be decomposed as the summation of its

projection onto Xj and the remainder, i.e., Xk = cj,kXj + (In −XjX
T
j )Xk. Then

(ΠjXj)
TXk = cj,k(ΠjXj)

TXj +
{
(In −XjX

T
j )ΠjXj

}T
Xk,

and for k ∈ S ∖ Cj, k ∕= j, the first summand is bounded from above by aj ⋅ �n ≤
C1n

−. As for the second summand, note that

∥(In −XjX
T
j )ΠjXj∥22 = (ΠjXj)

T (In −XjX
T
j )ΠjXj = aj(1− aj),

and thus w = {aj(1− aj)}−1/2 ⋅ (In −XjX
T
j )ΠjXj satisfies w ∈ Sn−1. Then the

probability of ∣wTXk∣ > Cn− for any k ∈ S ∖ Cj , k ∕= j is bounded from above

by the proportion of the following spherical cone

{
Xk ∈ Sn−1 : ∣wTXk∣ > Cn−

}

in the unit sphere Sn−1. Applying Lemma 5.1, we can show that such proportion

is bounded by exp (−C2n1−2/2) for each j and k. Therefore, we can find some

C > 0 satisfying

ℙ

(

max
j∈J; k∈S∖Cj , k ∕=j

∣(ΠjXj)
TXk∣ > Cn−

)

≥ 1− p∣S∣ exp
(
−C ′n1−2/2

)
,

where the right-hand side converges to 1 from assumptions (A1)–(A2).

5.6.2 Proof of Theorem 5.2

For those j ∈ K = S ∪ {∪j∈SCj}, Condition 5.3 implies that Ck ∩ Cj = ∅ if

k ∈ S ∖ Cj . Then from (A3), we have ∥ΠjXk∥2 ≤ Cn−(−�/2) and therefore

∣
∣XT

j (In −Πj)Xk

∣
∣ =

∣
∣XT

j Xk − (ΠjXj)
TΠjXk

∣
∣ ≤ Cn− + C ′n−(−�/2),
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which leads to

∣
∣
∣
∣
∣
∣

∑

k∈S∖Cj ,k ∕=j

�kX
T
j (In − Πj)Xk

∣
∣
∣
∣
∣
∣

= O
(
n−(−�−�/2)

)
(5.16)

for all j ∈ K. Using Step 1 of Section 5.6.1, we derive that

ℰ01 =

⎧

⎨

⎩
max
j∈K

∣
∣
∣
∣
∣
∣

∑

k∈S∖Cj ,k ∕=j

�kX
T
j (In − Πj)Xk +XT

j (In −Πj)�

∣
∣
∣
∣
∣
∣

≤ Cn−(−�−�/2)

⎫

⎬

⎭

satisfies ℙ(ℰ01) = ℙ(ℰ0)→ 1. Since �+�/2 < −�−�/2, we have n� ⋅ c∗j → 0 for

j /∈ S on ℰ01, whereas n
� ⋅ ∣c∗j ∣ → ∞ and c∗j(�j)/�j → 1 for those j ∈ S. Therefore

the dominance of tilted correlations for j ∈ S over those for j ∈ K ∖ S follows. □

5.6.3 Proof of Theorem 5.3

Compared to Condition 5.2, Condition 5.3 does not require any restriction on Cj∩
Ck when both Xj and Xk are relevant, although it has an additional assumption

(C2). Since n� ⋅ ∣�j∣(1−aj)→∞ for j ∈ S from (A4)–(A5), (C2) implies that for

any j ∈ S, non-zero coefficients �k, k ∈ S∖Cj do not cancel out all the summands

in the following to 0,

XT
j (In − Πj)XS�S = �j(1− aj) +

∑

k∈S∖Cj ,k ∕=j

�kX
T
j (In − Πj)Xk.

If (5.16) in Section 5.6.2 holds, (C2) follows and therefore it can be seen that

Condition 5.2 is stronger than Condition 5.3.

On the event ℰ0 (Step 1 of Section 5.6.1), ∣XT
j (In − Πj)y∣ ≫ n−� for j ∈ S

under (C2) and therefore the tilted correlations of relevant variables satisfy ∣c∗j ∣ ≫
n−� with either of the rescaling factors. On the other hand, for j ∈ K ∖S, we can
use the arguments in Section 5.6.2 to show that n� ⋅ c∗j → 0. □
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Chapter 6

Conclusions

In this thesis, we have discussed estimation methods which approach some chal-

lenging statistical problems under the assumption that the data can be well-

described by a sparse model. Below we summarise the main contributions made

in Chapters 3–5 and remark on some potential directions for future research.

Chapter 3 was devoted to developing a segmentation procedure for a class of

piecewise stationary time series with breakpoints in the second-order structure.

Assuming that the breakpoints were sufficiently scattered over time, we devel-

oped our methodology in the framework of the locally stationary wavelet model,

under which the entire second-order structure of a time series was encoded in its

wavelet-based local periodogram sequences. As the initial step of breakpoint de-

tection, a binary segmentation procedure was proposed to segment these wavelet

periodogram sequences at each scale separately, which had the following features:

∙ it permitted autocorrelation within a target sequence, and thus could be

applied to wavelet periodogram sequences, and

∙ its test criterion depended on the data size only and was easy to compute.

The next step was the application of within-scale and across-scales post-processing

procedures, and this combined methodology was shown to be consistent in terms

of the total number and locations of detected breakpoints. Our method showed

good performance in identifying the breakpoints from simulated data, and when

it was employed to segment some historical financial time series, the outcome had

an interesting interpretation in the context of recent financial crisis.
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One immediate way of extending this work may be the investigation of its

possibility as an on-line breakpoint detection procedure. Although the binary

segmentation procedure itself was initially developed as a tool for a posteriori

segmentation, it would be interesting to study whether the test statistic and cri-

terion tailored for the consistency of our retrospective segmentation methodology

are applicable to sequential data analysis.

In Chapter 4, we compared the two techniques for estimating an unknown

signal using piecewise constant functions, the Unbalanced Haar technique and

taut strings. The comparison study was conducted by providing a unified, multi-

scale framework, of which both methods were instances. We also studied the test

statistics of the two techniques in the context of breakpoint detection, where it

was shown that the UH technique was more alert than the TS technique at both

detecting the presence of a breakpoint and estimating its location. While the

comparison study between the UH and the TS methods was in itself interesting,

we derived some lessons based on the links between the two, which could benefit

either of the methods or both. Those lessons concerned the issues which could

be encountered within our proposed unified framework, such as

∙ the choice of a test criterion (or a stopping rule),

∙ controlling the adaptivity of the estimated function, and

∙ extensions of these estimation techniques to non-Gaussian error distribu-

tions.

We concluded our discussion by observing some connections between the statisti-

cal problems addressed in other chapters of this thesis, and the piecewise constant

estimators discussed in this chapter under the overall theme of sparsity.

Here we further note that our proposed multiscale approach consists of a

“spectrum” of piecewise constant estimators in the sense that, there are many

ways of obtaining piecewise constant estimators within this framework, depending

on the choice of adjusting factor (which is in turn related to the test statistic) and

the re-arrangement of the string. Therefore, as a future research topic, it would be

of interest to study those piecewise constant estimators, which belong to the same

multiscale framework yet have not been discussed in this thesis. Studying such
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estimators is not only useful on its own, but also may lead to the development

of a procedure which selects the “best” piecewise constant estimator within the

multiscale framework in a data-driven manner.

Finally in Chapter 5, the variable selection problem in linear regression was

considered, where the number of variables, or the dimensionality of the data, was

possibly much larger than the number of observations. Under the assumption

that only a small number of variables actually contributed to the response, we

proposed a new way of measuring the association between each variable and

the response, which adaptively took into account high correlations among the

variables. The proposed tilting procedure had a hard-thresholding step applied

to the sample correlation the design matrix, which enabled an adaptive “switch”

between the use of marginal correlation and tilted correlation for each variable.

We showed that the tilted correlations of the relevant variables dominated those

of the irrelevant variables (which were highly correlated with at least one of the

relevant variables) under certain conditions, and thus could be used as a tool for

variable selection. We then constructed an iterative variable screening algorithm

to exploit these theoretical properties of tilted correlation, and investigated its

practical performance in a comparative simulation study.

We note that, to the best of our knowledge, similar results to the separa-

tion of relevant and irrelevant variables achieved by tilted correlation (Theorems

5.1–5.3), have not been reported previously in the literature. As for the tilted

correlation screening (TCS) algorithm, however, it remains as a challenging task

to develop a stopping rule which identifies when the TCS algorithm has included

every relevant variable in the active set without including too many irrelevant

variables (screening consistency). Furthermore, correlation being arguably the

most widely used statistical measure of association, we would expect our tilted

correlation (which can be viewed as an “adaptive” extension of standard corre-

lation) to be more widely applicable in various statistical contexts beyond the

linear regression model.
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Andreou, E. & Ghysels, E. (2002). Detecting multiple breaks in financial

market volatility dynamics. Journal of Applied Economics , 17, 579–600. 22

Antoniadis, A. (1997). Wavelets in statistics: a review. Statistical Methods and

Applications , 6, 97–130. 12

Bai, J. & Perron, P. (1998). Estimating and testing linear models with mul-

tiple structural changes. Econometrica, 66, 47–78. 22

170



REFERENCES

Ball, K. (1997). An elementary introduction to modern convex geometry. Fla-

vors of Geometry , 31, 1–58. 164

Barlow, R., Bartholomew, D., Bremner, J. & Brunk, H. (1972). Sta-

tistical inference under order restrictions . Wiley. 30, 91, 95

Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate:

a practical and powerful approach to multiple testing. Journal of the Royal

Statistical Society, Series B , 57, 289–300. 142

Bickel, P.J. & Levina, E. (2008). Covariance regularization by thresholding.

Annals of Statistics , 36, 2577–2604. 121, 127, 141

Bogdan, M., Ghosh, J. & Doerge, R. (2004). Modifying the Schwarz

Bayesian information criterion to locate multiple interacting quantitative trait

loci. Genetics , 167, 989–999. 137

Bosq, D. (1998). Nonparametric statistics for stochastic process: estimation and

prediction. Springer. 84

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., Stein-

berg, D. & Colla, P. (1983). CART: Classification and Regression Trees .

Wadsworth: Belmont, CA. 30

Brodsky, B.E. & Darkhovsky, B.S. (1993). Nonparametric methods in

change-point problems . Springer. 109, 110, 111
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