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Abstract
We consider two different non-local, and non-linear transport equations, 
both of which form singularities in finite time, starting from smooth initial 
conditions. The first,

θt = D(γ)(θ)θx,� (1)

is a non-local version of the inviscid Burgers’ equation, which is hyperbolic 
and forms a shock in finite time; D(γ) denotes the fractional derivative, which 
for γ = 0 is the Hilbert transform: D(0)(θ) = H(θ). We show that singular 
solutions of the non-local equation for γ < 1 connect to the hierarchy of shock 
solutions of Burgers’ equation, which are obtained for γ = 1. The second 
equation,

θt − δ(θH(θ))x − (1 − δ)H(θ)θx = 0,� (2)

is a simplified version of a class of ill-posed problems arising in the theory of 
vortex sheets and water waves, which are known to exhibit a weak curvature 
singularity in finite time, known as ‘Moore’s singularity’. The linearized 
form of (2) allows for a continuous family of curvature singularities, with the 
scaling exponent α as a parameter, each of which is identical to those arising 
in Moore’s singularity. By considering the stability of each singularity, we are 
able to determine which exponent is selected, and show that its value depends 
on the parameter δ.
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1.  Introduction

The formation of singularities in non-linear PDE’s is characterized by self-similar solutions 
[16, 17], such that as the singularity is approached, the size of the dependent and independent 
variables are power laws in the time distance t′ = t0 − t to the singularity. In the present paper, 
we look for similarity solutions to (1) and (2) of the form

θ = θ0 + t′αΘ(ξ), ξ = x′/t′β ,� (3)

where α and β are as-yet undetermined scaling exponents, x′ = x − x0 (with x0 the point 
where singularity forms), and θ0  is a constant. In many cases, the values of the scaling expo-
nents α,β  is determined from a balance of different terms in the equation [17]. However, in 
the case of (1) and (2), to leading order the balance which determines (3) consists of two terms 
only. As a result, while β can be computed (as a function of α), the other exponent α remains 
a free parameter. This particular class of problems, in which the structure of the equation itself 
does not specify the exponent, is known as self-similarity of the second kind [3, 4]. Rather, an 
additional condition on the regularity of the solution leads to selection of a particular scaling 
exponent.

Many fluid mechanics problems of long standing lead to equations non-local in character 
[27], and numerous non-local model equations have been put forward to study such prob-
lems [8, 10–12, 21, 22]. While self-similarity of the second kind has been explored in many 
examples in the case of local PDE’s, analytical insight into the mechanism of exponent selec-
tion has been scarce for non-local problems. The perhaps most well-known example of such 
a selection problem is Moore’s singularity of vortex sheets [2, 15, 29, 30]. There is strong 
numerical evidence that the curvature of a vortex sheet diverges like t′−1/2 [23, 28, 29], yet 
this observation has never been explained without making ad-hoc assumptions, based in par
ticular on the analytic structure of solutions in the complex plane. Weakly nonlinear systems 
deduced from a Hamiltonian formulation of vortex sheets (and, in general, the evolution of 
interfaces between potential flows with different densities) have been studied by means of 
analytic continuation techniques in [24, 25] and result in the development of Moore-type 
singularities.

In the present paper we consider two different model equations, to illustrate the existence 
of two different mechanisms of selection. The first equation is the fractional transport equa-
tion (1), which interpolates continuously between two cases studied previously. The fractional 
derivative D(γ) is defined as the non-local operator

D(γ)( f )(x) = Pγ

∫ ∞

−∞

f (y)sign(x − y)
|x − y|1+γ

dy,� (4)

where Pγ = −1/(2 sin γπ
2 Γ(−γ)) and the integral is understood in the principal value sense. 

This definition guarantees that the Fourier transform satisfies

F
(

D(γ)( f )
)
(q) = −isign(q)|q|γF ( f ) (q),� (5)
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so that

D(0)( f )(x) = H( f )(x) =
1
π

∫ ∞

−∞

f (y)
x − y

dy

is the Hilbert transform and D(1)( f ) = −fx is (minus) the ordinary derivative.
This means that for γ = 1, (1) is θt + θ2

x = 0. Taking the first derivative and putting u = θx , 
this is the kinematic wave equation

ut + 2uux = 0,� (6)

which generically leads to shock solutions [17, 26]. The self-similar properties of these shock 
solutions have been studied in detail in [16, 31], and have recently been extended to higher 
dimensions [18]. On the other hand, taking the limit γ → 0, (6) is connected to the non-local 
equation

θt = H(θ)θx,� (7)

which has been studied previously in [12]. Below we will show that exponent selection in 
(7) can be understood by a regularity condition, which is an extension of the corresponding 
condition for (6).

While (1) is hyperbolic in character, its singularity resulting from the crossing of charac-
teristics, we will see that (2) is elliptic, and the formation of its singularity is related closely 
to its ill-posed character. In [12], (2) has been studied both theoretically and by full numerical 
simulation. In particular, it was shown that α = 1/2 in the case δ = 1, which leads to a solu-
tion identical to that for Moore’s singularity, which is observed to exhibit a t′−1/2 curvature 
singularity. However, there is strong numerical evidence that for 0 < δ < 1, α is a smooth 
function of δ, and falls far below the ‘generic’ value of α = 1/2 observed for vortex sheets 
[23, 29]. Therefore, a new mechanism for the selection of α needs to be found. In this paper 
we will provide an analytical method to compute α as a function of δ, and confirm the result 
by comparison with numerical simulations.

For δ = 0, (2) becomes identical to (1) with γ = 0, and thus to (7). However, this repre-
sents a singular limit [12]; in particular, for δ = 0 the value of the maximum of the profile 
remains at the same value θ0 , while for γ > 0 it is the sum of θ0  plus a nontrivial profile and 
hence becomes time dependent. Indeed, we will show below that (1) has the scaling exponent 
α ≈ 1.181 . . . for γ = 0, while in the limit δ → 0, (2) has the scaling exponent α = 0.1767 . . ..

In the following section, we first consider the Burgers-type equation (1), and in the next, the 
Moore-type equation (2). We close with a discussion of our results and of future perspectives.

2.  Burgers-type equation

2.1.  Preliminaries

We will be looking for symmetric solutions of (1) for which θ is even. Then the fractional 
derivative becomes

D(γ)( f )(x) = − 1
2 sin γπ

2 Γ(−γ)

∫ ∞

0
f (y)

(
sign(x − y)
|x − y|1+γ

+
1

|x + y|1+γ

)
dy,

� (8)
so that for large y  the kernel behaves like

J Eggers and M A Fontelos﻿Nonlinearity 33 (2020) 325



328

sign(x − y)
|x − y|1+γ

+
1

|x + y|1+γ
≈ 2(1 + γ)x

y2+γ
.

This means the integral converges if f (y) grows more slowly than y1+γ . For the case γ = 0 
and symmetric f , (8) becomes

D(0)( f )(x) ≡ H( f )(x) =
2x
π

∫ ∞

0

f (y)
x2 − y2 dy,� (9)

which converges if f  grows more slowly than linear.
For increasing γ , the integrand (4) becomes more and more singular. It is therefore advan-

tageous to integrate by parts to obtain

D(γ)( f )(x) =
Pγ

γ

∫ ∞

0
f ′(y)

[
(x + y)−γ − |x − y|−γ

]
dy

= − Pγ

γ(1 − γ)

∫ ∞

0
f ′′(y)

[
sign(x − y)|x − y|1−γ + (x + y)1−γ

]
dy.

�
(10)

In the limit γ = 1, −Pγ/(γ(1 − γ)) = −1/2, and the kernel in (10) vanishes for y   >  x, and so

D(1)( f )(x) = −1
2

∫ x

0
2f ′′(y) = −f ′(x),

as expected. In the case γ = 0 one can either take the limit in (10) or work directly from (9) 
to obtain

D(0)( f )(x) =
1
π

∫ ∞

0
f ′′(y) [(x + y) ln(x + y) + (x − y) ln |x − y|] dy.� (11)

2.2.  Similarity equation

The singularity develops at a local maximum, whose value θ0 , set by the initial condition, 
remains constant. Inserting (3) into (1), a balance is achieved for β = (1 + α)/(1 + γ), and 
the similarity equation becomes

αΘ− (1 + α)ξ

1 + γ
Θξ = −D(γ)(Θ)Θξ.� (12)

We solve (12) for a symmetric profile on the interval ξ ∈ [0,∞[. The singular solution (3) has 
to agree with a time-independent outer solution, which leads to the matching condition [17] 
θ ∝ ξ

α(1+γ)
1+α  on the behaviour of θ in the limit of large ξ. In fact, observing that (12) is invariant 

under the transformation

θ(ξ) = aθ̃
(

ξ

a1+γ

)
,� (13)

we can always rescale to adjust the prefactor such that the asymptotic behaviour for large 
arguments is

θ(ξ) = −ξ
α(1+γ)

1+α ≡ −ξν , ξ → ∞.� (14)
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With this normalisation, the solution to (12) is unique. In order to provide boundary conditions 
for the numerical solution of (12) it is useful to calculate the next order in the expansion for 
large arguments:

θ(ξ) = −ξν − νB(γ, ν)ξ2ν−γ−1 + . . . , ξ → ∞,� (15)

where B(γ, ν) is given in appendix A.

2.3.  γ = 1

In the case γ = 1, for which (1) becomes the kinematic wave equation  (12) can be solved 
exactly [19]; the similarity equation is

−αΘ+
(1 + α)ξ

2
Θξ +Θ2

ξ = 0.� (16)

Differentiating with respect to ξ and putting U = Θξ this becomes

1 − α

2
U +

(1 + α)ξ

2
Uξ + 2UUξ = 0,� (17)

which has solution

ξ = −2U − CU
α+1
α−1 ,� (18)

with an arbitrary constant C. For the solution to be regular and one-to-one, we need 
(α+ 1)/(α− 1) = 2i + 3, where i is a non-negative integer, and so the exponents become

α =
i + 2
i + 1

, β =
i + 3
2i + 2

.� (19)

The generic (stable) case is i  =  0 and α = 2, β = 3/2 [16, 17]. For i = 1, . . ., higher order, 
unstable solutions are generated, for example α = 3/2 for i  =  1.

To obtain Θ(ξ), we observe that Θξ = ΘUUξ = ΘU(ξU)
−1, so that

UξU = ΘU = −2U − (i + 3)CUi+3.

Integrating, we have

ξ = −2U − CUi+3, Θ = −U2 − (i + 3)CUi+4

i + 4
,� (20)

which corresponds to what was found in [19]. The normalisation Θ ≈ −ξ
i+4
i+3 for large ξ cor-

responds to C =
(

i+3
i+4

)
i+3.

2.4.  Exponent selection

To solve (12) for general γ , we use Newton’s method, discretizing the integral representation 
(4). For values of γ  close to one, we choose the second form of (10), such that the integrand is 
much less singular. Trying to solve (12) using Newton’s method, the second derivative is very 
noisy. Therefore, we take the derivative of (12) to solve

r(ξ) =
αγ − 1
1 + γ

Θξ −
1 + α

1 + γ
ξΘξξ +

(
D(γ)(Θ)Θξ

)
ξ
= 0.
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Now the profile is smooth for ξ > 0, but has a singularity at the origin of the form Θ = aξβ. 
This can be understood noting that to leading order near the origin,

D(γ)(Θ) = −2Pγ(1 + γ)

∫ ∞

0

Θ(y)
y2+γ

x.

Balancing the leading-order terms in (12) we find that

α− β
1 + α

1 + γ
= 2β(1 + γ)Pγ

∫ ∞

0

Θ(y)
y2+γ

dy.

In other words, for the solution to be regular (i.e. β = 2), the constraint
∫ ∞

0

Θ(y)
y2+γ

dy = −2 + α(1 − γ)

4(1 + γ)2Pγ
=

2 (2 + α(1 − γ)) sin γπ
2 Γ(−γ)

4(1 + γ)2� (21)

also has to be satisfied. This is illustrated in figure 1 for the case γ = 0: by adjusting α to a 
critical value, the solution can be made regular at the origin, giving the approximate value 
α = 1.177. Clearly, this is an example of self-similarity of the second kind [17].

Based on the selection mechanism (21), we can now search for solutions of (12) directly, 
by finding the value of the exponent as part of the solution. The first possibility to implement 
this is to formulate (21) as a separate equation. However, we found this to work only if the 
initial condition was already very close to the correct solution. A more robust procedure is to 
write down a finite-difference formula for the third derivative at ξ = 0, and to demand that 
Θξξξ(0) = 0, using this as a separate equation.

Based on this latter idea, we employed two different approximations for D(γ)(Θ) to obtain 
α as a function of γ , as shown in figure 2. For 0 � γ � 1/2, we used (8), using the solution 
for γ = 0 as an initial condition, and extending in small intervals of γ . For 0.1 � γ � 1, we 
used the exact solution (20) for γ = 1 as a starting point. Taking i  =  0, corresponding to the 

0 0.2 0.4 0.6 0.8
-4

-3

-2

-1

0

ξ

Θξξ

Figure 1.  The second derivative Θξξ for various values of α. The critical value 
α = 1.177, for which the profile is smooth at the origin, corresponds to the heavy line.
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ground state, we proceed to smaller values of γ , yielding the solid line in figure 2. In the 
overlap region between the different methods there is agreement to several decimal places, 
so the difference is well below the line thickness in figure 2. If we start from the higher order 
solution (20) with i  =  1, a different branch is found (dashed line), which we followed down to 
γ = 0. As seen from (19), there is an infinite sequence of exponents for γ = 1, so we expect 
there to be an infinite sequence of unstable branches, although we explored this for the first 
unstable mode only.

2.5.  Numerical evidence

We performed numerical simulations of (1) using a pseudospectral method, focusing on the 
case γ = 0 (Hilbert transform). The variable θ was assumed periodic over the interval [0, 2π] 
with initial condition θ(x, 0) = 0.1 cos x . The spatial grid is xi = 2πi/N  for i = 0, . . .N − 1, 
and the derivative D(γ)(θ) is computed from the Fourier components

D̂(γ)(θ)(q) = −isign(q)|q|γ θ̂(q)

for q = 1 . . .N/2 − 1 and D̂(γ)(θ)(0) = 0. At least for γ = 0, this is a spectrally accurate 
representation of the Hilbert transform [9]. The result is transformed back into real space to 
obtain D(γ)(θ)(xi); θx is obtained from finite differences and is treated implicitly. Simulations 
were performed with N  =  220 until the maximum of |θxx| reaches 105.

As illustrated in the inset of figure 3, it is necessary to integrate significantly beyond a 
maximum curvature of 103 in order to capture the correct asymptotic behaviour, and thus 
obtain a good estimate for the scaling exponent α. We plot the logarithm of the maximum 
curvature κm = |θxx(0)|, which occurs at the point of symmetry. To avoid having to first find 
the singularity time t0, we plot log10 κm as a function of log10(H(θ))x, which scales like t′−1. 

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

γ

α

i=1

i=0

Figure 2.  The exponent α as a function of γ . The ground state (i  =  0) is shown as the 
solid line, the first unstable branch (i  =  1) is the dashed line. For γ = 1, α = 2 in the 
ground state, and α = 3/2 in the first unstable state.
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Since κm ∝ t′−2−α, the slope should be 2 + α = 3.177, indicated by the horizontal dashed 
line. A value close to that is reached eventually, but the approach is quite slow, as seen from 
taking the derivative. Thus in a region of curvatures around κm ≈ 103, α = 1 seems a much 
better approximation, which lead [12] to conjecture this value.

In the main part of figure 3, we compare the second derivative Θξξ of the similarity profile, 
as obtained from solving the similarity equation, with numerical simulations of (1). First, 
the profile is rescaled according to (3), and then the transformation (13) is used to normalise 
Θξξ(0) = −1. We have plotted profiles (solid lines) obtained for κm = 104, 104.5 and 105. The 
agreement with the similarity solution (dashed line), is quite good, and the curves keep edging 
toward it.

3.  Moore-type singularity

We now turn to (2), which has been studied numerically and theoretically in [12]. However, 
the crucial question of the selection of the scaling exponent has been left unresolved. It has 
been shown that the singularity is weak in that it only appears in the curvature, just like 
Moore’s singularity of vortex sheets [12, 17, 29]. As a result, the singular part is a small 
contribution to a slowly varying profile, and locally we can write θ(x, t) = θ0 + T(x, t), and 
linearize in T, to obtain the linear equation

Tt = δθ0(H(T))x.� (22)

Figure 3.  The similarity profile Θ′′(ξ) for γ = 0 (Hilbert transform). The dashed line 
is a solution of (12) for γ = 0 and α = 1.177 12. The solid line comes from a numerical 
simulation of (1), rescaled according to (3), and normalised according to (13), such 
that Θ′′(0) = −1. The inset shows the convergence of the scaling exponent toward the 
theoretical value.
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Rescaling according to x → xδθ0, we can get rid of the constant δθ0, which we disregard from 
now on. Taking the Hilbert transform and using that H(H( f )) = −f , we obtain the pair of 
equations

Tt = (H(T))x, (H(T))t = −Tx,� (23)

from which we find

Ttt + Txx = 0.� (24)

Thus small perturbations to a smooth profile are described by an elliptic equation, which 
shows that (2) is an ill-posed equation, and the growth rate of perturbations diverges in the 
limit of small wavelength. As a result, the equation  can only be integrated uniquely with 
analytic initial data, and any numerical treatment requires some amount of smoothing [7, 30]. 
Putting z = t′ + ix, where t′ = t0 − t is the time distance to the singularity to be studied, solu-
tions to (24) can be found as T = �{ f (z)}, where f (z) is an analytic function.

This allows us to find singular similarity solutions to (22), which are of the form (3) [12, 
17], with β = 1:

T(x, t) = t′αΘ(ξ), ξ =
x
t′

;� (25)

α is as-yet undetermined. Inserting (25) into (22), we obtain the similarity equation

−αΘ+ ξΘξ − (H(Θ))ξ = 0.� (26)

As long as α > 0 (which signifies a weak singularity) θ = θ0 + t′αΘ(ξ) is also a similarity 
solution to (2), as terms quadratic in θ are of order t′α smaller than those retained.

Instead of solving (26) directly, we notice that f (z) = zα leads to a similarity solution of 
the form (25), where

Θ(ξ) = �{(1 + iξ)α} =
(
1 + ξ2)α/2

cos(α arctan ξ).� (27)

Note that (27) satisfies the expected growth condition Θ(ξ) ∼ A |ξ|α as |ξ| → ∞ [17], which 
ensures that the singularity matches to a time-independent outer solution.

By construction, Θ and H(Θ) form a Cauchy–Riemann pair, and thus

H(Θ) = �{(1 + iξ)α} =
(
1 + ξ2)α/2

sin(α arctan ξ).� (28)

Using (28), it is easy to check that (27) indeed solves the similarity equation (26). Interestingly, 
Moore’s singularity of vortex sheets is identical to (27) (see [13]), if Θ is taken as the slope of 
the vortex sheet. Another problem in which the same singularity appears is in the small disper-
sion limit of the focusing nonlinear Schrödinger equation [14]. In the vortex sheet problem, 
the selection of α remains unresolved, but numerical evidence points to α = 1/2, in which 
case (27) assumes the form

Θ(ξ) = �{
√

1 + iξ} =
1√
2

(
1 +

√
1 + ξ2

)1/2
.� (29)

In the Schrödinger problem, the same exponent 1/2 (which corresponds to an elliptic-umbilic 
singularity of catastrophe theory [1]) is selected once more as a result of taking the singular 
limit.

To address the selection problem, we note that (28) is a solution of the linearized problem, 
and is thus insensitive to the specific form of (2). In particular, in [12] it was shown numer
ically that α depends on the parameter δ. We will show that the selection of α depends on the 

J Eggers and M A Fontelos﻿Nonlinearity 33 (2020) 325



334

way the similarity solution (27) is approached. Thus we consider the first correction to (27), 
which is of order t′2α:

θ(ξ, t) = θ0 + t′αΘ(ξ) + t′2αG(ξ, τ),� (30)

where Θ(ξ) is given by (27) and τ = − log t′. Inserting (30) into (2), we obtain

Gτ − 2αG + ξGξ − H(Gξ) = F(ξ) + NL [G]� (31)

where

F(ξ) ≡ 1
δθ0

[δ(ΘH(Θ))ξ + (1 − δ)H(Θ)Θξ]

and NL [G] is a nonlinear (in fact, the sum of a linear and a quadratic) operator of G.
Let us now consider solving (31) as a fixed point for a mapping T, which assigns G  in a 

certain class of functions to the solution G of (31), with G  replacing G at the right hand side. A 
necessary condition for such a fixed point to exist is that T maps the class into itself. Hence, if 
we start with G  having a certain growth as ξ tends to infinity, it is necessary that the resulting 
G presents the same or lower growth.

If we neglect, as a first order approximation, the nonlinearity at the right hand side of (31), 
we seek τ -independent solutions solving

−2αG + ξGξ − H(Gξ) = F(ξ).� (32)

The generic behaviour of G(ξ) at large ξ is A2ξ
2α, which means that G grows faster than Θ. 

Instead, for the last term at the right hand side of (30) to be a uniformly small perturbation, 
we require that A2  =  0.

To calculate F, we note that

2(ΘH(Θ))ξ = �{(1 + iξ)2α}ξ = 2α�{(1 + iξ)2α−1}, Θξ = −α�{(1 + iξ)α−1},

and so

F(ξ) = α
(
1 + ξ2)α−1/2

[δ cos((2α− 1) arctan ξ)+
(1 − δ) sin((α− 1) arctan ξ) cos(α arctan ξ)]

= α
(
1 + ξ2)α− 1

2

[
1 + δ

2
cos((2α− 1) arctan ξ)− 1 − δ

2
(
1 + ξ2)−1/2

]
.

Taking the Fourier transform of (32), we find

−2αĜ − k
dĜ
dk

+ |k| Ĝ = F̂,� (33)

which for k  >  0 leads to the solution

Ĝ(k) = e|k|k−(2α+1)
∫ ∞

k
e−|k

′|k′
2α

F̂(k′)dk′.� (34)

The factor k−(2α+1), which is singular at the origin, implies a power-law growth as ξ2α for 
G(ξ) as ξ → ∞. In order to avoid such a growth we impose

Re
∫ ∞

0
e−|k

′|k′
2α

F̂(k′)dk′ = 0,� (35)

which, performing the Fourier transform of F(ξ), is
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Re
∫ ∞

0
e−|k

′|k′
2α
[∫ ∞

−∞
eik′ξ

(
1 + δ

2
Re(1 + ξi)2α−1 − 1 − δ

2
(1 + ξ2)α−1

)
dξ
]

dk′ = 0.

Exchanging the integrals and using
∫ ∞

0
e−|k

′|k′
2α

eik′ξdk′ =
Γ(2α+ 1)
(1 − iξ)2α+1 ,

we obtain

Re
∫ ∞

−∞

1
(1 − iξ)2α+1

(
1 + δ

2
Re(1 + ξi)2α−1 − 1 − δ

2
(1 + ξ2)α−1

)
dξ = 0,

and hence
∫ ∞

−∞

(
1 + δ

2
1

1 + ξ2 cos((2α+ 1) arctan ξ) cos((2α− 1) arctan ξ)−

1 − δ

2
1

(1 + ξ2)
3
2
cos((2α+ 1) arctan ξ)

)
dξ = 0,

after taking the real part. The substitution u = arctan ξ  yields
∫ π

2

−π
2

(
1 + δ

2
cos((2α+ 1)u) cos((2α− 1)u)− 1 − δ

2
cos u cos((2α+ 1)u)

)
du = 0,

which leads to
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Figure 4.  The first two branches of exponents α as described by (36). The lower branch, 
corresponding to the ground state i  =  0, is compared to values obtained numerically 
from a solution of (2) (crosses).
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1 + δ

2
sin(2απ)

4α
− 1 − δ

2

(
sin((α+ 1)π)

2α+ 2
+

sin(απ)

α

)
= 0

or, simplifying,

(α+ 1) cos(απ) =
1 − δ

1 + δ
.� (36)

Equation (36) is the desired relation which selects the similarity exponent α as a function 
of the parameter δ, as shown in figure 4. For δ = 1, one obtains the sequence of solutions 
α = (2i + 1)/2, with i a non-negative integer. The ground state solution i  =  0 corresponds 
to a generic elliptic-umbilic singularity [14], while the higher order solutions with i  >  0 are 
expected to be unstable, in analogy with the Burgers-type equation (1) we analysed before.

As seen in figure 4, each of these solution branches continues to δ = 0, but the value of α is 
no longer rational. The lowest (i  =  0) branch is compared to exponents obtained numerically 
from integrating (2), as explained in detail in appendix B. The numerical α-values are shown 
as pluses, and are seen to agree well with the lowest branch of (36). This confirms that this 
branch indeed corresponds to a stable similarity solution.

4.  Discussion

In this paper, we revealed the mechanism of exponent selection for two non-local, nonlinear 
transport equations. As a function of parameters γ  and δ, respectively, both equations extend 
exactly solvable cases for γ = 1 and δ = 1 to new branches of solutions. In the case of (1), 
for γ = 1 the equation can be reduced to Burgers’ equation, in the case of (2) it is complex 
Burgers’ equation for δ = 1. Using exact solutions to these equations, scaling exponents can 
be deduced based on genericity arguments [17, 20]. It is found that apart from the generic, 
stable solution, there is an infinite sequence of non-generic, unstable solutions, which can only 
be reached for a specific choice of initial conditions. Since the local scaling is obtained from 
local expansions into power series, the exponents assume rational values.

However, as the solution branches are continued to arbitrary γ  and δ, we have seen that the 
scaling exponents assume arbitrary irrational values. Hence the arguments advanced previ-
ously for the cases γ = δ = 1 no longer apply, and new mechanisms for exponent selection 
have to be found. In the case of the Burgers-type equation (1), selection is described by condi-
tion (21), which ensures that the similarity solution is regular at the origin.

In the case of the Moore-type equation (2), the shape of the similarity solution is deter-
mined by the linearized equation (22). However, the linearized equation does not contain a 
mechanism for the selection of the exponent. Instead, we have shown that the complex ana-
lytic structure of the equation (complex Burger’s equation for δ = 1, as shown in [8]), includ-
ing leading nonlinear terms, is essential for selection in Moore-type singularities.

This fact was already recognised in [5] and [6] for the case of the complex Burgers equa-
tion, the Birkhoff–Rott equation  for vortex sheets, as well as more general systems. Other 
equations and systems, leading to the same linear equation but with more general nonlineari-
ties, generate singularities with different exponents, a fact that was shown numerically in [12] 
for the present equation and in [21] for the case of vortex sheets separating fluids with differ-
ent and nonzero densities. In our analysis of (2), we were finally able to handle the non-linear 
part of the equation analytically, and to compute the exponent using the non-linear structure 
of the equation. We hope this will be a starting point to apply a similar analysis to Moore’s 
problem itself.
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Appendix A.  Asymptotics for large arguments

Here we consider the behaviour of (12) for large arguments of Θ. To this end, we consider 
the asymptotics of D(γ)(Θ)(ξ) for large ξ, and take a function f  such that for y   >  A we can 
approximate f (y) ≈ yν . Then using (10), we can split the integral into two parts (assuming 
x � A):

D(γ)( f )(x) =
Pγx−γ

γ

∫ A

0
f ′(y)

[(
1 +

y
x

)−γ

−
(

1 − y
x

)−γ
]

dy

+
Pγνx−γ

γ

∫ ∞

A
yν−1

[(
1 +

y
x

)−γ

−
∣∣∣1 − y

x

∣∣∣
−γ

]
dy.

In the first integral, we can approximate the term in square brackets as [] ≈ −2γy/x , in the 
second integral, we substitute t  =  y /x, so we find

D(γ)( f )(x) = −2Pγx−γ−1
∫ A

0
f ′(y)ydy +

Pγνxν−γ

γ

∫ ∞

0
tν−1

[
(1 + t)−γ − |1 − t|−γ

]
dt.

But this means that

D(γ)( f )(x) = Bxν−γ + O
(
x−γ−1) , B(ν, γ) =

Pγν

γ

∫ ∞

0
tν−1

[
(1 + t)−γ − |1 − t|−γ

]
dt.

� (A.1)
The constant B can be calculated (putting δ = γ − ν ) in terms of hypergeometric functions:

B(ν, γ) =
[
−Γ(ν − γ) sin(πδ)2νF(γ, δ; γ − ν + 1,−1)

+ (−F(γ, ν; 1 + ν,−1) sin(πδ)δΓ(ν − γ)γ

Γ(−γ)Γ(1 + ν)(− sin(πδ) + sin(πγ))) sin(πδ)

− Γ(1 + ν)γΓ(−γ)(cos(πν) + cos(πγ))(cos(πδ)− 1)][
−2Γ(−γ)γΓ(ν − γ) sin(πδ)2δ sin(πγ/2)

]
.

For γ = 1, D(γ)( f )(x) = f ′(x), and so B(ν, 1) = −ν.
The leading order behaviour Θ ∝ ξν cancels the right hand side of (12), which corresponds 

to the usual matching condition, which requires the time derivative to cancel far from the sin-
gularity. Then the right hand side scales like ξ2ν−γ−1; balancing this with the left hand side of 
(12), the expansion (15) results.

Appendix B.  Numerical solution of (2)

We use a spectral method, writing the profile as a cosine series:

θ(x, t) =
∞∑

n=0

an cos(nx), an = an(t).� (B.1)

It is then straightforward to compute
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((H(θ)) θ)x =

(( ∞∑
n=0

an sin(nx)

)( ∞∑
m=0

am cos(mx)

))

x

=
1
2

∑
n,m

anam ((n + m) cos(n + m − (n − m) cos(n − m)x)x)

=
1
2

∞∑
m=0




∞∑
j=m

amaj−mj cos jx −
∞∑

j=−m

amam+jj cos jx




=
∞∑

j=0

( ∞∑
m=0

j
2
(ama|m−j| − amam+j)

)
cos jx

as well as

(H(θ)) θx = −

( ∞∑
n=0

an sin(nx)

)( ∞∑
m=0

amm sin(mx)

)

= −
∑
n,m

anam
m
2
(cos(m − n)x − cos(m + n)x)

= −
∞∑

m=0

∞∑
j=−m

am+jam
m
2
cos( jx) +

∞∑
m=0

∞∑
j=m

aj−mam
m
2
cos( jx)

= −
∞∑

m=0

m∑
j=0

am−jam
m
2
cos( jx)−

∞∑
m=0

∞∑
j=1

am+jam
m
2
cos( jx) +

∞∑
m=0

∞∑
j=m

aj−mam
m
2
cos( jx)

= −
∞∑

m=0

m
2

a2
m +

∞∑
j=1

( ∞∑
m=0

(sign( j − m)a|m−j|am − am+jam)
m
2

)
cos( jx).

Comparing coefficients, we can write (2) as an infinite system of ODE’s (one for each 
mode cos nx):

a0,t = −(1 − δ)

∞∑
m=0

m
2

a2
m� (B.2)

and, for j � 1,

aj,t = δ

( ∞∑
m=0

j
2
(ama|m−j| − amam+j)

)

+ (1 − δ)

( ∞∑
m=0

(sign( j − m)a|m−j|am − am+jam)
m
2

)
.

� (B.3)

We solved the ODE system (B.2) and (B.3), which was truncated at j   =  104 modes, using 
an explicit time integrator. As initial data we took θ(x, 0) = cos(x). The maximum of θ occurs 
at x = 2nπ, which is where the curvature achieves its maximum as well:

κm ≡ |θxx| (0) =
∞∑

j=1

j2aj.� (B.4)
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Taking the second derivative of (25), one finds that κm ∝ t′α−2, which means that κ1/(2−α)
m  is 

a linear function t′ = t0 − t.
We found α numerically by adjusting the value of α such that κ1/(2−α)

m  as a function of  
time is approximated by a straight line with minimum error. For better accuracy, we consid-
ered at least two decades of κm, typically κm ∈

(
102, 104

)
. For the optimal values of α, we 

found the residual in a linear least-square fit of κ1/(2−α)
m  versus time to be less than 10−3 in 

all cases.
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