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We consider a solid plate being withdrawn from a bath of liquid which it does not
wet. At low speeds, the meniscus rises below a moving contact line, leaving the
rest of the plate dry. At a critical speed of withdrawal, this solution bifurcates into
another branch via a saddle-node bifurcation: two branches exist below the critical
speed, the lower branch is stable, the upper branch is unstable. The upper branch
eventually leads to a solution corresponding to film deposition. We add the local
analysis of the upper branch of the bifurcation to a previous analysis of the lower
branch. We thus provide a complete description of the dynamical wetting transition
in terms of matched asymptotic expansions. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4736531]

I. INTRODUCTION

Consider a partially wetting solid plate (with microscopic contact angle θ e), being withdrawn
from a liquid reservoir, as illustrated in Fig. 1. Depending on the speed of withdrawal U, two
scenarios can occur. If U is above a certain threshold value Uc, a liquid film is deposited on the
solid surface .1–5 This principle is commonly used in the coating industry.6, 7 On the other hand, if U
< Uc , an initially dry solid surface will remain dry, but the contact line position zcl (see Fig. 1) rises
above its equilibrium value. The critical speed is set by a balance between the liquid-gas surface
tension γ and viscous forces,8, 9 which are proportional to the liquid viscosity η. As a result, the
critical speed is controlled by the dimensionless capillary number Ca ≡ ηU/γ . For simplicity, we
restrict ourselves to the most frequently used geometry of a plate being withdrawn vertically.

The bifurcation between wetted and dry states can be understood by considering the solution
curve shown in Fig. 2(a), which plots zcl as function of the plate speed.10, 11 Here and in the following,
all lengths are scaled by the the capillary length �c ≡ √

γ /ρg, where ρ is the fluid density and g
the acceleration of gravity. Stationary solutions have been computed numerically using a modified
lubrication theory,12 which remains valid for arbitrary interface slopes. The only restriction on its
validity, when compared to the full viscous fluid equations, is that of small Ca. To model the contact
line motion, we introduce a microscopic slip length λs, which is necessary for the contact line to be
able to move.5, 13 On the scale of λs, the interface makes a finite contact angle with the solid, which
we take to be the equilibrium contact angle. More details of the modeling will be discussed below.

Below the horizontal dashed line of Fig. 2(a), the contact line position is a monotonically
increasing function of speed. For very small Ca, the capillary rise approaches its equilibrium value14

zcl =
√

2(1 − sin θe). (1)

As the speed increases, the lower branch solution ends at a maximum value Cac of the control
parameter, which is the typical scenario for a saddle-node bifurcation.15 At this point a transition
toward a wetted state must occur, since all available steady states correspond to a smaller speed than
the actual speed Cac. The lower branch of the solution curve corresponds to a stable equilibrium,
the upper branch to an unstable equilibrium.15 Eventually, the contact line position goes to infinity,
and the plate is covered completely by a film.
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FIG. 1. Schematic diagram of a plate being withdrawn from a viscous liquid reservoir. The interface shape is h(x), where x
is measured relative to the contact line position: x = zcl − z. From a large scale, the interface meets the wall with an apparent
contact angle θap. Near the contact line, the interface is highly curved, and one recovers the equilibrium contact angle θe at
the contact line.

In Refs. 16 and 17, the lower branch of the solution curve of Fig. 2(a) has been studied analyti-
cally, using the method of matched asymptotic expansions. This approach exploits the disparity of
scales between the capillary length (≈10−3m), and the slip length (10−9m), relevant only very close
to the contact line. The outer solution is controlled by a static balance between surface tension and
gravity, enabling one to use the relationship (1) between capillary rise an contact angle, but with an
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FIG. 2. (a) Bifurcation diagram of stationary solutions, showing the meniscus rise zcl (in units of �c), as function of Ca for θ e

= 0.2 and slip length λs = 10−5. Solid curve: result from a numerical solution of lubrication theory, see Ref. 10. The horizontal
dotted line indicates zcl = √

2, which is the maximum rise height of a meniscus at equilibrium. (b) Interface profiles of the
lower branch solution (solid curve) and the upper branch solution (dashed curve) for Ca = 1.3 × 10−4 (indicated by circles
in (a)). The contact line position is at z = zcl, while z = 0 at the bath. In the upper branch, the interface develops a finger
close to the wall, making zcl much larger than expected from the extrapolation of the far-field profile.
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“apparent” contact angle θ ap,

zcl = √
2(1 − sin θap). (2)

The maximum value of zcl consistent with (2) is zcl = √
2, which is realized for θ ap = 0. Since

(2) does not allow for solutions above zcl = √
2, a transition occurs as the apparent contact angle

vanishes. The corresponding maximum capillary number Cac has been calculated in Ref. 17. An
inspection of Fig. 2(a) shows that the bifurcation indeed occurs very close to zcl = √

2, and the
value of Cac agrees quantitatively with the theoretical prediction, as well as with experiment.10, 18

An experiment withdrawing a fiber also found the transition to occur at vanishing apparent contact
angle.19

In the present paper, we will supply the missing description of the upper branch in terms of
matched asymptotic expansions. To our knowledge, this is the first time both branches of a saddle-
node bifurcation have been described using this method. Matching requires a new type of inner
solution, as illustrated in Fig. 2(b). We show solutions on the upper and lower branches of the
transition (circles in Fig. 2(a)), but corresponding to the same value of Ca. It is clear from the
main graph of Fig. 2(b) that the two solutions are virtually identical on the large scale, and thus
correspond to the same value of the apparent contact angle θ ap. However, the upper branch solution
is distinguished by a different inner solution, which features a thin viscous “finger”, only visible
in the inset, showing a magnified region very close to the plate. As a result, the actual contact line
position zcl at the tip of the finger is significantly higher than zcl obtained by extrapolating from the
outer solution, and which gives zcl on the lower branch.

The present paper is organized as follows: we first recount the technique of matched asymptotic
expansion used for finding the lower branch solutions, presented in Refs. 16 and 17. We then
perform an asymptotic analysis for the upper branch solutions by considering another set of inner
solutions, which displays the narrow finger shape as discussed above. We thus show that on the upper
branch, the true contact line position is shifted upwards from its apparent value. We demonstrate that
the upper and lower branch solutions thus found can be joined at the bifurcation point. In the final
discussion, we relate the bifurcation theory approach to the result of matched asymptotic expansions,
and discuss remaining unsolved problems.

II. LOWER BRANCH AND CRITICAL SPEED

The lower branch of the bifurcation diagram was calculated in Ref. 17 using matched asymp-
totics, for the case that the angle at which the plate is withdrawn is small. In this section, we present
a brief summary of this calculation, and adapt it to the case of vertical withdrawal. In the matched
asymptotic description, the solution is broken up into an inner and an outer region, denoted by hin(x)
and hout(x), respectively. The variable x is defined relative to the contact line position: z = zcl − x,
see Fig. 1. The full solution is found by imposing appropriate matching conditions between the two
solutions.

A. Inner solution: Lubrication approximation

For simplicity, we restrict ourselves to the case of small equilibrium contact angles, h′
in(0)

= θe � 1, so we can use the lubrication approximation close to the contact line.5 Since the length
scale in the inner region is set by the slip length λs, which is much smaller than �c, gravity is
negligible. The corresponding lubrication equation reads10

h′′′
in = 3Ca

h2
in + 3λshin

. (3)

Note that the presence of λs makes for a much weaker singularity as hin vanishes. For λs = 0, no
dynamical solution of (3) exists which makes a finite contact angle with the substrate. Thus a finite
value of λs > 0 is needed to allow the contact line to move relative to the substrate. We scale out λs
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from the problem, by introducing the similarity solution

hin(x) = 3λs H

(
xθe

3λs

)
, ξ = xθe

3λs
. (4)

With these rescalings (3) can be expressed in terms of the dimensionless profile H(ξ ),

H ′′′ = δ

H 2 + H
, (5)

where we introduced a reduced capillary number δ = 3Ca/θ3
e . The boundary conditions on the plate

are

H (0) = 0 and H ′(0) = 1. (6)

Since (5) is a third order differential equation, one more condition is required. This condition will
be obtained from the matching to the outer solution.

Away from the contact line, where H � 1, (5) further reduces to

y′′′ = 1

y2
, (7)

where we have put H(ξ ) = δ1/3y(ξ ). This equation has an exact solution, whose properties have been
summarized in Ref. 20. In parametric form, a solution with y(0) = 0 reads

ξ = 21/3π Ai(s)
β(αAi(s)+β Bi(s))

y = 1
(αAi(s)+β Bi(s))2

⎫⎬
⎭ s ∈ [s1,∞[, (8)

where Ai and Bi are the two Airy functions.21 The limit ξ → 0 corresponds to s → ∞, the opposite
limit ξ → ∞ to s → s1, where s1 is a root of the denominator of (8):

αAi(s1) + βBi(s1) = 0. (9)

Since the solution extends to s = ∞, s1 has to be the largest root of (9).
The solution y(ξ ) is thus characterized by α, β, and s1, but only two of these parameters are

independent due to (9). As detailed in Ref. 17, the constant β can be determined by matching (8),
which is valid only for ξ � 1, to a solution of (5), which includes the effect of the cutoff and is thus
valid down to the position ξ = 0 of the contact line. It was found that

β2 = π exp(−1/(3δ))/22/3 + O(δ), (10)

which eliminates one of the remaining two free parameters. The last parameter s1 will be eliminated
below by matching the large scale asymptotics of y(ξ ) to the outer solution of the problem. To this
end, we need the behavior of y(ξ ) for large ξ , which can be obtained from (8):

y(ξ ) = 1

2
κyξ

2 + byξ + O(1), (11)

where

κy =
(

21/6β

π Ai(s1)

)2

, by = −22/3 Ai ′(s1)

Ai(s1)
. (12)

B. Outer solution: Liquid reservoir

The outer solution hout(x), valid away from the contact line, is governed by a balance between
surface tension and gravity:14

κ ≡ h′′
out

(1 + h′2
out )3/2

= zcl − x, (13)
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where κ is the curvature of the interface. Remember that x = 0 at the contact line, and x = zcl at the
height of the bath. The static balance (13) is to be solved subject to the boundary conditions

hout (0) = 0, h′
out (0) = θap and h′

out (zcl) = ∞, (14)

which contains the apparent contact angle θ ap as sole parameter. A Taylor expansion of the outer
solution leads to

hout(x) = tan θapx + 1

2
κapx2 + O

(
x3) . (15)

Integrating (13) once with respect to x, we obtain

1 − h′
out

(1 + h′2
out)1/2

= 1

2
(zcl − x)2, (16)

where the boundary condition h′
out → ∞ at the position of the reservoir (x = zcl) is used. Evaluating

(16) at the contact line position (x = 0) and using the geometrical connection sin θ = h′
out/

√
1 + h′2

out
as well as (13), we find

κap = zcl = √
2(1 − sin θap),

as quoted in the Introduction. Our main interest in this paper is the neighborhood of the bifurcation,
i.e., the region of small θap. Thus for the sake of simplicity we contend ourselves with the leading-
order expressions for small θap and find

hout(x) = θapx + 1 − θap/2√
2

x2 + O
(
x3

)
. (17)

C. Matching: Lower branch

To match the two solutions on the lower branch we first write the inner solution in term of the
original variables,

hin(x) = δ1/3

[
κyθ

2
e x2

6λs
+ byθex + O (1)

]
. (18)

Comparing this to (17), we find the matching conditions

θap = δ1/3byθe, (19)

2 − θap =
√

2δ1/3 κyθ
2
e

3λs
. (20)

Adding these two conditions leads to an equation for s1 as a function of δ:

2

θeδ1/3
+ 22/3 Ai ′(s1)

Ai(s1)
= 21/6 exp[−1/(3δ)]

3π Ai2(s1)λs/θe
. (21)

Once s1 is known, one can compute the apparent contact angle

θap

θe
= −22/3δ1/3 Ai ′(s1)

Ai(s1)
. (22)

Analysis of (21) shows17 that solutions cease to exist above a critical reduced speed δc, for
which the apparent contact angle goes to zero. According to (22), this occurs when the Airy function
takes its global maximum, Ai′(s1) = 0, corresponding to smax = −1.088··· (cf. Fig. 3). This gives a
critical speed

δc = 1

3

[
ln

(
δ

1/3
c θ2

e

25/63π (Ai(smax))2λs

)]−1

; (23)
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FIG. 3. Airy function Ai(s1). The critical point occurs at smax = −1.088··· where the Airy function takes its maximum value.
The lower and upper branches of the bifurcation diagram correspond to s1 ≥ smax and s0 < s1 < smax, respectively, where s0

= −2.338··· is the rightmost zero of Ai(s1).

remember that δc is related to the critical capillary number by Cac= δcθ
3
e /3. This completes

the description of the lower branch of Fig. 2(a), up to the critical capillary number. However,
the analysis so far gives no clue as to what happens beyond the transition, and thus does not explain the
nature of the transition.

III. UPPER BRANCH AND BIFURCATION DIAGRAM

We now turn to the upper branch of the bifurcation diagram close to the critical speed. Clearly,
this branch cannot be described in terms of (2), since zcl rises above the maximum value of

√
2

corresponding to θ ap = 0. The critical point is attained when Ai(s1) takes its maximum value, at
s1 = smax = −1.088··· (cf. Fig. 3). The rest of the lower branch corresponds to values s1 > smax.
This suggests that the upper branch can be described in terms of solutions on the other side of the
maximum, s1 < smax, and below we will work out this idea.

A. Matching: Upper branch

An inspection of (12) shows that by is strictly negative in the domain s0 < s1 < smax, where s0

= −2.338··· is the rightmost zero of the Airy function (cf. Fig. 3). Thus we cannot impose the same
matching as in Sec. II, since (19) would imply a negative apparent contact angle. We get around
this problem by noting that the large scale asymptotics of the inner solution (11) is a parabola that
has two zeros, ξ = 0 and −2by/κy. The former coincides with the actual position of the contact line,
while we interpret the latter as the “apparent” position of the contact line

ξap = −2by

κy
. (24)

Figure 4 illustrates how a typical solution (8) (solid line) approaches its asymptotic limit (11) (dashed
line), so that the relative distance between the two curves goes to zero for large ξ . Matching the
next (constant) term in (11) would be achieved only at the next order of the asymptotic expansion.
Extrapolating the large-scale solution to the plate position, the contact line appears to be located at
ξ = ξ ap, while its actual position is at ξ = 0. This is due to the narrow finger exhibited by solutions
y(ξ ) for the parameter range s0 < s1 < smax (cf. inset of Fig. 4). This finger was already visible in
the numerical solutions shown in Fig. 2(b).

Expanding (11) relative to the apparent contact line position ξ ap, we obtain

y (ξ ) = 1

2
κyξ

2 + byξ + O(1)

= 1

2
κy

(
ξ − ξap

)2 − by
(
ξ − ξap

) + O(1). (25)
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FIG. 4. The profile (8) for s1 = −2.0 and δ = 0.063 (solid line). The dashed line is the asymptotic form (11) of the profile
for large ξ ; from a large scale, the contact line appears to be located at ξ ap ∼ 350. The inset is a zoom on the contact line
region showing a narrow finger which ends at the contact line ξ = 0.

The prefactor of the linear term, −by, is now strictly positive on s0 < s1 < smax and can therefore be
matched to a “shifted” bath solution:

hout(x) = θap
(
x − xap

) + 1 − θap/2√
2

(
x − xap

)2

+ O
(
(x − xap)3

)
. (26)

Retracing the steps of Sec. II, one finds the equation for s1 as

2

θeδ1/3
− 22/3 Ai ′(s1)

Ai(s1)
= 21/6 exp[−1/(3δ)]

3π Ai2(s1)λs/θe
. (27)

This differs from (21) only by a minus sign in the second term of the left-hand side. Similarly, the
apparent contact angle follows as

θap

θe
= 22/3δ1/3 Ai ′(s1)

Ai(s1)
, (28)

with a change in sign. In Fig. 5, we plot θap as function of δ for both lower branch (solid line) and
upper branch (dotted line). Both curves meet at δ = δc, where the apparent contact angle vanishes.
Thus the apparent contact angle decreases as the transition is approached from below, and then
increases again on the upper branch.

δ

θ ap

0.052 0.053 0.054 0.055 0.056 0.057 0.058
0

0.05

0.1

FIG. 5. The apparent contact angle θap as function of δ for lower branch (solid line) and upper branch (dotted line). The two
curves meet at δ = δc ≈ 0.0578, where θap = 0. The dot-dashed line corresponds to (37) below.
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FIG. 6. Meniscus rise zcl as function of δ for θ e = 0.2 and the slip length λs = 10−5. Solid line: Same as in Fig. 2(a). Dashed
lines are (31), with θap from (21) and (22) (lower branch) and (27) and (28) (upper branch). For large zcl, the curve approaches
a limiting speed δ∗.

B. Meniscus rise

Let us now express the new solution in terms of the meniscus rise zcl and compare to the
bifurcation diagram of Fig. 2(a). To do so, we need to take into account the difference between the
real position of the contact line at ξ = 0, and the apparent position ξ ap. This difference comes on
top of the meniscus rise of the outer solution, given by (2), so that in original variables

zcl =
√

2(1 − θap/2) + ξap
3λs

θe
, (29)

once more expanding for small θ ap. Rewriting (25) in terms of the outer variables x and h, and
comparing it to (26), we obtain

by = −θap

δ1/3
, κy = 3 · √

2λs

δ1/3θe
.

Now using (24), one finds

ξap
3λs

θe
=

√
2θap, (30)

giving the contact line position directly in terms of θ ap. Thus we finally arrive at

zcl =
√

2

{
1 − θap/2 for zcl ≤ √

2

1 + θap/2 for zcl ≥ √
2.

(31)

To test (31), in Fig. 6 we replot zcl as function of δ for the same parameter values as those of
Fig. 2(a). The solid curve is the numerical solution of the improved lubrication theory, the dashed lines
represent (31), with θap calculated for the lower and upper branches, respectively. The agreement of
the numerical result and the analytical results is very good for both branches.

C. Comparison to bifurcation theory

Returning to the bifurcation argument presented in the Introduction, the transition occurs because
the solution curve folds over, and is thus guaranteed to have a local expansion of the form

δ − δc = a1

(
zcl −

√
2
)2

+ O
(

zcl −
√

2
)3

. (32)

To discover the local behavior resulting from the matched asymptotics, we insert the expansion

δ − δc = δ1δs1 + δ2δs2
1 , δs1 = s1 − smax (33)
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into (21) and (27), respectively. On the basis of (32), we would expect δ1 to vanish and δ2 to be the
same above and below the transition.

Instead, we find

δ1 = −3σ22/3smaxθeδ
7/3
c

2(δc + 1)
, (34)

where σ = ±1 above and below the transition, respectively; the coefficient δ2 does not have a
definite sign. Clearly, the bifurcation curve as predicted by matched asymptotics is not smooth at
the bifurcation point. Indeed, close inspection of Fig. 6 reveals that the dashed line does not have
a vertical tangent at the turning bifurcation point.17 Instead, the “correct” behavior emerges only in
the limit of small slip length λs → 0 or δc → 0. In this limit, we find

δ2 = 3smaxδ
2
c , (35)

which is indeed the same above and below the transition. Thus the first term of (33) is negligible
(and the structure (32) is valid) for δs1 � δ

1/3
c .

In addition, from (22) and (28) we find that to leading order

θap = −22/3θesmaxδc |δs1| , (36)

which is valid both above (δs1 < 0) and below (δs1 > 0) the transition. Thus in summary we find

θap = 22/3θe

∣∣∣ smax

3

∣∣∣1/2
δ−2/3

c |δ − δc|1/2 , (37)

which is valid for θap � δ
2/3
c . The asymptotic local behavior (37) is plotted in Fig. 5 as the dot-dashed

line. Its behavior for small θap is hard to distinguish from (22) and (28).

IV. DISCUSSION

Matched asymptotics clearly gives a quantitative description of both branches of the saddle-node
bifurcation. In the case of the lower branch, this holds true for the entire branch down to vanishing
speed. The behavior of the upper branch, on the other hand, is considerably more complicated, as
described in Refs. 4 and 18. Following the upper branch, one encounters an infinite sequence of
saddle-node bifurcations, as the solution curve oscillates around a second characteristic speed δ∗.
The oscillations of the solution curve, which are due to oscillations of the interface profile,22 are
damped very quickly, so at a capillary rise of a few times the capillary length the solution effectively
corresponds to a film of constant thickness covering the plate. This film, of thickness h∗ = √

δ∗θ3
e , is

maintained by a balance of viscosity and gravity. Experimentally, this film has indeed been realized
when a plate is withdrawn with speed above δ∗.4

Our present analysis is not able to capture this feature, since gravity is not included in the
balance (3), which describes the inner solution. As the finger seen in the inset of Fig. 4 grows in
length, the hydrostatic pressure difference across it becomes significant, and the solution fails. An
estimate of the capillary rise at which this occurs is obtained from the intersection between (31) and
the vertical line δ∗, along which gravity and viscosity balance. Using (31) and (37), this leads to the
estimate

zcl −
√

2 ≈ θeδ
−2/3
c

√
δc − δ∗ (38)

for the rise at which gravity becomes significant. Using δc ≈ 0.058 and δ∗ ≈ 0.044, this leads to
zcl − √

2 ≈ 0.16, which agrees reasonably well with Fig. 6.
It is worth reviewing the relative merits of bifurcation theory and those of matched asymptotics,

which are complementary. Within bifurcation theory, once one understands the origin of the transition
as a fold of the solution curve of Fig. 2(a), the local structure or order of the transition results
automatically. In addition, it is clear that the transition must correspond to moving from a stable
branch to an unstable branch.15 As always, the disadvantage is that the critical parameters of the
transition, such as δc, cannot be calculated within bifurcation theory.
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Matched asymptotics, on the other hand, requires a detailed calculation, which reveals the full
spatial structure of the solution above and below the transition, as well as the values of all the critical
parameters, calculated directly from the system parameters. For example, it is shown that the upper
branch solution contains an additional, and unforseen structure, which is the finger seen in Fig. 2(b).
However, the local structure (32) of the saddle-node bifurcation emerges from the calculation only in
the limit λs → 0 or δc → 0. Note the subtle point that the two branches as predicted by asymptotics
do not fit together to form a differentiable curve. The reason is that both parts present very different
spatial features, and hence agreement between matched asymptotic expansion and bifurcation theory
is achieved in a pointwise fashion only. It would be an interesting project to see if the next order of
the asymptotic expansion will reproduce the next term in the expansion about the bifurcation point.

The stability properties of the two branches have not yet been investigated within matched
asymptotics, and remain a non-trivial problem: the task is to properly separate the timescales of
the inner and outer solutions. The result is expected to be an effective dynamics,10 in which the
solution moves quasi-statically along the solution curve. This picture of quasi-steady dynamics was
confirmed in experiments where the plate velocity was taken above the critical speed.18 It was found
that during the deposition of the liquid film, the upward motion of the contact line follows the
bifurcation curve perfectly when replacing the plate velocity by the relative velocity of the contact
line, i.e., U − dzcl/dt.

In conclusion, we have calculated the upper and lower branches of a saddle-node bifurcation
using matched asymptotics. We are not aware of any other example of this having been done before.
It would be of great interest to develop a more general framework of correspondences between
certain types of bifurcations, and the matched asymptotics needed to describe them.
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