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CUSPS IN INTERFACIAL PROBLEMS

by

Jens Eggers & Marco Antonio Fontelos

Abstract. — A wide range of equations related to free surface motion in two dimensions
exhibit the formation of cusp singularities either in time, or as function of a parameter.
We review a number of specific examples, relating in particular to fluid flow and to
wave motion, and show that they exhibit one of two types of singularity: cusp or
swallowtail. This results in a universal scaling form of the singularity, and permits a
tentative classification.

Résumé (Problémes interfaciaux et cusps). — La formation de singularités en temps ou
en fonction d’un parametre est montrée pour un grand nombre d'équations liées
au mouvement de surfaces libres. Nous examinons un certain nombre d’exemples
spécifiques, en relation notamment avec I'écoulement d'un fluide et le mouvement
des vagues. Nous montrons qu'ils présentent I'un des deux types de singularité : cusp
ou queue d'aronde. Il en résulte un scaling universel qui permet de proposer une
classification des singularités.

1. Introduction

In hydrodynamics, both viscous and inviscid free-surface flows have a natural ten-
dency to “focus” into two-dimensional cusp [14] or three-dimensional tip singularities
[6]. An example of such a singular surface deformation is seen in Fig. 1, right, which
shows a jet of viscous fluid being poured into a container of the same liquid. The
radius of curvature at the tip of the cusp becomes very small, but it remains finite,
as we will see below.

As the speed of the jet increases, the cusp bifurcates into a new state, in which a
thin sheet is entrained into the liquid, as illustrated in Fig. 2. Thus the formation of
free-surface singularities is a natural pathway by which one phase is entrained into
the other: the singularity serves as the “seed” for the entry of the other phase.
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(a) (b)

F1GUuRE 1. Two examples of cusp singularities, observed in a very different
context. On the left, a caustic in a coffee cup, which is a geometrical
property of wave fronts. On the right a jet of viscous fluid is poured into
bath, which deforms the free surface into a cusp singularity. In the cross
section, imaged here, only one half of the cusp is seen.

Many such singularities occur in free-surface problems, a number of which we will
discuss in the present paper. However our main focus is on the surprising similarities
that exists between the structure of such singularities, although the underlying physics
as well as their mathematical description may be quite different. This is illustrated in
Fig. 1, which on the left, next to the viscous Aow example, shows an image of a caustic
in a coffee cup. The caustic, which is the locus of high light intensity, forms as a result
of singularities of the wave front. As we will see below, the shape of the caustic (as
well as of the wave front), has the same cusp singularity as the free surface cusp on
the right, characterized by a scaling of the width of the cusp like 3/2, where 7 is the
distance from the apex. Singularities of wavefronts, 7.e., caustics, have been much
studied [18], and their geometry can be classified using catastrophe theory [2, 22].
In the present review we point out that a similar classification appears to apply in a
variety of nonlinear PDE problems, which describe the motion of a free (fluid) surface.

Let us begin by looking at possible singularities of curves from a purely geometrical
perspective. The simplest case of self-intersection is that of the cusp, see Fig. 3. Let us
assume that the coordinates z and y can be expanded into a Taylor series as function
of some parameter, , and that we are interested in the neighborhood of § = 0. Since
we describe phenomena up to arbitrary translations, the generic description is z = a,6
and y = az0. However, by performing a rotation one can always make sure that one
of the coefficients (as, say), is zero. The singular case corresponds to the situation
where a; vanishes as well, so we put z = €6, with the singularity at ¢ = 0.

Of course we are now required to expand to higher order. The next non-trivial
order in y gives y = 6%/2, where the coefficient can be normalized by rescaling 8.
The expansion in x has to be pursued to third order, otherwise the curve would be
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FIGURE 2. A jet of viscous liquid impinging on a bath of the same liquid,
cf. [16]. Below a threshold velocity, the jet hollows the bath surface to
a depth L, which increases with jet velocity up to a value of about lem
(a). Above this threshold, air is entrained with the jet ((b) to (e)), and
forms a stationary trumpet-like shape (f). At the same time, the surface
of the bath around the jet relaxes to the shape of a static non-wetting
meniscus, whose size is in the order of millimeters. The interval between
two successive pictures is 130 ms. Note that the black line at the edge of
the jet is no indication of the film thickness; it is due to the reflection of
light by the curved air film of lower index of refraction.

degenerate for € = 0. Thus we finally have: 2.
(1) z=el+ab/3, y=06°/2,

where a is an arbitrary constant. The quadratic coefficient in the expansion of x can
be eliminated by a shift in 0, with subsequent rotation and translation. Thus up to
translations and rotations, (1) is the only generic way the self-intersection of a curve
in the plane can occur, as illustrated in Fig. 3. For € < 0 the curve self-intersects,
at the critical point € = 0 a cusp is formed. It is clear from (1) that this cusp has
the form y = (x/a)2/3, i.e., it is associated with a universal power law exponent. In
catastrophe theory [2], (1) is the curve associated with the “cusp” catastrophe.

As we will see below, higher order singularities can also occur, which presumably
is due to a hidden symmetry of the problem. As a result, the coefficient in front of
the quadratic term vanishes at the same rate as the linear term in (1):

(2) 2=+ ab®/3, y=A0/2+b:0%/3+bs0"/4.

For the curve described by (2) to be singular we must have by = 0, otherwise € = 0
would simply correspond to a straight line. The coefficient A can be eliminated by
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(a) (b) ()

F1GUuRE 3. The formation of a cusp, as described by (1). Shown is a non-
intersecting curve (e = 2), a 2/3 cusp (e = 0), and a loop (e = —1), from
left to rvight.
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FIGURE 4. The formation of a swallowtail, as described by (4). Shown is a
smooth minimum, (e = 1, left), a minimum with a 4/3 singularity (e=0,
right), and a swallowtail or double cusp (e = —1/2, right).

rescaling y and redefining by, so we arrive at the following generic form:
(3) x=cl+al*/3, y=c0?/2+b0"/4,

which exhibits a much milder singularity. Here we have been assuming a symmetric
bifurcation. This symmetry can be broken by a term linear in @ in the equation for
y. For e = 0 the behavior is like y o 2%/3. For € < 0, the curve splits into two cusp
singularities of the form shown in Fig. 3, where the case b > a corresponds to € > 0
in the representation (1), b < a to e < 0. In all the cases to be discussed below, we
always find the particular case @ = b, which means for € < 0 the solution is exactly
at the cusp singularity. This is the swallowtail known from cafastrophe theory, which
can be seen as a collision of two cusps (see Fig. 4). It has the universal form

(4) a=el+ab®/3, y=eb?/2+ah"/4,

once more with ¢, @ being parameters.
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The two catastrophes (1) and (4) can occur either as function of time or of some
control parameter. Let us introduce the time distance ¢’ = ¢y — ¢ to the singularity,

and assume the scaling |¢| = |¢'|7. The time before the singularity ¢’ > 0 corresponds
to € > 0, and vice versa. Then ,

(5) z =X, oy =Y,

(6) X, =40+a0%/3, Y.=0%/2,

is the self-similar form of the cusp singularity, and

(7) z=?X,, y=WY,

(8) X, =x0+a0/3, Y,=+0?/2+ac"/4

of the swallowtail singularity. In each case, the 4 or - signs correspond to the simi-
larity function before or after the singularity, respectively. We remark that the cusp
singularity can be written as the following cubic:

9) X2 = 2Y,(1 £ 2aY,/3)>.

As we have mentioned before, the similarity function (7) valid after the singularity
contains two cusp singularities, which occur for ¢ = +1/4/a. Thus if one writes
o = £1//a + s, shifts the cusp to the origin and performs a rotation, one obtains to
leading order in s:

(10) ( +as3 > _ ( 1 ;ﬁ) <Xsi2/(3\/a))
(a+1)s? +v/e 1 Y + 1/(4a)
The + or - signs correspond the left and right cusp, respectively. This demonstrates
that (X,,Ys) locally traces out a cusp after the swallowtail singularity, as seen in
Fig. 4.
Table 1 summarizes the the problems to be studied in this paper, and cites the
relevant sections. Each equation, to be discussed in more detail in the sections be-

low, exhibits singularities which can be classified as either being of the “cusp” or the
“swallowtail” type. Some are evolution equations, in which case we give the temporal

I Equation Type I ~ Section |
Wave fronts swallowtail | 1 3
Hele-Shaw flow cusp 1/2 | 4
Potential flow with free surface | swallowtail | // | 5
Porous medium equation cusp // |6
Viscous flow with free surface | cusp o WA ki
Born Infeld equation swallowtail | 1 8

TABLE 1. A summary of evolution equations discussed in this paper. The
classification as “cusp” or “swallowtail” refers to (1) or (4), respectively.
In the case of time-dependent problems, the exponent «y is defined by (5)
or (7), depending on the type of singularity.
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scaling exponent v, others exhibit singularities as function of a parameter. In each
case, we attempt to give physically motivated examples.

2. Complex mappings

We now look at the question of why any of the above singularities arise dynam-
ically. The two-dimensional problems studied here can be written as a mapping of
the physical domain to the unit disc, the free surface being represented as the circle.
The appearance of a singularity is associated with this conformal map becoming non-
invertible on the unit circle, as time or some other parameter reaches a critical value
[4]. We show that a generic local structure of the conformal mapping corresponds
exactly to the singularities identified above on geometrical grounds.

Let z = f(&,t) be a complex mapping from the unit disk onto the physical domain,
where ¢ may be time or some other parameter. Let us assume that invertibility is lost
at time to for £ = & = e¥°. A local expansion yields

(11) F(&1) = ao(t) + a1 ()(§ — ) + as(t) (€ — €#)* + O((€ — e#')?),

where ¢ is a function of time, making use of the fact that we are allowed arbitrary
time-dependent rotations in the &-plane. The more detailed functional form of %)
will be chosen later, but we require it to be such that ¢(t) — @g as t — t;. We
are permitted arbitrary rotations in the physical plane z as well without altering the
problem, so the image of f can be written as ze'®, where § is also an arbitrary time
dependent function. We assume all functions of time to be continuous. Of course,
their specific form will depend on the dynamics involved.
Let us introduce ¢ = €*°¢ (mapping & to 1), so that

7€ = ag+ a1 (¢ — 1) + aze™? (¢ — 1) 4+ O((¢ — 1)),

and thus the derivative yields

(12) 616% = a1’ + 2a2¢"*? (¢ — 1) + O((¢ — 1)?).
The derivative (12) of the mapping is zero, signaling non-invertibility, if
aje ¥
13 =1 —
(13) (—1-

which is a point outside the physical domain. We choose ¢ such that the second term
a1e”*/az on the right hand side of (13) is real, which is consistent with ¢(¢) — .
Furthermore, we choose & such that a;e =9 is real.
Now we shift the origin of the physical domain according to
¥=2z—age ¥,
and introduce new expansion coefficients

a = alel(“"_‘s), To = age'2e=9)
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The choices of § and ¢ ensure that @, and a@; are both real. This brings the local
structure of the mapping to the standard form

(14) F= (¢~ 1) + @~ 1%+ 0(( ~ 1)

The generic case for the boundary of the domain (which physically corresponds to
the free surface) to become non-invertible is that @; — 0 as t — to, while @y remains
bounded. In this simplest case (14) corresponds to a cusp. Namely, we parameterize
the free surface by putting

C . eig
and expand for small values of §:

3

(— %) +i(6— g—;) Flot
3

0
(¢C—1)2=-6>- i+ Lo.t.

€1

3
(¢—1)3=-0%+ 594 + Lo.t.

With 2,y being the real and imaginary parts of Z, and remembering that a; is a small
parameter of order 62, we find

z=—a0?, y=a10—a0°/2,

which is the structure of the cusp (1).
The higher order case (3) is obtained if @y also tends to zero, so that we have to
expand further:

26 = ag + a1€(C — 1) + a2e™¥ (¢ — 1) + a3 (¢ — 1)* + O((¢ — 1)H).

Similar to the previous procedure, we choose ¢ and ¢ to make a; = a1e4®=9 and
a5 = azet®¢—9) real, and define Gy = a2€"2979) = gop +asri. Assuming that @y is of
the same order as @y, we can write at leading order

3as

9 94, y2519—6393.

51 ) 2
r=|—-—=—ar)f+
(- % —aem
After re-parameterization § — Ag and redefinition according to

a 353 51 AE ( ‘dl )
= — = —_— = —-——a
4~ 25 2 2 g R

we arrive at

AE
1 ==
(15) T =3

For any finite ), (15) is of the general form (3), up to a rescaling of . In the
special case a = b, and assuming A = 1 without loss of generality, we obtain the
swallowtail (4). If A = 0, we obtain a 3-singularity with a selfsimilar profile that is
asymmetric near the origin.

b
62 + 394, y=eb+ 6%
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3. The eikonal equation

3.1. Hamilton-Jacobi equation. — We consider the simplest case of wave prop-
agation in a homogeneous medium, so the eikonal equation becomes V,, = 1: the
normal velocity of the wave front is constant everywhere. We will only consider wave
propagation in two dimensions, so the wave front is a curve. A straightforward way to
solve the eikonal equation is to consider y = h(z,t) so that one can write the equation
in the form

(16) % =V1+hr2, h(z,0) = h(z),

which expresses the condition of constant normal velocity. The prime denotes the
derivative with respect to the spatial variable x.

To solve (16), we pass to the “particle” description; the equation for the wave front
(16) is the Hamilton-Jacobi equation for the Hamiltonian

(17) H(z,p) = —V1+p?

where p = h;. The initial condition (o, ho(20)) yiclds a curve (z,p) in phase space,
and the trajectories will be

dv. _ OH P @7 oH

18 e o PN — 27 .
(18) dt dp V1i+p2  di ox
Thus the solution to the particle problem is
hg (o)

p
19 = const = hy(zg), T =m0 — —m—=t =Ty — —e——t.
(19) B o) 0 1+ p? ’ 1+ hiE (wo)

We can obtain an explicit solution by noting that
dh dh dxgy

Y,
dz ~ dzg dz fio o),

where from (19)
dx hi

BadE N . . S
dxo V1+ hg

Integrating the resulting expression for dh/dzg, we finally obtain
hy t

——=t, h=ho(x0)+ —.
VI+hE o) V1+h2

This is an explicit solution of (16), which has the additional advantage that it can be
continued across any singularity the wave front may encounter.

A caustic is a place where rays meet, and thus dz/dzo = 0, dy/dzg = 0. The two
conditions turn out to be equivalent, and one obtains

3
V14 hE

It is also clear that points on the caustic correspond to singularities of the wave front
[5]. The first singularity occurs at a time to corresponding to the maximum of the
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FIGURE 5. A caustic in a coffee cup. On the left, physical reality. On
the right, the evolution of the wave front, as it passes through the swal-
lowtail singularity. The caustic forms a 2/3-cusp, which corresponds to a
swallowtail in terms of the shape of the wavefront.

curvature, for which there is optimal focusing. The universal structure is obtained by
expanding hg in a series, which without loss of generality only contains even terms:

(22) ho = @122 + asxp + . . ..

The first singularity occurs for to = 1/(2a1)+. .., and an expansion leads precisely
to (7), namely
(23) z=to+ac®/3

=1/(2ay) —t' +t'0%/2 + ac*/4,
where a = 3(a? — a2)/(4a}), and o = 2a170; the scaling exponent is v = 1. After
the singularity, ¢’ < 0, (23) is a swallowtail, and the two cusp points trace out the
caustic. This corresponds to the positions o, = ++/—1t'/a, and so to leading order
the equation of the caustic is
—4%2 1
T YT T

which is a normal 2/3-cusp, see Fig. 5.

(24) To =

3.2. conformal mapping. — There is a second way of solving the eikonal equation,
closer to the methods to be used in the next sections, based in the use of a complex
representation of the front. We present it here to stress the similarities between the
different problems studied in this paper. If one identifies the points of the curve
(z(o,t),y(o,t)) as points z(o,t) = z(o,t)+ iy(o,t) in the complex plane, and the
velocity u = (u,v) as the complex number u + v, then

(25) Zr = u + .
The tangent and normal vectors have a complex representation
(26) t=2s, n=r1iz,,
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where s is the arclength parameter. Hence we can write
u-n = Re (iz,%) = —Im(z5%),

and the eikonal equation is simply _

(27) Im(zsz;) = —1,

with the constraint |zs| = 1. Equivalently, one can introduce an arbitrary parameter
o of the curve, and (27) becomes

ds
28 Im(z,7;) = ——,
(28) (o) = =
without the necessity of introducing a constraint.
We now demonstrate that (28) yields the same local solution as before, by verifying

that (23) yields, at leading ovder, a solution of (28):
2o = (t' +ac®) +i(t'o +ac®) |, 2, = —a +i(1 - 02/2)
o2
Im(z,%;) = — (1 + ?> (t' + ac?)

ds (72 ! 2 4
o V(I + 0022 4 02t + ac?)? = (1 + 7)(t +ao” + O(c%)).
a

4. Hele-Shaw flow

A Hele-Shaw cell consists of two closely spaced glass plates, partially filled with a
viscous fluid. The problem is to find the time evolution of the free interface be-
tween fluid and gas. Here we consider the case that the fluid occupies a closed
two-dimensional domain Q. Within Q, the pressure obeys Ap = 0, with boundary
conditions

(29) p=20
(30) Vo==Vp n
on the free surface 9Q2. We write z = 2 + yi and
p = Red(z)

together with the conformal mapping
(31) P=f61), €=re®,
which maps (€] = 1 onto 9Q. If we consider

b(2(€,t)) =logé  inside Q,
then condition (29) is automatically satisfied. Moreover

-Vp-n= fRe<%izs) = Re(i—fiiza = ~Re<é—£izs>,

where s is the arclength parameter. Notice that one can write for [€] = 1, using
— ,10(s,t)
§=e"®

Zg = ngs = z5§i93,
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and hence
(32) —Vp-n =6,
Since ’
Vi, = Re (7iizs) = —60sRe (7i€7¢)
we arrive, combining this with (32), at the equation
(33) Re (7iéze) = —1.
Noting that £z¢ = %2:9, we finally obtain
(34) Tm (z¢7;) = —1.

Equation (34) is identical to (27) except for the fact that the space variable is not
the arclength parameter s, but the an arbitrary parameter 6. The non-invertibility of
(&, 1) signals the appearance of a singularity.

Now we will present an exact solution of (33), using a particular (polynomial)
_ansatz for the mapping 31 (21, 20, 10, 13]. We consider the simplest case of a
quadratic:

(35) FE 1) = ar(t)E + ax(t)E?,

and show that it leads to cusped solutions. However, we expect cusp formation to
be a generic feature. The reason is that the formation of a singularity is associated
to the non-invertibility of the conformal map f(£,¢) and this is equivalent to f/(£,%)
being zero at some point & (at the time to of formation of the singularity), which
leads to a generic quadratic behavior of f(£&,tg) = bo +b2(€ —&)? near &. Other local
expansions of f(&,t) around &, of the form f(§,t0) = bo + bn(§ — &o)™ with n > 2
are also possible. They would lead to different form of cusp, but cannot be generic
since small perturbations of the initial data would produce quadratic terms.

Inserting (31),(35) into (34), we find a solution if the following system of ODEs is
verified:

(36) a1a) + 2azah = —1
(37) aiay + 2a0a; = 0.
Direct integration of the equations leads to

1 B?
(38) —al+—=A-t

2t af

1, 2 2
(39) A= 5a1(0) +a3(0) , B = a2(0)ai(0)
A singularity occurs when f fails to be invertible, that is
df ai

40 - = 20 =0 = €= ——=-1
(40) i + 2a2¢ 3 Sy
or equivalently when

B? 1 .
(41) a1—4?:0:>a1:(2B)%,a2:5(2B)§.
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From (38) one can compute the singularity time

il 3
to= A= 22B)E = La3(0) + a3(0) - 2 (202(0)a(0)}.
Now let us consider a particular solution, for instance
1
(42) a1(0) =1 5 az(O) =0
16
so that
129 | 3\4 1 1
= B=-—, to=(2 to) = =, ag(te) = -.
A= 2567 16" (4) » arlfo) = 5, azlto) = g
This implies the formation of a singularity at «(m, ) = _Zi and y(m,tg) = 0.

Local analysis leads to a1(t) = 1/2 4 a(t), where 3a2(t) ~ ty —t. Thus the scale
factor a(t) is

(43) W)~ (o —)F = 4

V3 V3

and ag(t) = 1/(16a2(t)) ~ 1/4 —a(t). Writing € = —1 + £, we deduce

1
/2.

. N
(44) F&1) = a1(t)€ + aa(t)€? ~ —1 — 2a(t) + 3a(t)€ + 152-
Since
" ; 0 52 54 o 53 s
o _ L i(0-m) _ L0y o T . S 5
1+&=—€0™ =14 (1-¢?) ~ Lt 5 =g~ +ig +0()
one has
~ N A T AR Y R T e
f(ﬁ,t)w—l—Qa(t)+3a(t)<?—I—zO—kza) -0+ 50 - 7P+ 0@,

leading to the leading order contributions (all other terms, are subdominant for small

~

values of @(t) and 6):

il

(45) x(0,t) + 1 ~ —2a(t) — 102

R
(46) y(8,1) ~ —3a(t)0 — 26",
which is the desired local solution we have been looking for.

Defining
Y o+ 1 1 0

4 ¢ = T c = — - 3 - 3
( 7) X G3/4 Y 6111/2 3\/5 © 2\/§tll/4

one obtains the cusp (5), with @ = 9v/3 and the scaling exponent v = 1/2. A
different choice of initial conditions (42) will of course lead to a different value of
the parameter a. In Figure 6 we represent the interface profiles corresponding to the
example developed above at the initial time and at the time of formation of the cusp.
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FICURE 6. The formation of a cusp in Hele-Shaw problem with suction at
the origin.

5. Potential flow

We consider the two-dimensional flow of an ideal fluid below a free surface. Inside
the fluid, the fluid velocity u = (u, v) satisfies

(48) u=Ve, ANp=0,

where ¢ is the velocity potential. The free surface is convected by the fluid velocity,
and the free surface is at constant pressure. We consider the simplest case of steady
flow, as well as no body or surface tension forces. According to Bernoulli’s equation,
the fluid speed then has to be constant on the free surface.

Exact solutions to the flow problem can be found if the fluid domain is bounded
by free surfaces and straight solid boundaries alone [3], by mapping the fluid domain
onto the upper half of the complex plane, which we denote by (. Here, we consider
only the even simpler case of only free boundaries, i.e., that of a two-dimensional fluid
drop. To this end, one introduces the complex potential w = ¢ + 1), where 1) is the
stream function. The derivative of w gives the fluid velocity:

dw i0

(49) Ezufivzqef ;

where ¢ is the particle speed.

On the fluid boundary, ¢ is constant, and this constant can be chosen to vanish.
Thus w(¢) is real on the real axis (the boundary of the fluid drop), and so dw/d(
must be real as well.

Following Hopkinson [11] we drive a fluid motion inside the drop by placing sin-
gularities inside the drop. We will consider the case of a vortex dipole and a vortex
at the same point. We have

dw  dwdz
d¢ ~ dz d¢’
where dz/d( contains no singularities in the upper ¢ plane, since the representation
of the fluid flow must be conformal. But this means that dw/d{ must have the

(50)
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same singularities as dw/dz, except that we now have the freedom to choose the
position of the two singularities and the orientation of the vortex doublet arbitrarily.
Thus if we choose the two singularities at { = 4, and the orientation of the doublet
toward the positive real axis, the potential for the doublet must locally look like
w o< 1/(¢ —4) —imIn(¢ — i). Here m is the relative strength of the vortex.

To insure that dw/d¢ also obeys the boundary condition, one has to add image
singularities at ( = —1:

(51) dw | n 1 ) < 1 1 )

— = — —im{ —— — - ).

¢ (¢—1)*  ((+1)? ¢—i (+i
Depending on the value of m, two different cases arise. For simplicity, we only consider
the case m < 1, in which

dw 21+ m)(C ~~?)

i €T @R

Where v = /(1 —m)/(1 4+ m) real.

Manifestly, dw/d( is real on the real axis, and has the right singularities at { = 1.
However, the information contained in (51) is not enough to reconstruct the mapping
2(¢) we are after. Following Kirchhoff [15] and Planck [19], we define another function

d
(53) Q:lnﬁzflanriG,

which will also be represented in the (-plane. Since ¢ is constant along the free surface,
and choosing units such that ¢ = 1, the function Q will be purely imaginary on the
real ¢ axis. To find €, we once more proceed in two steps.
First, we find the singularities of €2. From the definition,
dw dz

54 Q=—-—In— +In—,
where the second contribution is conformal in the upper half plane. This means €2
has singularities only for ¢ = i, where it behaves like Q o< 21n(¢ — ). Second, we have
to make sure that  is imaginary for real ¢, which is achieved by
¢—1

¢+t

(55) Q=2In

Now we use the fact that
dz _ dedw _ eQd_w 21 +m)(¢®—vY)
¢ dwd¢ T d¢ C+i) :

This expression can be integrated to find the transformation z(¢) between the fluid
domain and the (-plane:

(56)

e 1l i 1+~2
(57) 21+m) <+i+(c+z’)2 3(C+14)*
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FIGURE 7. On the left, we show the entire drop for m = 1/3. On the
right, a closeup of upper part of the drop for m = 0.94. The swallowtail
has opened, and there is no more self-intersection.

From the real and imaginary part of this expression, we obtain

364 — (14+97)¢% + 39?

(58) x=—(2(1+m))¢ g
4 a2\ 2 2
(59) y=(2(1+ m))6< a 3(;(<Q’Y+)§)3+ Sl

The mapping is such that ¢ = +-c0 gets mapped to the origin. A typical drop shape,
for m = 1/3, is shown in Fig. 7 (left); it exhibits two cusps. This feature is generic, in
that it exists for a continuous range of values 0.9427 > m > 0. On the right of show
a closeup of the top of the drop, close to the upper end of his range.

The origin of the double cusp lies in a swallowtail transition for m ~ 1 that occurs
at the point x = 0, y = 4/3 in real space. Namely, a local expansion of (59) gives
withm=1+¢

(60) T =2e( +4¢3/3
(61) y = 4e¢® + 4%,

where ¢ is taken as real. The same expression results if the shape of the drop valid
for m > 1is expanded locally. The corresponding swallowtail is shown in Fig. 8 using
the full solution Fig. 59. For m very close to the transition, the free surface must
self-intersect, as shown in Fig. 8 (right). However, below a value of about m = 0.9427
the self-intersection disappears.

Another exact solution of potential flow that exhibits a cusp, but in the presence
of gravity was found by Craya and Sautreaux [7, 24, 8]; liquid is layered above a
two-dimensional ridge. At the crest of the ridge, which has opening angle 2+, there
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FIGURE 8. The birth of the swallowtail, as described by (59). For m = 1
(left) one is exactly at the transition, for m = 0.98 (right) one finds a
swallowtail.

is a sink. For the special case v = 1/3 there is an exact solution, given by

dz _ . 1/3 l — l
(62) T i(2/3) ERENLE
where [ = exp(—if), —m < 6 < 7. From a local analysis we find that
32/3 5 32/3 )
(63) 33——%9 ) 3/——69 )

which is once more a 2/3 cusp. Of course this is to be expected, since gravity cannot
change the local behavior near a cusp. However it is not clear where this comes from
in terms of the swallowtail described above.

6. Porous medium equation

Another problem, closely related to the above, concerns the two-dimensional flow
of oil in a porous medium. The oil is layered above heavier water, and is withdrawn
through a sinkhole. The interface between the oil and the water is deformed, and
forms a cusp at a critical flow rate. Inside the oil domain, one has to solve Laplace’s
equation for the velocity potential, cf. (48). In the stationary case, one has the usual
condition of vanishing normal velocity on the free surface. However, from a pressure
balance which includes the hydrostatic pressure, one obtains [28, 29]:

(64) u? +v? = Ko,
where u, v are the horizontal and vertical components of the velocity, respectively.
Once more hodograph methods can be applied, but the problem can be solved only

in the critical case at which there is cusp. Namely, in the subcritical case where there
interface is smooth, v = v = 0 at the stagnation point below the sink. In the presence
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of a singularity, v = 0,v = K at the singularity, and the free surface gets mapped
onto a circular arc in the hodograph plane. The resulting interface shape is

(65) xz—i a(\/m-l—arctanh\/m)( LSup— )

cn? J g oy a—0o, a—0s

1 -
(66) yz—(lnm d

I 0‘1—l+/3)’
CT

o — 0, 1—-pB—o0s

where o parameterizes the curve and o; and o are determined from implicit equations
involving ¢ and f3.

For f = 1 the curve defined by (65),(66) develops into a cusp. A local expansion
yields

(67) a:=A/ \/1+ada=%(a+1)3/2,
—1

where A is a constant. The y-coordinate is linear in ¢ + 1, thus (67) describes the
usual 2/3 cusp. For § < 1 the interface self-intersects, at the line of symmetry, so this
appears to be the generic cusp scenario. Numerical results confirm that the curve is
smooth before the cusp forms (subcritical case), and a cusp forms in agreement with
the exact solution (65),(66).

7. Viscous flow

Here the flow is governed by the Stokes equation, which in two dimensions can be
written in terms of the stream function ¢, with v = 1), and v = —1),. The stream
function obeys the biharmonic equation A2y = 0. In a stationary state, which we
are considering, the surface of the fluid is a line with ¢ = const. On this surface, we
also have the surface stress condition

(68) Ti5Ty = YKN,

where v is surface tension and k the curvature of the interface. Once more the flow
is driven by singularities, such as a vortex dipole [14].

A complex formulation of this problem was developed by Richardson [23]. The
stream function is written as

(69) ¢ =1Im(f(2) +2zg(2)),

where f and g are analytic functions. The boundary conditions at the free surface
can be shown to be

(10 m[(£) 560+ 73] = 21, 56+ 200) =0

where 7 is the viscosity of the fluid.

In [14], the complex formulation (70) was used to calculate the following model
problem: a vortex dipole of strength « is located at a distance d below a free surface of
infinite extend. Surface tension is included in the description, but the effect of gravity
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FIGURE 9. Experimental data on the cusping of a viscous fluid, taken
from [17]. On the left, a closeup of the tip of a cusp on the surface of
a viscous fluid; the scale bar corresponds to 200 u m. On the right, the
radius of curvature of the (almost) cusp as function of capillary number.
In agreement with (80), the dependence is exponential.

is neglected. The deformation of the free surface by the viscous flow is determined by
the capillary number

QT
(71) Ca= %,

which measures the ratio of viscous forces over surface tension forces. The solution of

the problem is too involved to be presented here. The exact surface shape, in units
of d, is given by the function

cosf

= 1) =28
(72) x =acosd+ (a+ )1+si110’

(73) y=a(l+sinb).
The parameter a is determined from the equation

—a(3a+ 2)2K (m)

74 dnCa = ,
(74) 1+a+/—2a(a+1)
where
(75) :

" C2a/la+ D))+ ((a + D/(—2a))1 7
and K is the complete elliptic integral of the first kind:

/2
(76) K(m) = / .
0 1 —m2sin6

In (74) we have only reported the form of the equation for the more relevant case
Ca > 0. Asymptotic analysis of (74)-(76) reveals that for large Ca,
1

(77) a=-3+¢ em%exp{—leCa}.
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It is easy to confirm that (72) yields a cusp for a = —1/3, i.e., for Ca = oo or
vanishing surface tension. If one expands around the cusp point by putting 8 = 7w /2446,
one obtains

2¢ 5

(78) T=-30- 15
2 52

e
(79) y+3z—2=",

which is the generic cusp scenario (1). As is apparent from Fig. 3, the case e < 0 leads
to self-intersection of the free surface, which is of course not physical. The radius of
curvature of the cusp for e > 0 is given by

2
(80) R~ g exp {—32nCa},

as found from (78),(77). The exponential dependence (80) has been confirmed exper-
imentally (cf. Fig. 9).

8. Born-Infeld equation

The ideas presented here are not restricted to free surface problems. As an illustra-
tion we present a problem that appears in connection with string theory [25], but is
also of long-standing interest in the theory of non-linear waves [26]. The Born-Infeld
equation reads

(81) 2t (1 + 22) — 240 (1 — 22) = 222242

Hoppe [12] gave a general solution of the form

(82)  a'(t, )= Acos(f —g)cos(f +g), Z'(t,p)= Acos(f — g)sin(f + g)

(83) @t 9) = —sin(f —g)sin(f +g), () =sin(f —g)cos(f+9),

where f = f(¢ +t/)\) and g = g(p — t/A) are any two (smooth) functions and ¢ is
a parameter. For (82) to be a graph, the tangent vector (82) should not be vertical,

i.e., we must require that |f 4+ g| < 7/2.

The curvature of this solution is
f+g
(84) K(t, ) s —3)’
so a singularity is expected whenever f — g = 7/2. Let us assume for simplicity
that ¢(¢) = —f(—¢). T don’t expect this to be a restriction on the class of possible
singularities that can occur. Let f(¢) have the local expansion

(85) FQ) =7/4+a(C — G) = b(¢ — ) + O(¢ — G)?,
so together with the symmetry requirement we find
(86) f—g=m/2+2a(t o) — 2b(* + (t ~ ¢0)?).

The factor A can be absorbed into a.
From this expression it is clear that {p has to be identified with the singular time
to and a > 0 for the solution to be regular for t < ty. To expand around the singular
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time, we put t/ = ty — ¢t. Similarly, one must have b > 0 (otherwise f — g would be
7/2 at an earlier time), and the singularity occurs at ¢ = 0. Thus to leading order
we have

(87) ffg%w/Q—Zat’—'%ap{ f+ g = 2ap,
from which we get
(88) ¥ = 2at' +2bp?, 2 = 4aPt' o + dabp®.

Integrating this expression, using the integrability condition (83), gives
(89) v =tp+20%)3, z=1t¢*/24 cp,

where we have used a rescaling of the parameter ¢. This is of course exactly the
swallowtail (4) with v = 1.

9. Conclusions

We have presented several problems, mainly involving free surfaces or moving
fronts, that exhibit the formation of cusps in finite time or as some parameter changes.
We always find simple cusps with exponent 3/2 or the so-called swallowtail singular-
ities, where a smooth curve develops a 4/3 singularity from which two simple cusps
emerge. We have also shown that the local structure of the singularities is that of
an algebraic curve (a cubic or a quartic) that evolves in a selfsimilar manner as time
or some parameter varies, toward the formation of the singularity. The fact that 3/2
cusps develop is not accidental. Tt is closely linked to the nature of the physical prob-
lems under consideration, and the existence of mappings {rom a complex plane C to
the 2D physical space identified with C. We have shown that a family of such map-
pings parameterized with time or some other parameter can give rise to the formation
of a singularity in the form of a cusp whenever the mapping becomes non-invertible.
Generically, the holomorphic structure of the problem imposes that the singularity
is exactly of the 3/2 type. Degenerate situations can lead to cusp singularities of a
different type, the first degenerate singularity being a 4/3 cusp. A degenerate sit-
uation can become generic if, for example, the problem imposes an evolution with
symmetries that forbid the 3/2 singularity.

It remains to be shown that other problems involving potential flows and the forma-
tion of singularities can also be cast in this framework. One of them is the evolution of
vortex sheets, where a 3/2 singularity, called Moore’s singularity, develops [9]. How-
ever, there is an important difference: a simple cusp has a local profile y = +23/2 with
x>0, (orz= |y\2/3), while Moore’s singularity is y = |x|3/2 for all . Singularities
in vortex sheets are, therefore, not cusp singularities but of a weaker type that is only
noticed in the curvature. Another example is the Rayleigh-Taylor instability in the
context of ablation fronts, where a 5/4 singularity develops according to numerical
simulations [1]. Thus again it is only the curvature that blows up, but the singularity
is stronger than Moore’s.

Of course, our results are confined to 2D geometries. A question that remains
to be solved is whether these 3/2 or 4/3 singularities remain in 3D situations, even
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with axial symmetry, or if one should expect a different type of generic cusp. We
cannot rely on a holomorphic structure for the problem or the existence of conformal
mappings. Perhaps generalizations of these notions, such as those in the context of
Clifford algebras [27], could be as powerful as they are in 2D to explain generic forms
of singularities. As far as we know, this has never been explored.
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