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Abstract
We study the structure of clusters in a model colloidal system with competing interactions using
Brownian dynamics simulations. A short-ranged attraction drives clustering, while a weak,
long-ranged repulsion is used to model electrostatic charging in experimental systems. The
former is treated with a short-ranged Morse attractive interaction, the latter with a repulsive
Yukawa interaction. We consider the yield of clusters of specific structure as a function of the
strength of the interactions, for clusters with m = 3, 4, 5, 6, 7, 10 and 13 colloids. At sufficient
strengths of the attractive interaction (around 10kBT ), the average bond lifetime approaches the
simulation timescale and the system becomes nonergodic. For small clusters, m � 5, where
geometric frustration is not relevant, despite nonergodicity, for sufficient strengths of the
attractive interaction the yield of clusters which maximize the number of bonds approaches
100%. However for m = 7 and higher, in the nonergodic regime we find a lower yield of these
structures where we argue geometric frustration plays a significant role. m = 6 is a special case,
where two structures, of octahedral and C2v symmetry, compete, with the latter being favoured
by entropic contributions in the ergodic regime and by kinetic trapping in the nonergodic
regime. We believe that our results should be valid as long as the one-component description of
the interaction potential is valid. A system with competing electrostatic repulsions and van der
Waals attractions may be such an example. However, in some cases, the one-component
description of the interaction potential may not be appropriate.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Clusters are a distinct state of matter which exhibit
different structural ordering relative to bulk materials [1].
Of particular relevance to, for example, many biological
systems such as viruses, is their tendency to exhibit
five-fold symmetry such as icosahedra and decahedra [2].
Recently there has been a surge of interest in clusters
formed in colloidal systems [3–11, 14, 15, 18], which
is expected to lead to the development of ‘colloidal
molecules’ [4, 19, 10, 20, 15]. These may in turn provide novel
functionalized materials [4, 19, 10, 11, 20, 15].

Part of the attraction of studying colloidal dispersions
is that, although in principle they are rather complex
multicomponent systems, the spatial and dynamic asymmetry
between the colloidal particles (10 nm–1 μm) and smaller
molecular and ionic species has led to schemes where the
smaller components are formally integrated out [21]. This
leads to a one-component picture, where only the effective
colloid–colloid interactions need be considered. This is usually
a good approximation, however, there are a few exceptions. To
describe the effective interactions between charged colloidal
particles, the screening of the counter-ions is treated on a
linear response level resulting in the well-known screened
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Coulomb pair potential proposed by Derjaguin, Landau,
Verwey and Overbeek (DLVO). In general, however, due
to nonlinear counter-ion screening, the effective interactions
involve many-body contributions [22], which violates the
additivity of the potential. Furthermore, in strongly driven
systems hydrodynamic interactions (velocity fields) modify the
electrostatic interaction significantly [23, 24]. Here we assume
the one-component description.

The colloid behaviour in the original complex system
may then be faithfully reproduced by appealing to liquid
state theory [25] and computer simulation [26]. Since the
shape of the particles is typically spherical, and the effective
colloid–colloid interactions may be tuned, it is often possible
to use models of simple liquids to accurately describe colloidal
dispersions. For example this approach has made it possible
to reproduce Bernal spirals seen experimentally [6, 27] in
a system with competing short-ranged attractions and long-
ranged repulsions, leading to the idea that colloidal gels can
be stabilized by repulsive interactions [28–30]. In addition to
their own fascinating behaviour such as novel diffusion [15]
colloidal clusters are also predicted from theory and simulation
to exhibit hierarchical ordering such as lamellae [31], cluster
crystals [32] and may also undergo dynamical arrest to form
cluster glasses [28, 29, 33].

Since colloids may be directly imaged at the single particle
level, one may consider local intra-cluster structure, along
with cluster–cluster correlations, a level of detail seldom
accessible to atomic and molecular systems, except in the
low-temperature regime [34]. Meanwhile, the behaviour of
colloidal clusters, for example the global energy minimum
structure, should exhibit similarities to that of clusters
of Noble gas atoms as both colloids and Noble gases
can be well described by spherically symmetric attractive
interactions [35, 36]. Some of us recently compared
direct imaging of colloidal clusters with expectations from
theory [37]. In the experiments, a significant deviation from
expectations was found, in particular a maximum yield of only
around 10% in structures expected to minimize the potential
energy for small 4 � m � 6 clusters. This is surprising, as
at these small sizes, there is little geometrical frustration that
might inhibit access to the ground state, as would occur for
larger clusters.

It is the purpose of this work to establish those cluster
structures we expect in the case of model colloidal systems
by applying tried and tested model interactions. We shall
consider weak electrostatic repulsions and a short-ranged
attraction for similar parameters to the experimental system.
Typically, the former stems from electrostatic charge, the
latter from the addition of non-adsorbing polymer or van der
Waals attractions, and drives clustering. Rather than seeking
minimum energy states [35, 36], instead we shall try to mimic
experimental approaches, as a way to predict what sort of
yields of desired clusters we find as a function of interaction
strength. Experiments on colloidal systems typically start
from a randomized initial state. Unlike molecular systems,
the effective temperature is typically constant: temperature
itself is not usually varied and the effective colloid–colloid
interactions in a given sample are taken to be fixed, as

they depend upon sample composition. In other words the
system undergoes an ‘instantaneous quench’ from an initial,
randomized state. We follow this protocol, although we
note recent theoretical and simulation work highlighting the
role of microscopic reversibility in optimizing yields in self-
assembling systems [38–40] which is beginning to be exploited
in nanoscience [41]. For the larger cluster sizes considered,
we also investigate the role of electrostatic repulsions in
cluster elongation, as suggested theoretically [42] and noted
experimentally [5–7].

Our approach is as follows. We shall consider
clusters of m = 3, 4, 5, 6, 7, 10, 13 particles and study
the structures formed, with particular reference to the
minimum energy states [35, 36], as a function of the
attractive interaction strength (which mimics the addition of
polymer in experimental systems). Various strengths of the
repulsive interaction (which models the electrostatic charge in
experimental systems) are also considered. For high strengths
of the attractive interaction (low effective temperature), one
expects the majority of clusters to reside in their minimum
energy state. However, average bond lifetimes can exceed
the simulation run time (which is comparable to experimental
timescales) for sufficiently strong interactions. The system is
thus nonergodic on these timescales, and kinetic trapping may
become important. For larger clusters, long-ranged repulsions
may lead to elongation [5–7, 27, 36, 42]. We investigate this
effect for m = 10, 13. Our main result is that for small clusters
(m � 5) the lack of geometric frustration enables the minimum
energy state to be accessed, while for larger clusters kinetic
trapping is important.

This paper is organized as follows: section 2 introduces
the model interactions, our simulation methodology is
presented in section 3, followed by results (section 4) and a
discussion in section 5 in which we place our findings in the
context of recent work. We conclude our findings in section 6.

2. Model

The seminal theory of colloid–polymer mixtures is that of
Asakura and Oosawa [43]. This AO model ascribes an
effective pair interaction between two colloidal hard spheres
in a solution of ideal polymers which is plotted in figure 1 and
reads,

βuAO(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ for r � σ,

π(2RG)3zPR

6

(1 + q)3

q3

×
{

1 − 3r

2(1 + q)σ
+ r 3

2(1 + q)3σ 3

}

for σ < r � σ + (2RG),

0 for r > σ + (2RG),

(1)

where β = 1/kBT , r is the centre to centre separation of
the two colloids and the polymer fugacity zPR is equal to the
number density ρPR of ideal polymers in a reservoir at the
same chemical potential as the colloid–polymer mixture. Thus
within the AO model the effective temperature is inversely
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Figure 1. (a) The Morse potential (equation (2)) matched to the Asakura–Oosawa (AO) potential (equation (1)) relevant to experimental
systems. (b) The competing interactions used in this work, βuM + βuY for various values of the Morse potential well depth βεM as shown in
the legend. The case of βεM = 0 is the pure Yukawa interaction (equation (3)) contact potential of βεY = kT and inverse Debye screening
length κσ = 0.5.

proportional to the polymer reservoir concentration. The
polymer–colloid size ratio q = 2RG/σ where RG is taken as
the polymer radius of gyration, and σ is the colloid diameter.
For small polymer–colloid size ratios, the AO model has
been found to give good agreement with direct experimental
measurement [44].

The discontinuous nature of the AO interaction at contact
complicates its use in Brownian dynamics simulations. We
therefore use the continuous Morse potential, which, for short
interaction ranges, is very similar to the Asakura–Oosawa
potential (figure 1) [45]. The Morse potential reads

βuM(r) = βεMeρ0(σ−r)(eρ0(σ−r) − 2), (2)

where ρ0 is a range parameter and βεM is the potential well
depth. The global energy minimum structures for clusters
interacting via the Morse interaction are known [35], and for
small clusters m < 8, the structure of the global energy
minimum is not sensitive to the range of the interaction. With
the exception of m = 6 (see below), small ground state clusters
should be the same for an AO colloid–polymer system as
those tabulated for the Morse interaction. The experimental
system [37] used a polymer–colloid size ratio of q = 0.22
which maps to a Morse range parameter ρ0 = 33.06 for
a well depth βεM = 5.0 according to the extended law of
corresponding states [46].

Repulsions in colloidal systems typically stem from the
electrostatic charge on the colloidal particles. Under many
conditions, where the charging is quite weak, as is the case
here, this leads to a screened Coulomb, or Yukawa form with
a hard core that accounts for the physical size of the colloidal
particles:

βuY(r) =
⎧
⎨

⎩

∞ for r < σ ,

βεY
exp(−κ(r − σ))

r/σ
for r � σ ,

(3)

where κ is the inverse Debye screening length. The contact
potential is given by

βεY = Z 2

(1 + κσ/2)2

lB

σ
, (4)

where Z is the colloid charge and lB is the Bjerrum length.
To model the experimental system, we therefore fix the Debye
length to an experimentally relevant value κσ = 0.5, and
consider different values of the contact potential βεY. In
the experimental system we seek to model, van der Waals
attractions are largely absent, due to solvent–colloid refractive
index matching, the attractions are driven by the addition of
non-absorbing polymer.

We investigate the structure of these simulated colloidal
clusters, with reference to the Morse clusters [35], using a new
method we have developed, which we term the topological
cluster classification (TCC) [45, 47]. Although we consider
electrostatic repulsions, we expect little effect on the ground
state for small m < 10 clusters [36].

3. Simulation and analysis

We use a standard Brownian dynamics simulation scheme [48].
The scheme generates a discrete coordinate trajectory ri as
follows

ri (t + δt) = ri (t) + D

kBT

N∑

j=1, j �=i

Fi j(t)δt + δrG
i , (5)

where δt is the simulation time step, D is the diffusion constant
and Fi j is the pairwise interaction. The colloids respond to
the direct interactions Fi j and the solvent-induced thermal
fluctuations δrG

i are treated as a Gaussian noise with the
variance given by the fluctuation-dissipation theorem.

In the simulations m particles are initialized randomly at
volume fraction φ = m(πσ 3/6)/ l3 = 0.0029 in a cubic
box of side l. Periodic boundary conditions for the box
are implemented. We study the evolution of one cluster per
simulation, and consider the case where all particle are part of
the cluster. The inter-particle interaction is the Morse potential
(equation (2)) with range parameter ρ0 = 33.06σ−1 which is
truncated and shifted for r > 3σ , where the Morse potential
is typically less than 10−27. The electrostatic interactions are
treated by adding a Yukawa repulsion term (equation (3)) for
different values of βεY as specified and this is also truncated
and shifted for r > 3σ . This rather short value enables
the particles to form clusters more easily starting from the
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Figure 2. (a) Cluster populations for the m = 3 system as a function of the well depth of the attractive interaction βεM with βεY = 0. Here
we define cluster population by the ratio Nc/Nm where Nc and Nm are the total number of specific clusters and the total number of m
membered clusters identified respectively in the simulation after equilibration. We see a clear trend towards the 3A triangle as the minimum
energy ground state structure. The vertical line corresponds to τL = 400τB, our criterion for ergodicity breaking on the simulation timescale
(see (c)). (b) Population of clusters in the minimum energy state (3A triangle) for different strengths of the Yukawa interaction βεY. The
principal effect of the Yukawa repulsion is to shift the curves to require higher values of βεM to achieve the same population of clusters in the
ground state. (c) The average bond lifetime τL as a function of βεM for various βεY as indicated. The perpendicular lines correspond to
τL = 400τB. (d) The linear → 3A transition can be accomplished by rotating one end particle around the central particle. This process
involves no energetic penalty for βεY = 0.

initial randomized state. While the Yukawa repulsion has
not fully decayed at r = 3σ , the largest separation of two
particle centres we are interested in is set by the size of the
clusters. The largest separations for which we consider the
effects of the Yukawa repulsion are the m = 13 clusters,
where the maximum separation is less than 3σ . Since the
Morse interaction has no hard core, we remove the hard core
component of equation (3). Each state point is sampled with
between four and twelve statistically independent simulation
runs.

The time step is δt = 0.03 simulation time units and all
runs are equilibrated for 109 steps and run for further 109 steps.
The rather long simulation runs were required to be sure that,
in the case of Yukawa repulsions, that the particles had ample
time to interact with one another, and cluster. We define the
Brownian time as the time taken for a colloid to diffuse its own
radius:

τB = σ 2

4D
. (6)

In the simulations, τB ≈ 2474 time units, while in the
experiments τB ∼ 10 s [37]. The simulation runs therefore
correspond to a total of around 68 h, a timescale certainly
comparable to experimental work.

We identify two particles as bonded if the separation
of the particle centres is less than 1.25σ , which is close to
the attractive range of a strict AO potential (equation (1)).
Having identified the bond network, we use the topological

cluster classification (TCC) to determine the nature of the
cluster [47]. This analysis identifies all the shortest path three-
, four- and five-membered rings in the bond network. We use
the TCC to find clusters which are global energy minima of
the Morse potential. We follow Doye et al [35] and term
these clusters 3A, 4A, 5A, 6A, 7A, 10B, and 13B for m =
3, 4, 5, 6, 7, 10, 13. For m � 7 there is one global minimum
for the Morse potential. At higher m there are multiple minima
corresponding to different values of the range parameter ρ0.
10B and 13B correspond to a short-ranged Morse potential.
We assume that these are the relevant global minima for ρ0 =
33.06. In addition, in the case of m = 13 clusters we identify
the FCC and HCP thirteen particle structures in terms of a
central particle and its twelve nearest neighbours. For more
details see [47].

4. Results

We shall consider each size in turn, before drawing together
our results. We use two control parameters, the well
depth of the attractive Morse interaction βεM (equation (2))
and the contact potential of the Yukawa repulsion βεY

(equation (4)). Increasing βεM thus promotes clustering,
while βεY suppresses clustering. In experiments on colloids,
the electrostatic charge is usually not systematically varied.
Therefore we consider specific values of βεY and plot the
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Figure 3. (a) Cluster populations for the m = 4 system as a function of the well depth of the attractive interaction βεM with βεY = 0. Here
we see a clear trend towards the 4A tetrahedron as the ground state structure. We identify three higher energy structures: diamonds (5 bonds),
triangle-lines (or 3A + 1) (4 bonds) and linear (3 bonds). The vertical line corresponds to τl = 400τB. (b) Population of clusters in the
minimum energy ground state (4A tetrahedron) and extended diamond structure for different strengths of the Yukawa repulsion βεY. The
principle effect of the Yukawa repulsion is to shift the curves to require higher interaction strengths to achieve the same degree of clusters in
the ground state: the more elongated diamond structure does not appear more favoured for stronger Yukawa repulsions.

response of the system to βεM. Small clusters with m � 5
are able to reach the minimum energy ground state structures
(which maximize the number of bonds), while for larger
clusters, geometric frustration leads to kinetic trapping which
severely limits access to the ground state at high values of the
attractive interaction.

4.1. Small clusters m � 5

We begin our presentation of results by considering the m = 3
system, as shown in figure 2(a). The main conclusion from
these data, as with all m � 5, is that increasing the attractive
interaction strength βεM leads to a higher population in the
minimum energy ground state, here the ‘3A’ triangle with D3h

point group symmetry and three bonds. This occurs at the
expense of higher energy clusters, which, for m = 3 are
‘linear’ clusters with two bonds. In the case of βεY = 0, the
potential energy for a short-range potential such as equation (2)
is approximately equal to the number of bonds. Since 3A
triangles have three bonds, and the linear clusters have only
two, there is a strong thermodynamic driving force to the 3A
cluster as the attractions are increased, consistent with the
behaviour seen in figure 2(a).

The effect of increasing the Yukawa repulsion is to slightly
suppress the development of the 3A population (figure 2(b)), as
expected in this system with competing interactions. In other
words, the slight upwards shift in the potential βuM + βuY

(figure 1(b)) due to the Yukawa contribution acts as a relatively
small perturbation to the m = 3 system. However, βεY =
5 substantially suppressed the colloidal aggregation and few
three-membered clusters were formed. We hereafter consider
βεY = 0, 1, 3 only.

The average bond lifetime τL is also shown in figure 2(c).
Here we define bond lifetime as the time between a bond
formation event (where the separation between two colloids
falls below the bond length 1.25σ ) a bond breakage event
(where the separation between the same two colloids rises
above the bond length). The bond lifetimes were widely
distributed in all cases. We see that for βεM � 10, τL

is very much less than the simulation time, so the system
may be regarded as equilibrated. In this regime, τL exhibits

an Arrhenius-like behaviour, as expected for an equilibrated
system. At higher values of the interaction strength, the
average bond lifetime approaches, and then exceeds the
simulation run time, so the system is unable to equilibrate,
on the simulation (and experimental [37]) timescale. Thus
the system is regarded as nonergodic on these timescales, in
that it cannot explore all its configurations. We take a average
bond lifetime τl = 400τB as a crossover between ergodic and
nonergodic. This ergodic–nonergodic transition is indicated
in figure 2(a). However, although the system is nonergodic,
the absence of any geometric frustration enables the minimum
energy ground state to be reached. The absence of geometric
frustration is understood as follows (figure 2(d)): for m = 3,
if βεY = 0 there is no energy barrier in the linear → 3A
transition, because there is no angular dependence in the
interaction. In other words, a steepest descent quench for a
three-membered cluster yields the 3A triangle.

Turning to the case for m = 4, the situation is somewhat
more complex (figure 3(a)) Rather than two states, there are
four: 4A tetrahedra (the ground state with 6 bonds and Th

point group symmetry) diamonds (5 bonds), triangle-lines and
squares (4 bonds) and linear (3 bonds). Squares are distinct
from diamonds in that there are no diagonal bonds. However,
like the m = 3 case, increasing βεM we find a peak in
the population of linear clusters, triangle-lines and diamonds
respectively. Each higher energy state has a distribution which
becomes progressively less favoured at higher values of βεM,
as the 4A becomes the dominant structure, the yield of 4A
approaches unity for βεM > 10. Squares have a rather low
yield, much less than triangle-lines (3A + 1), which have the
same number of bonds. We return to the case of competing
structures during our analysis of m = 6.

The effect of increasing the Yukawa interaction is similar
to the m = 3 case: the development of the 4A population is
somewhat suppressed (figure 3(b)). It has been suggested that
the introduction of repulsions might be expected to promote
more elongated structures [42]. For a given strength of the
attractive interactions βεM, there is indeed a tendency towards
a higher population of the elongated 4D diamond structure,
however the overall trend is unaltered and we restrict our
analysis to the βεY = 0 case.
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Figure 4. Cluster populations for the m = 5 system as a function of
the well depth of the attractive interaction βεM with βεY = 0. The
vertical line corresponds to τl = 400τB. sp4b denotes a
four-membered ring with one particle bonded to all four in the ring.

We now consider the m = 5 system for βεY = 0
(figure 4). We find that for βεM � 8.0, the overwhelming
majority of clusters are in the ground state, 5A (triangular
bipyramid with 9 bonds and D3h point group symmetry), in
a similar way to the m = 3 and 4 cases. Defective triangular
bipyramids (4A+1) form an excited state with 10 or 11 bonds.
Clusters based around 4-membered rings with 5–8 bonds (sp4b
and squares + 1) are present in yields up to a few per cent
for relatively weak attractions (βεM ∼ 5). Five-membered
rings (pentagons, five bonds) are found in small quantities,
similar to the square in the case of m = 4. The main result
from considering these small clusters is that, although the
system may become nonergodic on the simulation timescale,
the clusters can nevertheless access their global energy minima
for sufficient interaction strengths (βεM � 8.0). In other
words, access to the global minimum is not geometrically
frustrated.

For m = 5 we do not explicitly consider all possible
structures. For example linear clusters may form at weaker
interaction strengths. At βεM = 4.5, for example, only around
10% of m = 5 clusters are identified, however for most
interaction strengths we consider, the vast majority of clusters
are one of the five structures considered. A similar argument
holds for m = 6 and 7.

4.2. m = 6 clusters: competing structures

For 3 � m � 5 the dominant structure at high interaction
strength is the global energy minimum for the Morse
interaction. However, in the case of m = 6, we find this is
not the case (figure 5(a)). We see only a small population of
the Morse global energy minimum, the 6A octahedron (Oh

point group symmetry) with another structure of C2v point
group symmetry appearing to dominate the system. This
cluster is the ground state for the Dzugutov potential (plotted
in figure 5(b)) [49], and we term it the 6Z. Why should
this Dzugutov cluster be more popular than 6A octahedra?
Both clusters have 12 bonds (near neighbours), and for a
Morse potential with a relatively short range as we use here,
the energy contribution from second-nearest neighbours is a
factor of 5.625 × 10−8 of the total energy for the 6A (it
is essentially zero for the 6Z). In fact, when the Yukawa
repulsions are added, 6Z becomes energetically favoured as it
is more elongated. Let us however consider the case for neutral
particles where βεY = 0.

The difference between the two clusters’ ground state
potential energies is slight, but there are two remaining
contributions to the system’s free energy to be considered.
Firstly the contribution due to the vibrational modes of the
clusters must be accounted for, and secondly, so must the
volume of phase space which is accessed upon translating and
rotating the clusters through the system volume. Assuming
that the vibrational modes may be approximated as harmonic
(valid at low temperatures), the vibrational contribution to
the free energies can be computed using a standard normal
mode analysis. We have done this and found the contribution
due to the vibrational modes to be completely negligible.
The contribution due to translation will be the same for
both clusters, so need not be considered. This leaves the
contribution due to rotating the clusters. For the rotation we
must consider both the point group symmetry and the cluster’s
radius of gyration. Comparing the point group symmetries, we
can see that there are 24 different ways to reorientate the 6A
cluster which are merely a permutation of indistinguishable
particles, while for the 6Z there are only two ways. In
computing the entropy we must count each permutation of

Figure 5. (a) Cluster populations for the m = 6 system as a function of the well depth of the attractive interaction βεM with βεY = 0. Here at
strong interaction strength, rather than the Morse ground state 6A octahedron, instead 6Z are found, the ground state for the Dzugutov
potential, (b). The vertical line in (a) corresponds to τL = 400τB. (c) The 3A → 4A → 5A → 6Z aggregation pathway with does not involve
the breaking of any bonds and thus promotes the formation of 6Z over 6A for high values of βεM where the average bond lifetime τl is
comparable to or greater than the simulation runtime.
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indistinguishable particles only once. For this reason, in
computing the entropy, we are able to rotate the 6Z cluster
through a greater portion of the available phase space. This
results in an increase in the 6Z cluster’s population relative to
the 6A cluster’s by a factor of 12. One could think of the 6Z
cluster’s lower symmetry as a form of increased disorder. We
also consider the radius of gyration: RG = 1

N

∑6
i=1(ri − rcm)2

where ri are the particle coordinates and rcm is the centre of
mass. RG is larger by a factor of approximately 1.06 times for
the 6Z cluster than it is for the 6A. So upon rotating the 6Z
cluster its particles traverse a greater portion of the available
phase space than is the case for the 6A cluster. This increases
the entropy of the 6Z cluster, relative to that of the 6A, further
favouring it. It seems plausible that this could account for
the relative differences in the populations, i.e., that the 6Z is
thermodynamically favoured over the 6A by a factor of 30 as
shown in figure 5(a).

As βεM becomes very large, we would ultimately expect
a trend towards a 6A dominated population due to the (small)
difference in potential energy. However, on these simulation
timescales, the average bond lifetime is too long to enable
the transition to a 6A dominated population, and, since 6Z
can be the result of a 3A → 4A → 5A → 6Z aggregation
sequence (figure 5(c)), and the formation of 6A requires bond
breakage, at strong interaction strengths, 6Z dominates for
kinetic reasons.

Like the smaller clusters, for m = 6, we identify different
structures which become significant at lower values of βεM.
In decreasing stability, these are clusters with two tetrahedra
(which we denote as 5A + 1 in figure 5(a), with either 10
or 11 bonds), defective octahedra (denoted as sp4b + 1, with
between 9 and 11 bonds), defective pentagonal bipyramids
(denoted as sp5b with 10 bonds) and clusters formed of a five-
membered ring with one bound particle (pentagon+1, between
6 and 9 bonds).

4.3. Larger clusters: geometric frustration

For the small clusters we have considered so far, the number
of particles is apparently too small to form metastable states.
However, for m = 7 we see that the yield of the Morse
global energy minimum 7A pentagonal bipyramid approaches
unity for moderate strengths of βεM, but for βεM > 12 not
all simulations reach the 7A (figure 6(a)). Once the 7A is
formed, the system remains in a 7A state, but other metastable
states have lifetimes longer than the simulation runs. The
rise in 7A population as a function of βεM appears to slow
around the ergodic–nonergodic transition (which we define as
τL = 400τB).

In the nonergodic regime where bond breaking governs
those structures which form, we expect an aggregation
sequence similar to the 3A → 4A → 5A → 6Z sequence
shown in figure 5(c). Stepwise aggregation of one particle onto
a 6Z cluster would lead to a structure we term 3×5A, as it may
be decomposed into 3 overlapping 5A triangular bipyramids,
or, equivalently, a 6Z with an additional tetrahedron. This
structure has 15 bonds. The 7A has 15 bonds where the
separation ≈σ , close to the minimum of the Morse potential,

Figure 6. Cluster populations for the m = 7 system as a function of
the well depth of the attractive interaction βεM with βεY = 0. Here
the Morse ground state 7A pentagonal bipyramid is readily formed at
intermediate interaction strength. The vertical line corresponds to
τl = 400τB. sp5b denotes a five-membered ring with one particle
bonded to all five in the ring. A cluster based on three overlapping
5A triangular bipyramids, 3 × 5A, shows a re-entrant behaviour,
dominating the cluster population at high and low values of βεM.

while the distance between the top and bottom particle is
around 1.022 83σ , contributing 0.7193εM to the energy. The
7A is thus around 0.7193βεM lower in energy than the 3 × 5A
structure. In the nonergodic regime for βεM > 12, we see
that this 3 × 5A structure dominates the system, due to kinetic
trapping. The behaviour of the 7A system in the nonergodic
regime highlights the sampling limitations of our simulation
approach. To map this regime more accurately, many more
simulations are desirable than the 4 runs per state point we have
been able to perform.

At weaker interaction strengths, like the smaller clusters,
a variety of structures become popular, based on a diminishing
number of bonds. Of these, sp5b + 1, a defective pentagonal
bipyramid with 11–13 bonds shows a rather slow rate of decay
upon increasing βεM. At the weakest interaction strength,
βεM = 5.5, the yield of 3 × 5A exceeds that of 7A. This ‘re-
entrant’ behaviour of 3×5A is apparently a consequence of the
different number of bonds relative to 7A. Cluster with fewer
bonds are promoted for weak interaction strengths, but in the
nonergodic regime, kinetic trapping promotes 3 × 5A.

At larger sizes again we consider the Morse global
minima, which are 10B for 13B for m = 10, 13 clusters
respectively. Once more the effects of frustration are clear. The
m = 10 system (figure 7) features a clear maximum yield of
10B at βεM ∼ 7, however the yield is only around 14%. The
rise in the yield of 10B as a function of βεM up to the ergodic–
nonergodic crossover suggests that this rise in average bond
lifetime is the primary mechanism by which a further rise in
the 10B yield is suppressed. In other words, kinetic trapping
prevents access to 10B at higher strengths of the attractive
interaction.

For m = 13, in addition to 13B, we also find crystal
fragments. The maximum yield of 13B is around 10%. For
βεM = 7.0, HCP crystal fragments are in fact more popular
than the 13B ground state. We find no icosahedra, these are the
global energy minimum for longer-ranged Morse interactions
(ρ0 < 14.76) [35] than we use here, although for moderate
values of βεM it is not unreasonable to expect icosahedra.
We expect that a similar kinetic argument to that suggested

7



J. Phys.: Condens. Matter 21 (2009) 425103 A Malins et al

Figure 7. (a) Cluster populations for the m = 10 (a) and m = 13 (b) system as a function of the well depth of the attractive interaction βεM

with βεY = 0. The vertical line in (a) corresponds to τl = 400τB.

Figure 8. (a) Elongation d/RG for the m = 10 (a) and m = 13 (b) system as a function of the well depth of the attractive interaction βεM with
βεY = 0. The dashed line denotes the elongation in the case of the minimum energy ground state.

above for m = 10 concerning the low yield of 10B holds
for m = 13 as well. For m = 10 and 13 we cannot exclude
the possibility that other global minima exist. Doye et al [35]
calculated global minima for ρ0 � 25. The smaller global
energy minima for m � 6 exhibit no strain for short-ranged
Morse interactions, and only a limited amount of strain in the
case of 7A, these structures are therefore also expected to be
minima for ρ0 = 33.06 as used here. This not necessarily the
case for m = 10 and 13. We are however unaware of any more
appropriate structures than those listed in [35].

A question arises in comparing figure 7 with results for
smaller clusters, such as the case of m = 3 (figure 2). In
general one expects that larger clusters should be able to
form at higher temperatures (weaker interaction strengths) [1],
(although for small Lennard-Jones clusters, the melting line
is in fact non-monotonic as a function of m [50]). Here, we
are interested in whether all m particles in the simulation box
aggregate to form a cluster. This is less likely for larger m,
so our statistics suffer for lower values of βεM relative to the
smaller clusters considered. It is nevertheless very clear that
the yield of the assumed global minimum clusters is markedly
reduced in the case of m = 10 and 13 relative to smaller
clusters. We now proceed to consider elongation.

4.4. Elongation

The ground states of larger clusters have been found to be
strongly affected by the strength of a Yukawa repulsion, with
stronger repulsions leading to more elongated structures [36].

This effective long-ranged repulsion was indeed predicted
to have a profound effect upon both the shape and the
size of clusters of charged colloids by Groenewold and
Kegel [42], and experiments have found evidence for elongated
clusters [5, 7] and Bernal spirals [6]. We therefore investigate
the degree of elongation of the larger clusters considered here.
We consider the largest separation of two coordinates within
a cluster, d , and divide this by the radius of gyration RG of
the same coordinate set. Thus, larger d/RG corresponds to
more elongated clusters, and for a large spherical cluster with
m → ∞, d/RG → 2

√
5/3. For highly symmetric clusters

such as icosahedra, d/RG = 2.08.

Figure 8 shows the elongation d/RG as a function of βεM.
The elongation for m = 10 and 13 appears to be dominated by
failure to access the ground state; nonergodic systems are more
elongated. The data for βεY = 1.0 are included in figure 8,
while for βεY = 3.0, few clusters formed at all, and none in the
ergodic regime. From the discussion above, one might expect
the βεY = 1 data to show a higher degree of elongation due
to the Yukawa repulsion, however figure 8(a) indicates that this
is not the case for m = 10 and 13, except for a slight hint
at the lower values of βεM. We might expect that elongation
induced by long-ranged repulsions is promoted by increasing
m, or βεY or perhaps by a longer-ranged attraction that might
suppress the transition to nonergodicity, due to a less complex
potential energy surface (see section 5) [51]. However in this
system we see little evidence for elongation.
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5. Discussion

The behaviour of the systems considered here can readily be
decomposed into systems where frustration is not relevant,
m � 5 where a well-defined structure is favoured, and
those where frustration leads to a non-trivial potential energy
landscape and limited access to the ground state m � 7. In the
case of m = 6 two structures with the same number of bonds,
6A octahedra and 6Z D3h compete. Of particular relevance
here is the short range of the attractive interactions. It has been
noted previously that these tend to promote a complex energy
landscape, for example m = 13 Morse clusters with ρ0 = 14.0
have some 54 439 local energy minima, compared to just 685
for the longer-ranged case of ρ0 = 4.0 [51]. The Morse
potential with ρ0 = 14.0 is an approximation to C60, clusters
of which are known to exhibit kinetic trapping [52], although
in that case, icosahedral clusters were favoured. With ρ0 =
33.06, stronger trapping is likely. What is clear, therefore, is
that these systems can, only in the simplest cases (m = 3, 4, 5),
form high yields of clusters in the minimum energy ground
state, although m = 7 does have a window in βεM where the
yield of 7A is rather substantial.

5.1. Relevance to experiments

This work has been largely motivated by experimental studies
of clustering in colloidal dispersions. In those systems,
prized for their tunable interactions, the attractions, either
Asakura–Oosawa, or van der Waals are typically rather short
ranged, and thus likely to exhibit kinetic trapping similar
to the systems studied here. We therefore argue that for
substantial yields of more complex ‘colloidal molecules’,
it is appropriate to seek more sophisticated means than
the spherically symmetric spheres we have considered here,
such as patchy particles [10, 14, 19, 41, 53] and Janus
particles [16, 17], or to design routes of preparation [4, 54].
However, even ‘purpose-designed’ patchy particles can have
only a rather limited window where the yield of ground state
structures is substantial [11–13].

We now compare our results to those found in an
experimental system in which the interactions are, to a first
approximation, identical [37]. Each of the simulations was
conducted with a fixed number of particles corresponding to
the cluster size investigated. By contrast, most experiments
are carried out with a bulk colloidal suspension, in which
clusters of different size form. The experimental data report
the relative abundance of cluster types for a fixed number
of particles per cluster, m, and each cluster is assumed to
interact only weakly with other clusters. In the experimental
system, m = 3 formed a majority of clusters in the 3A
triangle which maximizes the number of bonds. This occurred
at interaction strengths comparable to those found in the
simulations reported here. In the experiments m = 4 and 5
formed only around 10% of 4A tetrahedra and 5A triangular
bipyramids respectively, in sharp contrast to the simulation
results, where the yield was essentially 100%. In the case of
m = 6, both in experiment and simulation, 6Z C2v dominated
the 6A octahedron. However, in the simulation, in the ergodic
regime, the population difference was around a factor of 30,

while in the experiment the difference was at least an order
of magnitude larger. Furthermore, the maximum yield of 6Z
C2v was an order of magnitude lower in the experiment than
the simulation, where it was around 100%. For m = 7 both
experiment and simulation show signs of geometric frustration,
with the yield of 7A being reduced in the nonergodic regime of
strong interaction strength. However, while the peak yield of
7A approached 100% in the simulation, the experiments were
limited to a few per cent of 7A. We consider possible origins
for this discrepancy in section 5.2.

5.2. Charging in apolar colloidal systems

Before concluding, it is worth considering these results in the
light of some other recent experimental studies. Campbell
et al [6] report clusters in a system in which they measured
the colloid charge in a dilute suspension to be Z = 140e per
1.5 μm diameter colloid, where e is the elementary charge.
According to equation (3), this maps to a Yukawa contact
potential βεY = 35, their quoted value for the Debye length
is comparable to ours. We have observed only very limited
clustering at βεY = 5, corresponding to a charge of Z = 47e
and expect none at higher Yukawa contact potentials. Dibble
et al [8] quote a similar value of Z = 165e per 2 μm colloid.
Moreover Sedgwick et al [7] report Z < 103e in their study of
clustering. Although not strictly inconsistent, this seems rather
higher than the values we predict from equation (3).

In their simulation study of gelation in colloidal systems
with competing interactions, Sciortino et al [55] used
a comparable contact potential for the Yukawa repulsion
βεY to that used in the simulations here. In other
words, a much weaker Yukawa repulsion than that expected
from the colloid charge quoted by Campbell et al [6].
Interestingly, Sciortino et al [55] found that similar Bernal
spiral structures were formed in their simulations to those
observed experimentally [6]. From the arguments presented
above, it might be supposed that the Bernal spiral can
form without significant geometric frustration. An important
question remains in the role of colloid concentration. We have
considered a rather low volume fraction φ = m(πσ 3/6)/ l3 =
0.0029, as we are interested in isolated clusters. Whether
the details of our results apply at finite concentration where
clusters interact with one another remains to be seen, but
many colloid volume fractions quoted in the literature are
φ � 0.2. In this regime we expect the discussion above
regarding clustering in the presence of electrostatic repulsions
to be reasonable.

Given the success of linear Poisson–Boltzmann theory in
describing electrostatic interactions in these systems in the
absence of polymer-induced attractions [56], one is tempted to
enquire as to the origin of the discrepancy between the findings
of this paper and the experimental literature [6–8]. As far as we
know, in only one case has quantitative agreement been found
between experiment and simulation of competing interactions
using conventional models of electrostatic repulsion and
polymer-induced attraction [57], and there the electrostatic
repulsions were screened by salt. Combined with the
discrepancies presented here and those in the experimental
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system [37] to which we have tuned the interactions, we
believe that there is more than meets the eye to these colloidal
model systems with competing interactions. We see little
reason to suppose that the polymer-induced attractions deviate
substantially from theory [44], therefore we speculate that the
electrostatic repulsions in the clusters may deviate from those
deduced by electrophoretic mobility measurements in dilute
suspensions [6, 8, 37, 56].

6. Conclusions

We have studied isolated colloidal clusters using Brownian
dynamics simulations. Our system is tuned to match
experimental work in colloidal systems with polymer-induced
depletion attractions. For sufficient strengths of the attractive
interaction, the average bond lifetime exceeds the simulation
runtime, and the system as nonergodic on this timescale;
this conclusion also applies to some experimental systems.
However, for small clusters m � 5 this ergodicity breaking
does not prevent the system reaching the minimum energy
ground state structure, as no bonds need be broken. Thus for
these small clusters, we can direct the system in a controlled
way towards a prescribed ground state. For m = 6 we find a
structure which appears to minimize the free energy with C2v

symmetry, rather than the octahedron that forms the minimum
energy ground state [35, 36]. The energy difference between
these structures is negligible, and for moderate interaction
strengths (the ergodic regime) the C2v structure is favoured
for entropic reasons, while in the nonergodic regime, it is
kinetically favoured as it is the product of an aggregation
sequence that does not involve bond breakage. At larger cluster
sizes, the system is kinetically frustrated from reaching the
ground state in all but a limited window. Moreover, recent
experimental results in a similar system show much lower
yields of clusters in the ground state than we find here [37].
The origin of the discrepancy is likely related to a difference
in the effective interaction potentials between experiment and
simulation. It is perhaps surprising that such small systems
exhibit this degree of kinetic trapping; only those sizes for
which there is no geometric frustration (m = 3, 4, 5) reach
the minimum energy ground state. These results suggest that
high yields of complex microstructures of colloidal clusters
and molecules may benefit from reversible quenching [38–41],
rather than the fixed interactions of many colloidal systems,
which lead to ‘instantaneous quenching’.

Some pointers for further work are considered. We
have employed a simple approach in our simulations, as we
are motivated to reproduce the recent experimental system.
One approach to investigate larger clusters could be to run
a simulation of a much larger number of particles, and to
consider each cluster as a separate system. In this way, larger
clusters could be accessed than was the case here. Although
this could in principle resolve some discrepancies between the
results presented here and those reported for the experimental
system, we believe this is a most unlikely scenario. Other
possibilities might be to implement the methods found in
the (atomic) cluster literature [1, 35, 50] to comprehensively
determine the structure of larger clusters. Another possibility

would be to determine the phase diagram for the system
considered here, using normal mode analysis to provide a
theoretical prediction of the population levels for the various
structures considered.

To provide further support to experimentalists in the
quest to control the structure of colloidal clusters it might
be helpful to move beyond the one-component description
employed here. Given that the charging number quoted in
some experimental work is so small (Z � 100e) [6–8, 37, 58],
it might be possible to determine structures of colloidal clusters
by for example developing the primitive model of electrolyte
systems to colloidal systems with many ionizable sites on each
particle [59].
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