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a b s t r a c t

We review the classification of singularities of smooth functions from the perspective of applications
in the physical sciences, restricting ourselves to functions of a real parameter t onto the plane (x, y).
Singularities arise when the derivatives of x and ywith respect to the parameter vanish. Near singularities
the curves have a universal unfolding, described by a finite number of parameters. We emphasize the
scaling properties near singularities, characterized by similarity exponents, as well as scaling functions,
which describe the shape. We discuss how singularity theory can be used to find and/or classify
singularities found in science and engineering, in particular as described by partial differential equations
(PDE’s). In the process, we point to limitations of the method, and indicate directions of future work.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction and motivation

Over the past 20 years there has been a great deal of effort
to describe and to classify singularities of partial differential
equations (PDE’s) [1–5], especially those arising in free surface
flows. Such singularities can manifest themselves by a quantity
which becomes discontinuous, as in a shock wave, or by certain
quantities becoming infinite at a point in space and time, such as
the pressure and the velocity at the point where a drop of liquid
breaks into two [6].

On the other hand, ‘‘singularity theory’’ is a well-established
and rigorous body of work in mathematics [7–11], which studies
the singularities of smooth mappings. In the simplest case that
the mapping is real-valued (then the mapping is often called a
function), this is known as catastrophe theory. Singularities arise
if the gradient (and/or higher derivatives) vanish; in the case of
higher dimensional mappings singularities are points where the
mapping is not invertible: at this point the Jacobian is no longer of
the highest rank. If the mapping is the parametric representation
of a curve or of a surface, at such points the curvature becomes
infinite.

Yet applications of singularity or catastrophe theory to PDE’s
has until recently beenmore or less limited to optical caustics [12–
15], which arise from singularities of the eikonal equation, which
describes the motion of a wave front. There has also been some
work applying similar ideas to shock waves [16–19], but there
has been little effort to connect the phenomenon directly to the
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underlying PDE. Recently, we have pointed out that there is a
wider connection between physical singularities and singularities
of smooth mappings [20], with applications for example to the
theory of viscous flow.

Singularities of smooth mappings can be understood as arising
from geometry alone: the underlying function is smooth, but if a
surface is seen under a certain angle, or a space curve is projected
onto a plane, the resulting image may be singular. For example,
the projection of the same space curve may be one-to-one from
one direction, but self-intersecting from another. As we will see
below, at the boundary between the two the curve forms a cusp
singularity [20]. This is exactly the same singularity [21,20] that is
produced on the surface of a viscous liquid forced from inside the
fluid. From the geometrical perspective it seems natural that wave
propagation, which comprises caustics and shockwaves, should be
describable by singularity theory, since they involve deformation
of the original wave front along characteristics. It is remarkable
that similar ideas can be applied to viscous motion as well.

Note that the singularity theory of smooth maps is a local
theory. As a result, it cannot predict actual values of parameters
where singularity occurs. The functions and maps describing
singularities and their unfoldings are determined up to smooth
invertible transformations. These expressions and equations
determine the scaled shape of surfaces and fronts but cannot
predict position and orientation of a particular figure. But apart
of that, it enables us to conduct local analysis by predicting the
local geometry and topological bifurcations of surfaces without
explicit calculations of underlying partial differential equations.
This makes it a new way to capture relations and similarities
between very different physical phenomena.

http://dx.doi.org/10.1016/j.euromechflu.2017.02.005
0997-7546/© 2017 Elsevier Masson SAS. All rights reserved.
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Fig. 1. The breakup of a drop of water (small viscosity) in a very viscous environment [22]. Between C and D, the water drop breaks and separates from the nozzle.

In this review, we begin by outlining the basis of singularity
theory for general mappings f : Rn ! Rp, but then focus on the
special case of n = 1 and p = 2, which corresponds to a parametric
representation of a plane curve. Within the framework of plane
curves (x(t), y(t)), we illustrate how to classify the different
fundamental singularities, known as ‘‘germs’’. The goal is to find
all singularities up to a certain order which are not equivalent to
one another, i.e. which cannot be transformed into one another by
smooth transformations. In each casewe investigatewhat happens
if the germ is deformed locally in a smooth manner. Physically,
this may happen in an infinity of different ways; however, each
germ only has a finite number of parameters which determine
the deformations completely, up to smooth transformations. The
representation of such aminimal description is called a ‘‘miniversal
unfolding’’. In the Appendix we present the complete catalogue of
singularities and unfoldings up to fourth order.

The neighborhood of singularities is often scale-invariant, so
we place particular emphasis on the self-similar properties of
unfoldings. This reduces the number of parameters further, in
that unfoldings only differ by a scale transformation. With the
scale transformation is associated a set of similarity exponents
and scaling functions. Singularities of higher order may exhibit
different types of scaling behavior in different regions of parameter
space.

In the section on applications, we illustrate how the theory
can be applied to singular solutions of PDE’s. We begin with the
simplest, and most thoroughly developed applications which use
catastrophe theory. In that case the curve in question is defined
implicitly by a scalar-valued ‘‘action’’ or ‘‘potential’’. The curve
is either the front of a wave which propagates in the plane, or
the profile of a hydrodynamic variable in one dimension. The
description using the action variable reveals the close analogy
between caustics (singularities of a wave front) and shocks
(discontinuities in a hydrodynamic field variable).

For the remainder of the applications,we consider curveswhich
can in general not be written in terms of a potential; physically
the curves are most often free surfaces, such as the surface
bounding a liquid. We present examples where the equations of
fluid mechanics can be solved in terms of a (conformal) mapping,
which usually guarantees the existence of a smooth mapping
of the interface. Sometimes the solution to the mapping can be
given explicitly, which can then be analyzed using the catalogue
given above, which serves as a guide to the physical phenomena
which can occur. If (as it is often the case) the solution to the
mapping cannot be given explicitly, no predictions can be made,
but singularity theory can still tell us what possibilities to look for.
We also give cautionary examples where in spite of the existence
of amapping, singularities are not described by the theory, because
the singularity arises at points where the mapping fails to be
smooth.

Let us illustrate the approach with a physical example: the
breakup of a drop of water inside another fluid of much larger

viscosity, as shown in Fig. 1. In the limit that the viscosity of the
drop can be neglected, the equation for the local drop radius h(x, t)
(here x is the position along the axis and t time) becomes very
simple [22,5], if one considers themotion close to pinch-off, where
h goes to zero:

@h
@t

= � �

2⌘
. (1)

Here � is the surface tension, and ⌘ the viscosity of the outer fluid.
There is no spatial derivative (the equation is not a PDE, as one
would expect) and is trivial to solve:

h(x, t) = h0(x) � � t
2⌘

, (2)

where h0(x) is the initial profile at t = 0.
As illustrated in Fig. 2, pinch-off occurs when h(x, t) first

touches the x-axis, which will be at the minimum of h0(x),
determined by h0

0(x0) = 0. Our task is thus to classify theminimaof
the arbitrary smooth function h0(x); this is of course an elementary
problem, but serves our purpose of illustrating the key concepts
presented in this review. At the minimum, the mapping x ! h0
does not have its highest rank (which is 1), and hence represents
a singularity (or critical point). Here and in the following, the rank
of a mapping at a point x is defined to be the rank of its Jacobian
matrix at that point. The simplest local behavior satisfying h0

0 = 0
is

h0 = x2, (3)

which is the germ of the singularity; by a shift of the coordinate
system, we can assume that the minimum is at x = 0. We now
ask what happens to the singularity when the profile is perturbed
slightly (as it is inevitable in a physical situation). This perturbation
can happen in infinitelymanyways; expanding into a power series,
the perturbed profile becomes

h0 = x2 + ✏1x + ✏3x3 + · · · . (4)

We only investigate the neighborhood of the singularity, assuming
theperturbation to be small, i.e. only terms linear in theparameters
✏i are considered. The coefficient of the quadratic term (the germ)
can always be normalized to unity, so it was omitted. We would
like to know if there is a qualitative change in the behavior near the
minimum, which cannot be undone by a smooth transformation.
First, all perturbations of higher order than the germ can be
removed by the transformation

x̃2 = x2 + ✏3x3 + · · ·
called a right transformation, because it affects the independent
variable. It can be written as

x̃ = �(x) ⌘ x (1 + ✏3x + · · ·)1/2 , (5)
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Fig. 2. A simple model for the experimental sequence of drop pinch-off shown in
Fig. 1. The sequence on the right shows the neighborhood of the pinch-off region,
with the fluid shown as shaded; at t 0 ⌘ t0 � t = 0, the radius goes to zero. In the
sequence on the left it is shown how the dynamics are generated by a simple shift
of the profile at constant rate, as given by (2).

where �(x) is locally smooth and invertible, a so-called diffeomor-
phism. As a result, we obtain to linear order h0 = x̃2 + ✏1x̃.

In a second step, the coefficient ✏1 can be eliminated as well by
the shift x̃ ! x̃�✏1/2, leading to the universal form h0 = x̃2 of the
quadratic germ. We say the quadratic germ is structurally stable,
since it remains unchanged under a perturbation (up to smooth
transformations).

Beforewegoon,wepoint out that the germ (3) is also associated
with certain scaling properties near the singularity. In fact, the
Laplace pressure diverges for h ! 0, hence in spite of its apparent
simplicity pinch-off is a very violent event. We write the profile in
the self-similar form [5]

h(x, t) = t 0↵ f
⇣ x
t 0�

⌘
, (6)

where t 0 = t0 � t is the time distance to the singularity. From
(2) and the above analysis we conclude that the time-dependent
profile can be written

h(x, t) = �

2⌘
�
t 0 + ax2

� ⌘ �

2⌘
t 0f (⇠), ⇠ = x

t 01/2
, (7)

where the similarity profile is f (⇠) = 1 + a⇠ 2. Thus the quadratic
germ is associated with scaling exponents ↵ = 1 and � = 1/2.

The germ of next higher order is x3, but only h0 = x4
corresponds to aminimum (known as the A3 catastrophe [23]). The

scaling exponents of the germ are now ↵ = 1, � = 1/4. Again, one
can consider perturbations of any order ✏ixi, which for i > 5 can be
removed by a transformation analogous to (5). A shift x ! x�✏3/4
then removes the term ✏3x3. However, the remaining two terms
cannot be removed by a smooth transformation [23], and we are
left with the miniversal unfolding:

h0 = x4 + ✏1x + ✏2x2. (8)

This describes theneighborhoodof the singularitywith aminimum
number of parameters (again, up to smooth transformations).
This minimum number is also known as the codimension, and
so cod(A3) = 2. Clearly, this higher order singularity is no
longer stable: As soon as ✏1 or ✏2 are non-zero, the order of the
minimum is quadratic, and one returns to (3), as illustrated in Fig. 3.
Physically, this means that even if one starts from a profile with
quartic minimum, small perturbations will drive the dynamics
away from the corresponding singular behavior, and insteadpinch-
off is described by (7). A stability analysis of the quartic case reveals
that the corresponding similarity solution is unstable [5].

Of course, one should not jump to the conclusion that all
singularities can be classified in this way. For the approach to bear
fruit, one needs to describe the solution in terms of a smooth
mapping, which in general is not guaranteed, or may even be
the exception. Take for example a problem superficially similar
to that shown in Fig. 1, a drop of very viscous liquid breaking
up inside air (whose effect can be neglected) [24,25,5]. Now the
viscous flow is inside the drop, rather than in the exterior. We do
not give the solution here, but mention only that in Lagrangian
coordinates (following trajectories of the flow), the equation of
motion can in fact be written in a way similar to (1), but with an
additional, nonlocal term,whose value depends on an integral over
the whole profile. The solution near pinch-off can once more be
written in the self-similar form (6), with exponent ↵ = 1. For
the axial exponent � one also obtains a sequence �i, whose values
depend on the order of the minimum of the profile; only the first
of these exponents corresponds to a stable solution [26]. However,
the �i are now solutions of a transcendental equation, and assume
irrational values. It is clear that such values cannot result from an
expansion in power laws, which only yield rational values.

The example discussed so far only considers curves which can
be represented as a graph. However, for most of this review we
will consider general smooth curves, which can be represented
in parametric form (x(t), y(t)). In particular, this includes the
case of self intersection, which leads to a particular type of cusp
singularity, an example of which is shown in Fig. 4. As a disk is
rolling on a flat surface, we are looking at the trajectory produced

Fig. 3. The bifurcation of the A3 catastrophe, illustrated for "2 = 0. When "1 = 0 the minimum point at the origin is quartic, while for "1 6= 0 the order of the minimum
becomes quadratic.
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Fig. 4. A trochoid is the trajectory of a point fixed on (or external to) a rolling disk,
shown here for ✏ < 0.

by a point attached to the disk, where ✏ is the distance from the
perimeter.

Thus the trajectory is a superposition of the translation and the
rotation of the rolling disk, leading to:

x = ' � (1 � ✏) sin', y = 1 � (1 � ✏) cos'. (9)

Expanding about ' = 0 for finite ✏ we obtain

x = ✏' + (1 � ✏)'3/6 + O('5),

y = ✏ + (1 � ✏)'2/2 + O('4),

the first equation of which suggests '2 / ✏. Expanding
consistently, we obtain

x = ✏' + '3/6, y = ✏ + '2/2. (10)

In Fig. 4 the case ✏ < 0 is shown, for which the trajectory has a
self-intersection; for ✏ > 0 there is no intersection. In the critical
case ✏ = 0 a cusp appears at ' = 0, where x' = y' = 0,
i.e. the mapping is non-invertible; the cusp has a characteristic
2/3 power law exponent, see Fig. 5. The unfolding (10) describes
how a small perturbation transforms the cusp into a regular curve.
The general theory described below shows that the miniversal
unfolding contains a single parameter only, so (10) captures all
possible shapes up to smooth perturbations. For example,we could
have considered themuchmore general problem of a disk which is
not perfectly circular, andwhose shape is described by any number
of parameters. The above result implies that this does not lead to
shapes which are any more general than (10), but that all shapes
close to a cusp are described by this form.

2. General theory

We begin with a description of the general theory for arbitrary
mappings, introducing only the key definitions. All the actual
development of the theory will concern plane curves only. We
have seen that a smooth mapping (which is C1, differentiable
infinitely many times) f : Rn ! Rp is able to describe singular
behavior. By a singularity we mean that at a point in Rn (which
we can take as the origin), the Jacobi matrix Jf (0) no longer has
full rank, i.e. rk0(f ) < min(n, p). In the case of a plane curve
x(') this means that x0(0) = y0(0) = 0. Otherwise (if f were not
singular) we can introduce a change of coordinates which turns f
into a trivial map (which has nothing singular about it). A change
of coordinates means that there are smooth, invertible maps (or
diffeomorphisms) � : Rn ! Rn and  : Rp ! Rp such that the
function g : Rn ! Rp, defined by

g =  � f � ��1, (11)

is the representation of f in the new coordinate system.
Now let f : Rn ! Rp be a smooth map near a regular

(nonsingular) point. Then if n � p the rank of the Jacobian matrix
of the map near the point is p and the function f is called a
submersion. In this case there is a coordinate transformation (11)
such that [27]

g(x1, . . . , xp, xp+1, . . . , xn) = (x1, . . . , xp),

i.e. g becomes a projection onto the lower dimensional space. If
on the other hand n < p, the rank of the map near a singular point

equals n (such a function f is called an immersion) and a coordinate
transformation will produce

g(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0),

i.e. g is the identity on Rn. For example, any nonsingular plane
curve can be written as x(') = ', y(') = 0, after the
transformation.

We now apply the same idea to functions f which are singular,
i.e. rk0(f ) < min(n, p), aiming to classify maps up to smooth,
invertible deformations as described by (11). We call two maps
f , g related through (11) left–right, or A-equivalent. The map �
describes a right transformation,  the left transformation. From
now on, we will refer to a given function only as a representation
of an equivalence class of the transformation.

Another crucial concept is to ask how f behaves under small
perturbations. Clearly, if f is not singular, it will still be non-
singular if a small perturbation has been applied to it; such a
function is called stable. If on the other hand f is singular, a typical
perturbation will remove the singularity. Thus the character of
a singularity and the behavior of a function under perturbations
are intimately connected. The ways in which a function may be
perturbed in some sense characterizes the singularity.

To describe perturbations to a (singular) function f : Rn !
Rp more formally, we introduce the family of smooth mappings
F : Rn ⇥ Rd ! Rp such that F(x,u = 0) = f (x).
Then f is called the singularity germ, and for any value u =
(u1, . . . , ud) of the control parameters, x ! F(x,u) is called an
unfolding of the singularity. In a typical physical situation, there is
an arbitrary number ofways inwhich the system can be perturbed,
so d may be any number. However, two different unfoldings will
in general be equivalent; the minimum number of parameters
needed to describe all possible unfoldings of a singularity is
called the codimension: cod(f ). A family of functions with this
minimumnumber of parameters is called theminiversal unfolding.
In perturbing the system, u will be considered infinitesimally
small, i.e. we consider only terms linear in ui, and quadratic terms
will be dropped.

The codimension depends on the type of singularity, and will
be greater if higher derivatives of f vanish; more precisely, f has
a singularity of type Sk if rk(f ) = min(n, p) � k, where k is called
the deficiency of the singularity; the deficiency of a regular point
is 0. The deformation of a singularity germ around the bifurcation
center u = 0 produces an unfolding such that the singularity
is either completely removed or the deficiency is reduced. The
variations of control parameters in an unfolding determine all
possible topologies and bifurcations of the family ofmaps and their
corresponding shapes.

To determine the pointswhere the unfolding changes character,
we have to determine the set of points where the mapping x !
F(x,u) (at fixed value of the control parameters u) is singular. If
we define by rkx,u(JF) the rank of the Jacobian of this mapping, the
singular set of the map is defined as:

⌃F = {(x,u) 2 Rn ⇥ Rd | rkx,u(JF) < min(n, p)}. (12)

In (10), ⌃F consists of the single point (0, 0); namely, for ✏ =
0 (d = 1, u = u1 = ✏) the curve becomes singular at ' = 0 to
form a cusp. At this value of the control parameter ✏, the topology
changes; the set consisting of the single point ✏ = 0 is called
the bifurcation set. More generally, the bifurcation set (sometimes
referred to as the discriminant) is defined as the projection of the
singular set onto control space:

�F = ⇡F (⌃F) = {u 2 Rd | for such x 2 Rn that (x,u) 2 ⌃F}.
(13)

If a set of parameters u = u0 does not belong to the discriminant
(u 62 �F ), then there exists a neighborhood of u0 such that the
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Fig. 5. The cusp (t2, t3); zooming into the tip, the cusp looks narrower, as seen on the right.

number and character of singular points of mappings F(x,u) is
same as for F(x,u0). Hence �F divides the control space into
connected regions where number of singular points is constant.
Returning to the example of the cusp singularity, the discriminant
is the set ✏ = 0,which divides the control space into the area ✏ < 0
with self-intersecting plane curves and ✏ > 0 with regular non-
intersecting curves. The two areas are connected at ✏ = 0 where
the curve exhibits the cusp singularity.

3. Singularities of plane curves

We now apply the above ideas to the special case of plane
curves [28–30], (n = 1 and p = 2), defined by two smooth
functions x(t), y(t). A singularity arises if x0(0) = y0(0) = 0. Our
aim is to classify different types of singularities of plane curves,
and to calculate their miniversal unfoldings. All functions are
considered up to smooth transformations (A-equivalence) only.

A first important observation is that any smooth mapping is A-
equivalent to a polynomial [28], so we can write

x =
1X

i=m

aiti, y =
1X

i=n

bit i. (14)

Without loss of generality, we can assume that m < n, since for
m = n the left transformation ỹ = b1x � a1y will eliminate
the leading term in the expansion of y. The case m > n can be
reduced to the former by exchanging the role of x and y, which is a
left transformation. The integer m is called the multiplicity of the
singularity. In a second step, we use the right transformation

amt̃m = amtm + am+1tm+1 + · · · (15)

to obtain x = t̃m. Writing

t̃ = t (1 + am+1t/am + · · ·)1/m = t + am+1/(mam)t2 + · · ·
it is clear that this is a smooth and invertible transformation, and
thus (14) is A-equivalent to

x(t) = tm, y(t) =
X

i�n

cit i, where n > m. (16)

Clearly, we can assume that m � 2, otherwise x0(0) 6= 0. A
complete classification exists for germs of simple singularities,
i.e. singularities with multiplicity m  4, which is reported in
Appendix B. In the case of simple singularities it can be assumed
that the coefficients ci are either 0 or unity, indicating whether a
certain power is present. In general, a germ of the form (tm, c1tn +

c2tp) can be reduced to such simple form by applying the right
transformation

t 0 !
✓
c1
c2

◆ 1
p�n

t,

followed by rescaling of x and y by the factors (c1/c2)m/(p�n) and
(cp1/c

n
2 )

1/(p�n), respectively, which is another right transformation.
However, for singularities of higher order the prefactor cannot

necessarily be normalized: in this so-called modular case [8] two
singularities with two different non-zero values of ci will not be
A-equivalent.

A complete classification for germs of arbitrary order does
not exist. To bring out the basic principles of a classification, we
begin the simplest but also most common (and probably most
important) case of each component being described by a single
power lawexponent:monomial germs. However, the structure of a
singularity can be affected considerably by the presence of powers
of higher order, which cannot be eliminated. To illustrate this we
will also consider the case of a second monomial.

3.1. Monomial germs

Monomial germs are those whose components consist of a
single power:

(tm, tn), hcf(m, n) = 1. (17)

We can assume that the integersm, ndonot have a common factor,
j, because if they had, we could define t̃ = t j. The pair (m, n)
are called the Puiseux exponents �0 = m and �1 = n of the
singularity, which are introducedmore generally in Appendix A. As
there is only a single Puiseux exponent in the second component,
the so-called genus is g = 1. This is the simplest case of the
Puiseux sequence of characteristic exponents, which is calculated
as in (A.1) below, and is defined for any singularity. Two simple
examples ofmonomial germs, to be encountered frequently below,
are the cusp germ (t2, t3), which was shown in Fig. 5, and the
‘‘swallowtail’’ germ (t3, t4).

3.2. Unfoldings

We are now in a position to calculate the miniversal unfoldings
of monomial singularities, and thus the codimension. The most
general unfolding is
 

tm +
X

l

✏lt l, tn +
X

l

µlt l
!

. (18)
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In the theory of unfoldings, only infinitesimal perturbations are
considered, i.e. only terms linear in ✏i, µi. In a first step, we can
eliminate all terms ✏i, i � m, using the right transformation (15)
as before.

Next we consider the left transformations

x̃ = x, ỹ = y � ✏xiyj = y � ✏t im+jn + O(✏2). (19)

Then if l = im+ jn, the choice ✏ = µl eliminates the corresponding
term; the elements l = im + jn form a semigroup S(f ), generated
by (m, n). For example, if the singularity f is the monomial germ
(m, n) = (3, 4), we have S(f ) ⌘ h3, 4i = {3, 4, 6, 7, 8, . . .}.
Integers not contained in S(f ) form the set of gapsG, which here are
G = {1, 2, 5}; the smallest integer in S(f ), abovewhich there are no
gaps is called the conductor c (here c = 6). Clearly, all coefficients
µl corresponding to a power l in G cannot be eliminated by the
transformation (19).

In a third step, some powers in the series expansion of x(t) as
well as of y(t) can be eliminated by considering an infinitesimal
shift of t . Clearly, this shift points in the direction tangent to the
curve, and hence one speaks of generating the tangent space. In
particular, we consider the infinitesimal right transformation t̃ =
t � ✏(t), which generates

x̃ = x(t̃ + ✏) = x(t̃) + x0✏(t) + O(✏2),

ỹ = y(t̃) + y0✏(t) + O(✏2).
(20)

Hence x̃ = x+mtm�1✏, which means that all ✏i with i � m�1 can
be eliminated.

To eliminate terms from the expansion of y(t) without
interfering with x(t), we need to generate a tangent space (0, wy).
To this end, we consider the general transformation

wx =
X

i,j

aijxiyj + x0✏(t), wy =
X

i,j

bijxiyj + y0x0✏(t), (21)

and demand that wx = 0. In the case of the germ (tm, tn), this
condition leads to

✏(t) = �aij
m

tim+jn�m+1.

Since we are considering terms to linear order only, we can
eliminate each term separately. We obtain

wy =
⇣
bij � aij

n
m

tn�m
⌘
t im+jn, (22)

so in addition to the semigroup we can eliminate all powers of the
form

t im+jn+n�m, i + j > 0, i, j � 0. (23)

To summarize, the unfolding of a monomial germ contains at most
the terms
 

tm +
m�2X

l=1

✏lt l, tn +
n�2X

l=1

µlt l +
c�1X

l=n+1

µlt l
!

, (24)

where c is the conductor. Of course, c � 1 is the upper limit
for powers of the unfolding, and the highest power may often
be smaller than n. In our example of the swallowtail singularity
germ (t3, t4) (denoted E6 in the more formal classification of
Appendix B), choosing i = 0 and j = 1 in (23) yields 1+im+jn = 5,
which eliminates 5 from the set of gaps G, and the remaining gaps
are 1 and 2. In conclusion, the miniversal unfolding is

(t3 + ✏1t, t4 + µ1t + µ2t2),

and thus cod(f ) = 3.

This concludes the construction of the unfolding of monomial
germs. As for the codimension, a more detailed theory permits to
derive the general formula [31]

cod(f ) = (m � 1)(n � 1)/2, (25)

which indeed yields cod = 3 for (t3, t4). Another theorem
which characterizes the codimension geometrically, and is valid
for monomial germs only, states that the codimension equals
the maximum number of double points (intersections) which are
generated with the unfolding of the singularity. This clearly is the
case for the cusp singularity shown in Fig. 4, whose unfolding
(t2, t3 + µ1t) has a self-intersection for µ1 < 0. In Fig. 9 we show
the unfolding of the E6 singularity germ (t3, t4), which exhibits
3 crossings. Another characterization of the number of crossings
states that it equals the number of gaps in the semigroup [31,28,
30].

Now we consider the unfolding of the A4 germ (t2, t5), to
be discussed in more detail below. The semigroup is S(f ) =
{2, 4, 5, . . .}, with gaps G = {1, 3}. Using a tangent space
transformation, all ✏l can be eliminated from x(t); in addition, the
wy tangent space (22) gives n�m+ im+ jn > 3, and thus does not
yield any additional elimination. Thus the miniversal unfolding is

(t2, t5 + µ1t + µ3t3), (26)

with cod = (2 � 1)(5 � 1)/2 = 2, which also equals the number
of gaps.

To show that the unfolding may contain powers greater than n,
we consider the germ
�
tm, tn

� ⌘ �
t4, t5

�
.

Eliminating all terms of the semigroup, the unfolding is
�
t4 + ✏1t + ✏2t2, t5 + µ1t + µ2t2 + µ3t3 + µ6t6

+ µ7t7 + µ11t11
�
.

However, using the additional powers (23), where n � m = 1, we
can also eliminate the powers 6 = 5+ 1 and 11 = 10+ 1, but not
7, since 6 2 G. Hence the miniversal unfolding finally becomes
�
t4 + ✏1t + ✏2t2, t5 + µ1t + µ2t2 + µ3t3 + µ7t7

�
(27)

and cod = 6, which agrees with (25). Here t7 is a power greater
than that of the germ tn, corresponding to the second sum in the
y-component of (24).

3.3. A second monomial

We now consider the germ

(tm, tn ± tp), (28)

with p > n. Clearly, the prefactors can still be normalized to unity,
rescaling both x, y and t; however if n � p is even, germs with
two different signs are not equivalent. Indeed, the germ with a
+ sign corresponds to a curve without a self-crossing, the other
germ crosses itself. Two different cases need to be considered. In
the first case, hcf(m, n) = 1, in which case the Puiseux exponents
are the same as in the monomial case, and the genus is once more
g = 1. The exponent p must be such that (28) is not equivalent
to the corresponding monomial germ (17); in this case p is called
the Zariski exponent. Apart from the Puiseux exponents, the Zariski
exponent (or Zariski invariant) is an invariant of the representation
(28) under all possible transformations.

The Zariski exponent cannot be in the semigroup Sf = hm, ni,
otherwise a left transformation of the type

x̃ = x, ỹ = y � xiyj,
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analogous to (19), would be able to eliminate the extra term tp.
However, there exists a larger class of transformations capable of
eliminating tp, as the example of the germ
�
t3, t4 + t5

�
(29)

shows. Aswehave seen above, t5 lies in the set of gapsG = {1, 2, 5}
of the semigroup. However, amore general transformation permits
to eliminate t5: first, we consider the left transformation

x̃ = x + ↵y, ỹ = y,

followed by the right transformation

t̃3 = t3 + ↵(t4 + t5),

where ↵ is a real parameter to be determined. Both transforma-
tions are invertible, and from the second one obtains t = t̃�↵t̃2/3,
so that

ỹ = t4 + t5 = t̃4 +
✓
1 � 4↵

3

◆
t̃5 + O(t̃6).

Thus if we choose ↵ = 3/4, the term of order t̃5 vanishes, and (29)
transforms to
�
t̃3, t̃4 + O(t̃6)

�
.

Since the terms of order t̃6 can be eliminated successively, this
implies that (29) is indeed equivalent to (t3, t4).

In a more systematic fashion, one can show [32–36] that tp
cannot be eliminated if and only if p can be represented in the form

p = i1n � i0m, 2  i0, 2  i1 < n � 1, (30)

and both p, p + m 2 G. In the example (29), T 5 is not a Zariski
exponent since 5 + m = 9 62 G, and it thus can be eliminated, as
we have shown. On the other hand, t7 in
�
t4, t5 + t7

�
(31)

is a Zariski exponent, since the gaps are G = {1, 2, 3, 6, 7, 11}, so
that 7, 7+4 2 G. In addition, 7 can be represented in the form (30)
with i1 = 3 and i0 = 2, which satisfies all the conditions. Thus (31)
is not equivalent to (t4, t5), and represents a new germ.

The second case which arises for germs of the form (28) is that
of hcf (m, n) > 1, but inwhich casewemust have hcf (m, n, p) = 1,
otherwise the germwould be trivially reducible by substituting the
common factor of all the exponents. The Puiseux exponents are
now �0 = m, �1 = n, and �2 = p, and the genus of the germ
is 2. Since the Puiseux exponents are invariants, in this case (28)
is not reducible to any other (monomial) germ. This completes the
classification of germs of the form (28).

3.3.1. Unfoldings for two monomials
Theunfolding of germs of the type (28) clearly demonstrates the

difference between germs with two terms and monomial germs.
Essentially, the extra power means that more unfolding terms
can be eliminated, and so the codimension decreases. To find
the unfolding for more complicated germ, we follow the same
procedure as for the monomial germ in constructing the tangent
directions (21).

To illustrate that, we consider the germ (t4, t5 + t7). From the
condition wx = 0 one finds (omitting the sum and a non-essential
prefactor)

✏(t) = �aijt4i�3(t5 + t7)j,

so that wy is of the form

wy = ⇥
bij � (5t + 7t3)aij

⇤
t4i(t5 + t7)j.

By choosing bij, we can eliminate all powers in the semi-
groups h4, 5i = (0, 4, 5, 8, 9, 10, 12 . . .) and h4, 7i =

(0, 4, 7, 8, 11, 12 . . .), and h5, 7i = (0, 5, 7, 10, 14, . . .), which
leaves t6 among the powers greater than 4 which cannot be elimi-
nated. However, using the leading power in front of aij, we can gen-
erate terms of the form 5t ⇥ t4it5j which produces t6 if we choose
i = 0 and j = 1. Thus the unfolding is
�
t4 + ✏1t + ✏2t2, t5 + t7 + µ1t + µ2t2 + µ3t3

�
, (32)

to be compared to that of the corresponding monomial germ (27).
The codimension is only 5 instead of 6, since the extra power
can be used to eliminate the unfolding term t7. The number of
crossings the unfolding (32) produces remains to be 6, since it only
depends on the number of gaps, which is the same in both cases.
The unfolding of genus-two germs (28), for which hcf(m, n) >
1, is analyzed along similar lines. For example, the unfolding of
(t4, t6 + t7) is
�
t4 + ✏1t + ✏2t2, t6 + t7 + µ1t + µ2t2 + µ3t3 + µ5t5

�
,

and so the codimension is 6.

4. Bifurcations and scaling

The unfolding of a singularity describes the local behavior
near the point of highest symmetry. In particular, we focus on
the self-similar properties of families of unfoldings, which occur
near bifurcation points. As we have seen, the total number of
parameters is determined by the codimension, calculated from
(25) in the most common case of monomial germs. A self-similar
description reduces the number of parameters, and describes the
geometry in terms of universal scaling functions. The behavior of
the curve under a rescaling is determined by a set of characteristic
scaling exponents. The geometry is characterized to a significant
extend by the number of double points (self-crossings) �f , given by
(A.6).

At the bifurcation center, where all the unfolding parameters
are zero, the scaling of the singularity is determined by the
leading monomial terms tm and tn; the structure of the unfolding
determines the shape of the curve or similarity function. In
addition, there are other places in parameter space where
bifurcations occur, determined by the condition that the curve
becomes singular. In the notation of Section 2, for a plane curve we
have n = 1 and p = 2, so the condition for a curve to be singular
reduces to ẋ = ẏ = 0. For example, consider the unfolding of the
A4 singularity (in the classification of Appendix B):

F : x = t2

2
, y = t5

5
+ µ3

3
t3 + µ1t, (33)

so the codimension is two. The complete diagram of unfoldings is
illustrated in Fig. 6, to be derived in more detail below. From ẋ = 0
we have t = 0, so that ẏ = 0 leads toµ1 = 0, whileµ3 is arbitrary.
The line of critical points µ1 = 0 corresponds to the formation of
a 3/2 cusp at the tip of the curve. We will come back to a more
detailed analysis below.

4.1. Scaling of curves near bifurcations

We begin with an analysis of monomial germs, whose
unfoldings have the structure given by (18). In the miniversal
unfolding, the two sums contain a total of (m� 1)(n� 1)/2 terms,
corresponding to the codimension. The sum in the x-component
runs from l = 1 to l = m� 2, the sum in y-component depends on
the gaps of the semigroup, and thus can run up c � 1 only, where
c is the conductor.

If we take ✏ as a typical scale of the curve in the x-direction,
we define t = ✏1/m� , where � parameterizes the rescaled profile.
To determine the scaling exponent ↵ of y = ✏↵Y (� ), we impose a
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Fig. 6. Bifurcation diagram of the unfolding of the A4 singularity (33). The
bifurcation center µ1 = µ2 = 0 corresponds to a 5/2-cusp; for the critical case
µ1 = 0 a 3/2-cusp singularity is formed at the tip, with the curve self-intersecting
for µ3 > 0. In the remaining four quadrants, for µ3 / |µ1|1/2 the curve forms a
sequence of self-similar shapes. Along the line µ3 = �6

p
µ1/5, (µ1 > 0), this

sequence forms a single bubble, while for µ3 = �2
p

µ1, (µ1 > 0), a channel with
vertical tangents is formed. For µ3 < �6

p
µ1/5 the curve has two double points,

for µ1 < 0 a single double point.

matching condition to the far-field behavior [5]. Namely, we impose
that far away from the center, the curve is independent of ✏ (of the
size of the singular feature), thus ensuring that it can be matched
to an outer solution which is independent of ✏. For this to make
sense, all the powers t l with l > n in (24) must vanish, because
they would dominate the leading power of the germ. Thus we can
assume that the far-field behavior is x = tm, y = tn, and obtain
y = ✏↵�n/mx. For this to be independent of ✏ we have ↵ = n/m, so
that the self-similar form of the curve is

(x, y) = �
✏X(� ), ✏n/mY (� )

� ⌘ (✏X, ✏↵Y ) ; (34)

any rational scaling exponent ↵ may be realized by a proper choice
of the monomial germ.

To make (34) self-similar, we need X, Y to be independent of ✏,
which is achieved by the scaling

�l ⌘ ✏l✏
(l�m)/m, �l ⌘ µl✏

(l�n)/m.

Once more we see that this makes sense only if l < n, since
otherwise µl ! 1 as ✏ ! 0, which would be inconsistent with
the assumption that the unfolding is an infinitesimal perturbation
to the germ. Thus we have to put all perturbations with l > n to

zero, and the rescaled version of the unfolding becomes:

(X, Y ) =
 

�m +
m�2X

l=1

�l�
l, � n +

n�2X

l=1

�l�
l

!

. (35)

This defines a family of similarity functions, whose shape depends
on the values of the parameters �l, . . . , �l . . . .With a proper choice
of the parameter ✏, we can normalize one of the parameters to±1,
and hence the family of similarity functions is at most cod(f ) � 1-
dimensional, for each of the two possible signs. Normally one will
also require the similarity function to be a smooth curve, so that
the singular behavior is captured by the limit ✏ ! 0 alone [5].

The simplest case is the cusp singularity, which results from
the smooth deformation of a one-to-one curve (Fig. 7, left) until it
self-intersects (right). At the bifurcation point between these two
states a cusp is formed. The family of maps which describes this
phenomenon is given by the unfolding:

x = t2

2
, y = t3

3
+ µ1t, (36)

determined by a single control parameter µ1. According to the
above, (36) can be written in self-similar form as

x = ✏X, y = ✏3/2Y ,

X = � 2

2
, Y = � 3

3
+ s� ,

(37)

where ✏ = |µ1| and s = ±1 or vanishes, see Fig. 7. The singular
points are given by X 0 = � = 0, Y 0 = � 2 + s = 0, and so s = 0 is
the bifurcation set, and � = 0 corresponds to a singular cusp point,
where the curve has a 3/2 singularity. The cases s = ±1 describe
smooth similarity functions without and with self-intersection,
respectively. The singular case s = 0 re-emerges as the outer limit
� ! ±1 of the regular scaling functions s = ±1.

Another interesting topological feature is one where instead
of self-intersecting, the two sides of the curve just touch to
form a ‘‘bubble’’, as the limiting case between zero and two
intersections, see Fig. 8. The lowest order singularity to realize that
is the A4 singularity, whose unfolding is (26). Following the above
prescription, the characteristic scaling exponent is ↵ = 5/2, and
the scaling functions are

X = � 2

2
, Y = �

✓
� 4

5
+ �3

3
� 2 + s

◆
, (38)

where s 2 {0, ±1}, and which are shown in Fig. 8, where s has
the prescribed values, and �3 is allowed to vary continuously. Once
more X 0 = Y 0 = 0 yields � = 0 as the singular point, and
s = 0 corresponds to a line of bifurcation points (�3 arbitrary). For
�3 6= 0, the tip of the curve has a 3/2 cusp singularity, while the

Fig. 7. The cusp similarity function (37) for s = 1, s = 0, and s = �1, from left to right.
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Fig. 8. The bifurcation diagram of the unfolding of A4 singularity in its scaled form
(38).

far-field behavior has of course a 5/2 power law. The case �3 = 0
is the bifurcation center, for which the curve is a pure 5/2 cusp.
The cases s = ±1 describe smooth similarity functions, but whose
outer limit � ! ±1 once more corresponds to the singular case.
In the diagram of Fig. 6, they lie along curves µ3 / |µ1|1/2.

If s = �1, all similarity functions are simple loops with a
single self-intersection. For s = 1, (38) undergoes a transition from
no intersections to two intersection points, which on account of
cod(f ) = 2 is the maximum number. The critical case of a bubble
that formsnear the tip is determinedby the conditions Y = Y 0 = 0,
which leads to the simultaneous system of equations

� 4 + 5�3

3
� 2 = �5, � 4 + �3�

2 = �1,

having factored out the zero at� = 0. The solution is�3 = �6/
p
5,

while the touch point occurs at � = ±51/4. Thus the case of
a bubble being enclosed is described by the universal similarity
function

(X, Y ) =
✓

� 2

2
,
�

5

⇣
� 2 � p

5
⌘2◆

, (39)

and if the height of the bubble scales like ✏, its width is predicted
to scale like ✏5/2. In a practical situation, when observing the
enclosure of a bubble on successively smaller scales, the generic
prediction is that the bubble’s shape is described by (39), and its
size ratio scales like ✏5/2. Another critical case is the formation
of a channel with parallel sides near the tip, characterized by the
equations Y 0 = Y 00 = 0. Proceeding as before, this corresponds to
the parameter �3 = �2 and � = ±1. Thus the universal profile
for such a channel is

(X, Y ) =
✓

� 2

2
,
�

5

✓
� 4 � 10

3
� 2 + 5

◆◆
, (40)

and the shape is one of those shown in Fig. 8.
Of course, the universal bubble shape (39) is only the lowest

order of an infinite hierarchy of possible shapes. On account of
symmetry, the similarity function is expected to be of the form

(X, Y ) = �
� 2, � f (� 2)

�
,

with f (x) = (x � a)2 in the simplest case. For example, the choice
f (x) = (x � a)2(x + 1) would lead to a differently shaped bubble,
whose width would scale like ✏7/2. However, the occurrence of
such a bubble would be a non-generic situation. However, a higher
order singularity could also describe more complex geometries,

such as a sequence of n bubbles, which would be achieved by
f (x) = Q

i(x � xi)2, such that the similarity function is

(X, Y ) =
 

� 2, �
nY

i=1

(� 2 � � 2
i )2

!

. (41)

The size would scale like ✏(4n+1)/2 in this case.
The unfolding of the E6-singularity germ:

x = t3

3
+ ✏1t, y = t4

4
+ µ2

2
t2 + µ1t (42)

describes among others the ‘‘swallowtail’’ shape which appears in
the formation of caustics of wave fronts, to be discussed in much
more detail in Section 5.2, see Fig. 10 below. The scaling form of
(42) is

x = ✏X, y = ✏4/3Y ,

X = � 3

3
+ s� , Y = � 4

4
+ �2

2
� 2 + �1� .

(43)

One only needs to consider �1 > 0, since the transformation
�1 ! ��1, � ! �� only changes the sign of X , so that on obtains
a mirror image. To understand the different types of similarity
solutions, it is best to find the bifurcation points, defined by X 0 =
Y 0 = 0. If s = 0, it follows that � = 0 and thus �1 = 0. As seen on
the top right of Fig. 9, there is a 3/2 cusp singularity at the center
of the curve. Clearly, if s = 1, there is no solution with X 0 = 0, and
(X, Y ) is a smooth, non-intersecting curve (cf. Fig. 9, top left).

The most interesting case arises for s = �1, such that critical
points are at � = ±1. Inserting this into Y 0 = 0, one finds two
lines of critical points, 1 + �2 ± �1 = 0, which are shown as solid
lines at the bottom of Fig. 9, which separate the phase diagram
into four distinct regions. Only the right hand side �1 > 0 of
the phase diagram is shown, as the left hand side is the same by
symmetry. To understand what happens on the critical lines we
put �2 = �1⌥ �1 + ✏ and � = ±1+ �, and expand to third order
in �:

(X, Y ) =
✓

⌥2
3
, �1

4
+ ✏ ± �1

2

◆

+
✓

±�2 + �3

3
, ±✏� +

✓
1 + ✏ ⌥ �1

2

◆
�2 ± �3

◆
.

Using the transformation

(X̃, Ỹ ) =
✓
X, Y ⌥

✓
1 + ✏ ⌥ �1

2

◆
X
◆

=
✓

⌥ 5
12

+ 5✏ ± �1

6

◆

+
✓

±�2 + O(�3), ±✏� +
✓

±2
3

+ �1 ⌥ ✏

6

◆
�3
◆

, (44)

this transforms into a cusp (36), with ✏ being the unfolding
parameter.

Thus at points along the critical lines (✏ = 0), lower order
cusp singularities are formed locally. At the point �1 = 0, �2 =
�1 where both lines cross, the figure has two cusp points, with
similarity function

X = � 3

3
+ s� , Y = � 4

4
+ s

� 2

2
, (45)

and s = �1, which is often referred to as the swallowtail shape
in catastrophe theory [17]. In Fig. 10 we show the cases s = 1,
s = 0 together with the swallowtail s = �1. The swallowtail sits
at the center of the bifurcation diagram in Fig. 9; it has the shape
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Fig. 9. Bifurcation curves for the E6 singularity, as represented in its scaled form (43). On top, unfolding for s = 1 and s = 0, at the bottom, the bifurcation diagram for
s = �1 [9].

Fig. 10. The swallowtail similarity function (45) for s = 1, s = 0, and s = �1, from left to right.

of a wave front near a caustic, and plays an equally important role
for the formation of shocks (cf. Section 5.3).

As one moves away from the critical line (✏ 6= 0 in (44)), the
local cusp singularity unfolds, as seen in Fig. 7. For example,moving
to the right of the lower bifurcation line (upper sign in (44) and

✏ > 0), the cusp opens. Moving to the left of the same bifurcation
line (✏ < 0), the curve self-intersects to form a loop.

To give a more complete description of the possible topologies,
a few more lines have been added to Fig. 9, although they do not
correspond to bifurcations; along �1 = 0 (dotted line), the curve
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Fig. 11. A bubble in the form of a swallowtail, as described by the similarity
function (46).

is symmetric. Along the dot-dashed line, the curve is tangent to
itself; across it, self-intersecting loops are opened. This allows one
to go continuously from the upper bifurcation line to the lower
bifurcation line via non-intersecting curves. However, only the end
points of this curve are known analytically, the line in between has
to be calculated numerically.

Finally, the dashed line marks curves with triple points (three
points of the curve coinciding), and is given by �2 = �3/2 and
|�1|  1/2. The triple points occur on the line Y = 0, and thus are
determined by the equation

� 3 � 3� + 4�1 = 0;
along the dashed line, the discriminant is negative, so there are
three real roots. Solutions are given by

� = 2 cos

� � 2⇡k

3

�
, k = 1, 2, 3,

where � = arccos(�2�1)/3. A direct calculation shows that X =
� 3/3 � � is the same for all three solutions, which thus represent
a triple point.

The swallowtail shape (45) can be combined with the idea of
a bubble of vanishing size to produce another universal shape.
Instead of self-intersecting (cf. Fig. 10, right), the two sides just
touch to inclose a bubble, see Fig. 11. This means there are critical
points at some � = ±1, which we can normalize to unity. In
addition, the Y -component hasminima at another value � = ±�0,
leading to the ansatz

(X 0, Y 0) = �
� (� 2 � 1), (� 2 � 1)(� 2 � � 2

0 )
�
.

Integrating, we demand that Y (�0) = 0, with solution �0 = p
5,

and we obtain the similarity function

(X, Y ) =
✓

� 2

4
�
� 2 � 2

�
,
�

5
�
� 4 � 10� 2 + 25

�◆
, (46)

shown in Fig. 11; the width of this bubble scales like ✏5/4.
The profile (46) appears as a particular case in the unfolding of

the singularity germ (t4, t5), whose complete unfolding is (27). To
be consistent with thematching condition, we have to putµ7 = 0,
but which would still leave us with a four-dimensional parameter
space. Thus we restrict ourselves to symmetric shapes, with x an

even function and y an odd function, i.e. ✏1 = µ2 = 0. The
similarity function becomes

(X, Y ) =
✓

� 4

4
+ s� 2

2
,
� 5

5
+ �3

3
� 3 + �1�

◆
, (47)

with the bifurcation diagrams for the three different cases s =
0, 1, �1 being shown in Fig. 12. For any value of s, singular points
are given by � = �1 = 0, �3 arbitrary. In the case s = �1, there
is an additional pair of singular points � = ±1, �1 = �1 � �3,
shown as the thick solid line.

For negative values of �1, all curves have at least one self-
intersection. Turning to positive values of �1, there is a self-tangent
point on the line of symmetry if Y = Y 0 = 0 is satisfied, which
leads to � 2 = �6�1/�3, which means we must have �3 < 0.
In that case, self-tangent curves lie along the line �1 = 5�2

3/36
shown in all three figures. Thus in the second quadrant of all three
diagrams, below this line the corresponding curves have at least
two self-intersection points. A horizontal turning point is given by
Y 0 = Y 00 = 0, which leads to � 2 = ��3/2 and thus �3 < 0, as well
as �1 = �2

3/4, which is also shown in Fig. 12. In between these
two parabolas, curves have two horizontal tangents. An additional
feature of the case s = �1 is the straight bifurcation line �1 =
�1 � �3 along which curves have a pair of cusp points. At the
intersection with the self-tangent curve one finds the ‘‘bubble’’
shown in Fig. 11.

4.2. Scaling with two monomials

We have seen above that monomial germs describe a family of
similarity solutions whose scaling exponent is fixed by the leading
powers m and n. In the case of two monomials, (tm, tn ± tp) with
p > n, the power law behavior will be different depending on
whether one is considering the limit t ! 0 or t ! 1. In that
sense, these germs describe the crossover between two different
scaling behaviors on the small and large scale, respectively.

To be more precise, the scaling

(x, y) = (✏X, ✏n/mY ) (48)

leads to the similarity form

(X, Y ) =
 

�m +
X

l

�l�
l, � n ± ✏(p�n)/m� p +

X

l

�l�
l

!

.

Thus in the limit ✏ ! 0, the second monomial drops out and
scaling is described by (35). If on the other hand � ! 1,
the leading order behavior would be (x, y) = (� X, � p/mY ), the
monomial � n becoming subdominant.

5. Applications

Applications to physical problems clearly hinge on whether
we can guarantee the existence of a smooth mapping, whose
singularities we would like to analyze. A simple example was
giving in the introduction, where we analyzed the pinch-off of a
cavity inside a viscous fluid, whose singularities were determined
by the singular points of a smooth mapping R ! R. However,
we saw that the ‘‘inverse’’ problem of a viscous drop pinching
off in air was of a different nature [5]. In that case one of the
scaling exponents is an irrational number, while scaling found
within singularity theory is of the rational type. In addition, in
Sections 5.9 and 5.7.1 we provide explicit examples of problems
which are described by a piecewise smoothmapping, but different
parts of the solution lie on different branches of the function. The
singularity appears exactly at the boundary between twobranches,
making singularity theory inapplicable. As a result, the observed
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Fig. 12. Bifurcation curves for the W1,2 singularity with additional symmetry, see (47). On top, unfolding for s = 1 and s = 0, at the bottom, the bifurcation diagram for
s = �1.

singularities are of a type not included in the classification of
singularity theory.

If the physical problem is described by a smooth mapping
(which is often found by a (complex) mapping technique [37]),
the function will depend on time or on an arbitrary number of
physical control parameters, which we will point out in specific
examples below. Singularity theory then allows us to classify the
possible singularities that may occur; however, no predictions can
in general be made about whether a given singularity will occur,
since this depends on the global nature of the mapping, and the
values the control parameters may attain. Also, the unfolding may
not be themost general one, but be restricted by symmetries of the
problem. A closer analysis of the specificmappingmay often reveal
of which type the singularity may be and how the unfolding may
look like.

There is also a possible connection to the notion of analytical
continuation of complexmappings [38–40]. The idea is to consider
the analytic continuation of a conformal mapping describing for
example a free surface, which often exhibits singularities (such
as poles) in the ‘‘non-physical’’ part of the complex plane. As
parameters are varied, or time progresses, the location of these
singularitiesmay approach the physical domain, and thusmanifest
themselves as a singularity of the free-surface problem under
study. This is reminiscent of an example presented in Section 5.5,
where we consider the singularity of a bubble in Hele-Shaw flow,
which arises from the fact that the point of non-invertibility of

the complex mapping approaches the unit circle. However the
mapping remains analytic throughout, and does not develop poles,
so it is not clear how this relates to cases where the mapping itself
is singular.

5.1. The Hamilton–Jacobi equation: caustics and shock waves

In general, singularities of plane curves involve the analysis
of mappings f : R ! R2, as we have done above. However,
there is a particular sub-class of problems in which curves can
be characterized as the critical points of a single, scalar-valued,
function. This framework, which involves the classification of
scalar functions only (called generating functions in this context)
is that of catastrophe theory [17,13]. In it, two different objects,
known as Lagrangian and Legendre singularities, are connected
through the generating function. A general framework in which
these types of singularities arise is that of the Hamilton–Jacobi
equation [41,14], which we will describe now. Two particular
physical examples are the eikonal equation, which describes
the formation of caustics of an advancing wave front, and
the kinematic wave equation, which is the simplest equation
exhibiting shocks.

We begin with an action S(q, t), which depends on the
generalized coordinate q as well as on time. In the spirit of this
review, we consider a single coordinate q, but the same formalism
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applies to a vector quantity q. We assume that S satisfies the
Hamilton–Jacobi equation

@S
@t

+ H
✓
q,

@S
@q

, t
◆

= 0, (49)

with initial condition S(q, 0) = S0(q). In classical mechanics [41],
H(q, p, t) is the Hamiltonian of a mechanical system. The PDE
problem (49) can be solved as a mechanical (ODE) problem by the
method of characteristics. To that end let p = @S

@q be the canonical
momentum, and we solve the Hamilton equations

q̇ = @H
@p

, ṗ = �@H
@q

(50)

with initial conditions

q(0) = q0, p(0) = @S0
@q0

. (51)

Then S(q, t) can be recovered by integrating along the characteris-
tics:

S(q, t) = S0(q0) +
Z

�

L(q, q̇, t)dt, (52)

where L(q, q̇, t) is the Lagrange function corresponding to the
Hamiltonian H(q, p, t). The integral is taken along the curve � ,
which is the solution curve obtained from integrating (50), with
initial conditions (51). The action (52) is now a solution to the PDE
(49) with initial condition S(q, 0) = S0(q) [14].

Instead of specifying the two initial conditions (51) to find � ,
one can also specify the initial condition q0 = q(0), as well as
the end point q = q(t), where we denote the trajectory with an
overbar for clarity. In this way we can now write the action

S(q, t; q0) = S0(q0) +
Z t

0
L(q(q, t; q0), q̇(q, t; q0), t)dt, (53)

which at constant q0 is still a solution to the Hamilton–Jacobi
equation (49). However, the second initial condition (51) will in
general not be satisfied. Now taking the derivative with respect
to q0, integrating by parts and using the fact that the Lagrange
equation is satisfied along q, we find

@S
@q0

= @S0
@q0

+


@L
@ q̇

@q(q, 0; q0)
@q0

�q=q

q=q0

= @S0
@q0

� p(0),

since @q
@q0

= 0 and @q
@q = 1. Thus the true trajectory, which

satisfies the initial conditions (51), can be found from the extremal
condition

@S(q, t; q0)
@q0

= 0. (54)

Singularities arise because characteristics (or particle paths
in mechanical language) cross, and hence the action becomes
multivalued; this means that @q/@q0 = 0. Differentiating (54), we
have

0 = d
dq0

@S(q, t; q0)
@q0

= @2S
@q20

+ @S
@q

@q
@q0

,

and thus in terms of the action, a crossing of trajectories implies

@2S(q, t; q0)
@q20

= 0. (55)

The set defined by (55) is the bifurcation set (13). We see that
the action S(q, t) is described implicitly by the critical points
(54), noting that instead of q0 we can use any quantity ' to
parameterize the action; such a variable is called the state variable.

The configuration space is determined by the parameters q and time
t .

Following Arnold [42], we can construct the Legendre manifold
(a smooth curve in (p, q, S)-space) by

S = S(q, t, '),
@S
@'

= 0, p = @S
@q

. (56)

The projection of the manifold onto the (q, S)-plane is called
the Legendre map, whose image is determined by the first two
equations of (56). This image will in general be singular, namely at
points where the condition @q/@' = 0 is met; we will see below
that in optics, this set defines a wave front.

On the other hand, the Lagrange manifold is defined in the plane
(q, p) by

@S
@'

= 0, p = @S
@q

. (57)

Its projection onto q again has singular points when @q/@' = 0, or
in other words when

@S
@'

= 0,
@2S
@'2 = 0. (58)

Projected onto the (q, t) plane, all points which satisfy (58) are
known as the caustic.

The generic form of the singularity (55) is represented by the
germ is S = '3, near which the action becomes

S = '3 � ↵'. (59)

The parameter ↵ can be seen as a function of q and t if the initial
condition S0(q) is held fixed, but may equally well be seen as
varying with any number of parameters characterizing the initial
condition. The caustic lies at ↵ = 0 (where the conditions (58) are
satisfied), which is a line in the (q, t)-plane. The solution S(q, t; ')
has to satisfy the condition (54), which yields ↵ = 3'2. This means
that the action near the caustic line has the form

S = �2'3, ↵ = 3'2, (60)

which is a cusp in the (↵, S)-plane. At a given time, ↵ is a smooth
function of q, and hence S(q) is also a cusp in the (q, S)-plane.

Since caustics are lines in (q, t)-space, one can ask where they
originate, from a smooth initial condition. To answer this, one has
to consider the higher-order germ S = '4 with unfolding

S = '4 � �'2 � ↵', (61)

where now both ↵ and � are functions of q, t at fixed initial
condition. Performing a coordinate transformation such that � =
t ⌘ t � t0 and ↵ = q, the situation is as shown in Fig. 13, where
t0 is the time where a singularity first occurs. From (58) one has
q = 4'3 � 2t' and t = 6'2, and thus

t = 6'2, q = �8'3 (62)

is the caustic, which has the form of a cusp, as shown on the
left-hand side of Fig. 13. Accordingly, this is known as the cusp
catastrophe. There is no singularity for t < t0, i.e. for t < 0, which
shows that our above identification of the parameters ↵ and � was
correct. The action is

S = 3'4 � t'2, q = 4'3 � 2t', (63)

which is the swallowtail function (45) introduced before. It can be
seen as the projection of the Legendre manifold

S = 3'4 � t'2, q = 4'3 � 2t', p = �', (64)

which is a smooth curve. For t > 0 is has the form of a swallowtail,
shown on the right of Fig. 13. Within the range of q-values inside
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Fig. 13. The generic form of a cusp singularity. On the left, lines are trajectories
with the caustic line shown in bold. Inside the caustic, three different trajectories
correspond to any given point. On the right, the solution at a time t > t0 after the
singularity. The action has the form of a swallowtail, while themomentum forms an
s-curve. Taking a path along which S is single-valued corresponds to jumping from
the upper branch of the s-curve to the lower branch in such a way that the shaded
areas are equal.

the cusp on the left, three different values for S are found. This
corresponds to three different rays that can reach any point inside
the cusp. The momentum p = @S/@q = �' obeys the cubic
equation

q = �4p3 + 2tp, (65)

which is the Lagrange manifold introduced above. Thus for t < 0
(before the singularity), p has a unique value as function of q, while
after the catastrophe, in the region inside the cusp, there are three
different values, as shown on the bottom left of Fig. 13. We have

S =
Z

@S
@q

dq =
Z

pdq,

so following the swallowtail curve along the points 1-4 corre-
sponds to integrating the s-curve of themomentum. Going directly
from 1 to 4, without passing through the lower portion of the swal-
lowtail, corresponds to jumping down from 1 to 4 in the s-curve.
Since S(q) has a unique value, it follows that the total integral over
the s-curve from 1 to 4 must be zero: the area of the two shaded
lobes are equal, a construction known as Maxwell’s rule.

5.2. The eikonal equation

As a first example, we choose the propagation of light rays, and
the singularities generated by it. As illustrated in Fig. 14, there are
three different ways in which to describe the propagation of an
optical wavefront. Firstly, the action S satisfies a Hamilton–Jacobi
equation, and the wave fronts are recovered by considering lines
of constant S. Secondly, the corresponding Hamiltonian system
describes the path of a ray, which is perpendicular to the wave
front. Knowing the optical path length ` of a ray, one can
reconstruct the wave front as shown in Fig. 14. The optical path
length satisfies the same Hamilton–Jacobi equation as function
of either pairs of its arguments. Thirdly, the graph of the wave
front h(x, t) satisfies another, slightly different Hamilton–Jacobi
equation from the one describing the action.

According to Fermat’s principle [43], light rays travel along a
path � such that

S =
Z

�

Ldz, L = n(x, z)
q
1 + x2z (66)

Fig. 14. A wavefront can be described either as the graph of a function z =
h(x, t), or as lines of constant value of the action S(x, z). Rays are perpendicular
to the wavefronts, and `(x0, z0; x, z)measures the optical path length between two
points.

is minimal (with fixed end points). Here the distance z along the
optical axis is treated like a time variable in ordinary mechanics,
and n(x, z) is the index of refraction. There is no problem in
generalizing to 3 spatial dimensions x, y, z.

The canonical momentum is

p = @L
@xz

= n
xzp

1 + x2z
, (67)

and so

H = pxz � L = �
p
n2 � p2. (68)

In the free space case n = 1 the Hamilton equations (50) are

xz = p
p
1 � p2

, pz = 0,

so that p = p0 = const , and

x = x0 + p0zq
1 � p20

, (69)

meaning that rays follow a linear path. The Hamilton–Jacobi
equation (49) is
✓

@S
@z

◆2

+
✓

@S
@x

◆2

= n2, (70)

which in this context is known as the eikonal equation.
Now we define wave fronts as the equipotential lines S(x, z) =

const of the action function. We have

p = @S
@x

, H = �@S
@z

, (71)

and so the normal to a wave front is

n = rS
|rS| = 1

p
1 + x2z

(xz, �1) ,

where x(z) is the ray path. Thus wave fronts are orthogonal to the
direction (1, xz) of a ray.

Now let S(x, z) be a solution to (49) with initial condition
S(x, z0) = S0(x). Then according to (52), S(x, z) can be written as

S(x, z) = S0(x0) +
Z

�

Ldz, (72)
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Fig. 15. The cusp catastrophe: wave fronts are swallowtails, the caustic is a cusp,
as given by (74) and (75), respectively.

where � is along a light ray from (x0, z0) to (x, z).We take thewave
front as passing through (x0, z0) at t = 0, and through (x, z) at t .
But this means thatZ

�

Ldz = ct,

implying that the evolution of the wave front in time is given by

S(x, z) = ct, (73)

where S(x, z) is any solution of the eikonal equation (70). In future,
we will normalize the speed of light c to unity. Given a solution to
the spatial problem, the dependence on time can be found using
(73).

In the simplest case n = 1, rays lie on straight lines (69) and an
exact solution to S(x, z) can be found accordingly. However, even
in the general case n varying in space, where such a solution is
not available, the structure of the first singularity of a wave front
must be a cusp catastrophe, and described by (62) and (64), but
where t is replaced by the ‘‘time’’ variable z. To understand how the
wave front propagates in time and how it lies relative to the caustic
surface, we specify that the wave propagates in the z-direction.
This means that to leading order, the action looks like S = z � t
(or S = nz � t if n is not equal unity). This means that the line
of constant phase propagates at speed 1/n in the z-direction. The
expression S = 3'4 � z'2 (cf. (64)) for the action describes its
variation around this mean motion. Thus the position of the wave
front z(x) as it travels in time is given by

z = t + 3'4 � t'2, x = 4'3 � 2t', (74)

where we have used the leading-order result z ⇡ t on the right-
hand side. The singularities of the wave fronts lie on the caustic
line

z = 6'2, x = �8'3, (75)

both of which are shown in Fig. 15.
To conclude this section, we mention that instead of the

Hamilton–Jacobi equation (70) for the path length S, an equivalent
Hamilton–Jacobi equation,

@h
@t

=
p
1 + h2

x

n
, (76)

can be written for the front h(x, t), as shown in Fig. 14. The two
descriptions are connected by the equation S(x, h(x, t)) = t .

The Hamiltonian is now H = �
p
1 + p2/n, where the canonical

momentum is p = @h/@x. Solving the Hamiltonian equations for
the case n = 1, one finds a solution to (76) in the form

h(x, t) = h0(x0) + t
q
1 + h02

0

, x = x0 � h0
0tq

1 + h02
0

, (77)

where h0(x) = h(x, 0) is the initial condition.

5.3. The kinematic wave equation

The shocks that are formed by the kinematic wave equation (or
inviscid Burgers’ equation)

@v

@t
+ vvx = 0 (78)

give the same hierarchy of singularities as optical singularities.
To see that we write �x = v (which can also be done in higher
dimensions), and obtain after integrating

@�

@t
+ �2

x

2
= 0, (79)

where the constant of integration can be chosen to vanish with an
appropriate choice of �. This has the form of a Hamilton–Jacobi
equation with action S ⌘ �, and Hamiltonian

H(p, x) = p2

2
, (80)

where the momentum is p = @�/@x. This is the Hamiltonian of a
free particle, and clearly the particle trajectories are

p = p0 = const, x = p0t + x0. (81)

We can find � using (52), where

L = ẋ2

2
= p20

2
= (�0

0)
2

2
is the Lagrangian. This means that the velocity potential can be
written in the form

�(x, t) = �0(x0) + (�0
0)

2

2
t, x = �0

0t + x0, (82)

and the velocity is

v(x, t) = @�

@x
= �

�0
0 + �00

0 t
� @x0

@x
= �0

0 = v0(x0, 0), (83)

which is the usual solution by characteristics [44].
The velocity (momentum) as function of x is

v = p = @�

@x0
= �x0, x = 3x30 � tx0, (84)

which is shown on the left of Fig. 16. For t < 0 the solution is
regular, but shows a wave which steepens as t = 0 is approached.
For t > 0 the velocity has the form of an s-curve, and thus can no
longer be interpreted as a classical solution of (78). The cusp

x = �8x30, t = 6x20
delineates the region where there are three different v-values to
one x-value, so there are three characteristics coexisting. Inside
of this region one needs to decide which part of the graph
corresponds to a physically realizable solution, as we will do now.
Maxwell’s rule The s-shaped velocity profile (84) is unphysical as
a solution to the kinetic wave equation (78), in that the profile
becomes multivalued. Instead, a shock (i.e. a jump in the velocity)
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Fig. 16. Shock formation in the inviscid Burgers’ equation. On the left, an initially single-valued profile develops into a three-valued s-curve. In a saddle-point approximation,
the profile is constructed by moving along the potential, shown on the right. In the multi-valued region, the dominant contribution comes from the most negative value of
the potential, leading to a shock position satisfying the equal-area rule.

needs to be inserted in order for the velocity to become single-
valued, see Fig. 16. In order to determine the position of the jump
from first principles, one solves the viscous Burgers’ equation

@v

@t
+ vvx = ⌫vxx, (85)

and takes the limit ⌫ ! 0 [44]. In terms of the potential �, exact
solutions of (85) can be found in the form [45]

�(x, t) = �2⌫ ln
Z 1

�1
exp

⇢
�G(⌘, x, t)

2⌫

�
d⌘, (86)

where

G(⌘, x, t) = �0(⌘) + (x � ⌘)2

2t
. (87)

In the limit ⌫ ! 0, the integral is dominated by the saddle
points

G⌘(⇠ , x, t) = �0
0(⇠) + x � ⇠

t
= 0.

Inserted into (87), this yields

G(⇠ , t) = �0(⇠) + �0
0(⇠)2t
2

, x = ⇠ + �0
0(⌘)t, (88)

which is precisely the solution (82) to the potential of the inviscid
Burgers’ equation.

The potential, and thus the saddle point of the integral, is drawn
on the right of Fig. 16. For t < 0 the saddle point is unique,
but for t > 0, inside the cusp region, there are three values to
choose from. However clearly, the dominant contribution in the
limit ⌫ ! 0 comes from the lowest branch. This means the true
solution comes from moving along the branch labeled 1, and then
crosses over to the branch 3 at the crossing point. As we have seen,
this corresponds to inserting a jump into the s-curve, such that
the areas of the two resulting lobes are equal. This is the famous
Maxwell’s rule for the insertion of a shock [44].

To confirm that (86) indeed reproduces the inviscid solution in
the limit ⌫ ! 0, we calculate the velocity:

v = �x =
R 1
�1 Gxe�G/(2⌫)d⌘
R 1
�1 e�G/(2⌫)d⌘

· ⇡ Gx(⇠ , x, t). (89)

In the last step we have used that the saddle point contribution to
the integral is
Z 1

�1
g(⌘)e� G(⌘,x,t)

2⌫ d⌘ ⇡ g(⇠)

s
4⇡⌫

@2
⇠ G(⇠ , x, t)

e� G(⇠ ,x,t)
2⌫ ,

Fig. 17. The ‘‘geometrical optics’’ approximation of shock dynamics. Shock fronts
and rays form an orthogonal plane coordinate system (�, � ); � measures the
distance along rays, � the distance along a shock front.

where ⇠ is a solution of (88). But

Gx(⇠ , x, t) = x � ⇠

t
= �0

0(⇠)

at the saddle point, which according to (83) indeed implies that for
⌫ ! 0 (86) is a solution to the inviscid Burgers’ equation.

5.4. Motion of shock fronts

Whitham [46,45] has developed a simplified theory for the
motion of shock fronts, which is based on the ideas of geometrical
optics. We introduce an orthogonal curvilinear coordinate system
(�, � ), defined by the advancing shock front (solid lines, constant
�), see Fig. 17. Another set of curves are called ‘‘rays’’ (dashed
lines, constant � ), which are, by definition, orthogonal to the shock
fronts. The variable � labels the position along a shock front; since
� is constant along rays, this defines the value of� along each front.
The position along rays is labeled by the time taken by the shock
front to reach a certain position.We normalize time by the vacuum
sound speed c0 ahead of the shock and define � = c0t .

The problem is written in terms of two dependent variables
M(�, � ) and A(�, � ). The first is the Mach number M = us/c0
(us is the shock speed), so that M(�, � )d� is the spatial distance
along a ray between � and � + d�. The second variable is defined
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such that A(�, � )d� is the spatial distance between rays at � and
� + d� . Thus A(�, � ) measures how the shock front expands and
contracts. The physical nature of the problem is determined by an
assumed local functional relation A = f (M). Using an analogywith
shock-tube dynamics, Whitham [46] considers the form

A = f (M) = �M�⌫, (90)

where � is a constant and ⌫ = 1 + 2/� + p
2� /(� � 1)

with � the adiabatic gas exponent. The choice f / (M � 1)�2

yields geometrical optics [45]. We note that true shock dynamics,
as described by the compressible Euler equation, is a non-local
phenomenonwhich cannot be described exactly by a local relation
such as (90). However, geometrical shock dynamics is often found
to be an excellent approximation when compared to experiment
[47] and full numerical simulations [48].

Now from purely geometrical considerations, the equations of
motion become
@✓

@�
= 1

M
@A
@�

,
@✓

@�
= �1

A
@M
@�

. (91)

As pointed out in [49], this nonlinear set of equations can be solved
by performing a hodograph transformation, which exchanges
dependent and independent variables. As a result, one obtains a
function �(M, ✓), whose equipotential lines represent a solution
to the problem at time �.

To reconstruct the shock front, we can use the formulae

x = �
Z

�1 sin ✓d✓ , y =
Z

�1 cos ✓d✓ , (92)

which follow directly from the definition of the curvature  =
d✓/ds, to be integrated along�(M, ✓) = const . It is straightforward
to show [50] that

�1 = (⌫ + 1)�2M�2�2⌫
✓

@�

@M

◆�1

D,

where D is the Jacobian of the hodograph transformation. Thus
singularities (where  ! 1) are associated with points where
the hodograph transformation becomes non-invertible and D = 0.

Now let us assume that �1 vanishes at a point; we can rotate
the coordinate system to ensure this is at ✓ = 0. Then along the
shock front, we can write �1 = a✓ + O(✓2), which implies

x = x0 � a✓3

3
+ O(✓4), y = y0 + a✓2

2
+ O(✓3),

which is a cusp. To understand when this cusp occurs for the first
time, we need to consider the structure of the problem in the
(M, ✓)-plane, see Fig. 18.

The curve D = 0 is a line (there may be several distinct lines)
in the plane, while the shock front moves in the plane as the
time � varies. If there is no singularity originally, there can be no
intersection of the front with the curve D = 0. However if an
intersection occurs, it is clear geometrically that this must first
occur tangentially. But this means that the zero of �1 must be of
higher order, at the time a singularity first occurs. As a result, the
curvature (up to a rescaling of time) is of the form

�1 = �� + A✓2,

where the singularity first occurs at � = 0 and A > 0. Inserting
into (92), we obtain the swallowtail

x = �✓2/2 � A✓4/4, y = ��✓ + A✓3/3. (93)

which was shown already in Fig. 10. The left curve shows the
shock front before the singularity (� < 0), on the right two cusps
have formed (� > 0). The position of the cusps correspond to
intersections of the front with the curve D = 0 in the hodograph
plane, as shown in Fig. 18.

Fig. 18. The formation of a swallowtail. The solution front advances from left to
right: blue (before the singularity), black (at the singularity), and green (after the
singularity), when the front has two intersections with D = 0. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

5.5. Hele-Shaw flow without surface tension

A Hele-Shaw cell consists of two closely spaced glass plates,
partially filled with a viscous fluid. The problem is to find the time
evolution of the free interface between fluid and gas. Here we
consider the case that the fluid occupies a closed two-dimensional
domain ⌦ . Within ⌦ , the pressure obeys 1p = 0, with boundary
conditions

p = 0, vn = �rp · n (94)

on the free surface @⌦ , where vn is the normal velocity. The
geometry is illustrated in Fig. 19: an initially smooth patch of
viscous fluid is surrounded by air, occupying a region ⌦ , with
boundary @⌦ . The flow is driven by a point sink of strength m
placed inside the fluid. As the fluid is sucked out and the fluid patch
shrinks, its boundary forms a cusp singularity in finite time, whose
structure we aim to investigate.

As described in detail in [5], the problem can be solved [51–54]
introducing the conformal mapping

z = f (⇠ , t), ⇠ = rei✓ , (95)

which maps the circle |⇠ | = 1 onto @⌦ , resulting in the equation
of motion

Re
�
zt⇠z⇠

� = � m
2⇡

. (96)

Solutions to (96) can be found in the form of a polynomial

f (⇠) =
nX

i=1

ai(t)⇠ i, (97)

where the coefficients have to satisfy a set of ODE’s found by
inserting into (96). For example, in the simplest case n = 2 the
equations are

a1ȧ1 + 2a2ȧ2 = � m
2⇡

, a1ȧ2 + 2a2ȧ1 = 0, (98)

which can easily be integrated for general initial conditions [5]. The
particular case of initial conditions a1(0) = 1, a2(0) = 1/16 is
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Fig. 19. The formation of a cusp in the Hele-Shaw problem with suction at the
origin, using the exact solution (97) with coefficients (98). The initial condition is
a1(0) = 1, a2(0) = 1/16. A cusp is formed at t = (3/4)4.

shown in Fig. 19, which leads to the formation of a generic 3/2 cusp
(36).

The formation of the cusp is associated with the mapping
z = f (⇠) no longer being invertible on |⇠ | = 1, so that a self-
intersection occurs. The simplest such case occurs when f 0 = 0 on
the unit circle; then up to a complex rotation, we can assume that

f = (⇠ � ⇠0)
2, ⇠0 = 1 + ✏. (99)

This means that the point of non-invertibility lies outside of the
unit circle for ✏ > 0, and approaches the unit circle as ✏ ! 0.
Indeed, inserting (99) into (95) yields

x = ✏2 + (�1 + ✏)✓2 + O(✓4),

y = �2✏✓ + (�1 + ✏/3)✓3 + +O(✓5),
(100)

which is a cusp that unfolds for ✏ 6= 0.
Higher order zeroes lead to higher order singularities, for

example f = (⇠ � 1)n leads to the germ ✓n, ✓n+1. Other germs,
such as ✓2, ✓5, can be realized as well, and describe the formation
of a small bubble, as seen in Fig. 8. This can be illustrated using the
solution (97) for n = 3, which can be written

f (⇠) = a
�
⇠ + b⇠ 2/2 + c⇠ 3/3

�
. (101)

Physically permissible solutions must be complex differentiable
and invertible or univalent on the unit disk ⇠  1 [55]. In the plane
(b, c), the region of univalency is shown in Fig. 20 for b > 0; the
figure is mirror-symmetric with respect to the b = 0 axis.

Along the boundaries formed by straight lines, f 0 vanishes on
the unit circle, where the boundary of the fluid domain develops
one or two cusp singularities. Along the ellipsoidal boundary
between B and C, the boundary touches so as to enclose a bubble.
As C is approached, the size of the bubble goes to zero, so
asymptotically the shape must be a similarity solution of the form
(39). Accordingly at C, the boundary forms a 2/5 cusp singularity.
On the other hand at B, the interface encloses a bubble with two
cusps as shown in Fig. 11, except that the asymptotic form (46)
is valid only in the limit of vanishing bubble size. To realize this,
another parameter would be necessary, for example the solution
with (97).

As one moves away from the boundary of the univalency
domain, the singularities described above unfold. An analysis of the
flow lines of the equations of motion shows that solutions end on
the boundary, so all the singularities described above are realized
by the dynamics.

Fig. 20. The region over which the mapping (101) remains univalent for b > 0.
Between B and C, the curve is b2/4 + 4 (c/3 � 1/2)2 = 1. Between A and B, there
are two cusps f 0 = 0 at ⇠ = �b/2± i

p
4 � b2/2, between C and D there is a single

cusp f 0(�1) = 0. Between B and C, two sides of the interface touch to enclose a
bubble.

5.6. Two-dimensional stokes flow

Here the flow is governed by the Stokes equation, which in two
dimensions can be written in terms of the stream function , with
u =  y and v = � x. The stream function obeys the biharmonic
equation�2 = 0. In a stationary state, whichwe are considering,
the surface of the fluid is a line with = const . On this surface, we
also have the surface stress condition

�ijnj = � ni, (102)

where � is surface tension and  the curvature of the interface.
Once more the flow can be driven by singularities, such as sources
and sinks, or a vortex dipole [21].

A complex formulation of this problem was developed by
Richardson [56]. The stream function is written as

 = Im(�(z) + z�(z)), (103)

where � and � are analytic functions. The boundary conditions at
the free surface can be shown to be

Im

" 
dz
ds

!

�(z) + z�(z)

#

= �

4⌘
, �(z) + z�(z) = 0, (104)

where ⌘ is the viscosity of the fluid. The idea is to find time-
dependent solutions using the map (95). The functions �,� have
to satisfy boundary conditions at the position of any singularities
in the flow domain. The general, time-dependent case is too
complicated to be solved in general, but progress can be made in
particular cases, as described below.

5.6.1. Time-dependent flow without surface tension
In the absence of surface tension (� = 0) solutions can be found

in the polynomial form (97), see [57,55]. The idea is to write down
equations of motion for the moments

Ck(t) =
Z

⌦(t)
⇣ k(z, t)dxdy = 1

2i

Z

|⇣ |=1
⇣ kf 0(⇣ , t)f (1/⇣ , t)d⇣
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using (104), which results in a system of ODE’s. The moments can
then be calculated in terms of the polynomial coefficients ai, all Ck
with k > n�1 being zero. Then the same reasoning can be applied
to polynomial solutions as done previously for the case of Hele-
Shaw flow.

5.6.2. Stationary flow with surface tension
Another interesting class of solutions obtained using the for-

mulation (104) and complex mapping involves two-dimensional
Stokes flowwith surface tension being driven by prescribed singu-
larities in the flow to reach a steady state, which reflects a balance
between the viscous driving and surface tension. The first such so-
lution was found in [21], where a vortex dipole of strength ↵ is
located at a distance d below a free surface of infinite extend. This
solutionwas generalized to include other singularities belowan in-
finitely extended free surface [58–60], and the stationary state of a
two-dimensional bubble in a driven viscous flow [61,62], as well as
two interacting bubbles [62]. All of these solutions lead to generic
2/3 cusps, rounded by surface tension. Using additional control pa-
rameters, one can presumably generate higher order singularities.

In [21], the amount of deformation of the free surface by the
viscous flow is measured by the capillary number

Ca = ↵⌘

d2�
, (105)

which measures the ratio of viscous forces over surface tension
forces. The solution of the problem is too involved to be presented
here in full. However, the exact surface shape, in units of d, is given
by the simple mapping

x = a cos ✓ + (a + 1)
cos ✓

1 + sin ✓
, (106)

y = a(1 + sin ✓). (107)
The parameter a is determined from the equation

4⇡Ca = �a(3a + 2)2K(m)

1 + a + p�2a(a + 1)
, (108)

where

m = 2
(�2a/(a + 1))1/4 + ((a + 1)/(�2a))1/4

(109)

and K is the complete elliptic integral of the first kind:

K(m) =
Z ⇡/2

0

d✓
p
1 � m2 sin2 ✓

. (110)

In (108) we have only reported the form of the equation for the
more relevant case Ca > 0. Asymptotic analysis of (108)–(110)
reveals that for large Ca,

a = �1
3

+ ✏, ✏ ⇡ 32
9

exp {�16⇡Ca} . (111)

It is easy to confirm that (106) yields a cusp for a = �1/3, i.e. for
Ca = 1 or vanishing surface tension. If one expands around the
cusp point by putting ✓ = ⇡/2 + �, one obtains

x = �2✏
3

� � �3

12
, y + 2

3
� 2✏ = �2

6
, (112)

which is the generic unfolding (36) of the cusp. As is apparent from
Fig. 7, the case ✏ < 0 leads to self-intersection of the free surface,
which is of course not physical. The radius of curvature of the cusp
for ✏ > 0 is given by

R ⇡ 256
3

exp {�32⇡Ca} , (113)

as found from (112), (111). The exponential dependence (113) has
been confirmed experimentally (cf. Fig. 21).

5.7. Time-dependent flows with surface tension

Another class of exact two-dimensional Stokes flow solutions
are those driven primarily by surface tension, leading to a time
dependent flow [64–71]. In general, in the absence of driving, the
dynamics will lead to a smoothing of singularities [70,71], and will
only lead to near cusps for very particular initial conditions [69].
On the other hand, cusp singularities can be imposed through the
initial condition, for example the cusp which is produced when
two surfaces touch [64–68]. However, this cusp will generically be
of 1/2 power law type, which cannot be described by a smooth
function. In other words, while (t2, t3) describes a cusp, (t, t2)
is a smooth function, not a cusp. As we will see in two different
examples below, a 1/2 cusp can only be realized as the singular
limit of smooth mappings, and singularity theory does not allow
to classify it.

5.7.1. A counterexample: merging of two cylinders
A general solution to the Stokes flow problem with surface

tension can be written in the form

f (⇠ , t) = ⇠

✓
Ba

1 � a⇠
+ Cb

1 + b⇠

◆
, (114)

where a, b, B and C are functions of t . The speed of coalescence
is set by the capillary-viscous velocity v⌘ = � /⌘. If a = b and
B = C > 0, then the domain presented by (114) is also symmetric
about the y-axis and the initial conditions a = b = 1 at t = 0
describe two touching circular discs. In that case, (114) can be
written as

f (⇠ , t) =
r

A
⇡

1 � a4p
1 + a4

⇠

1 � a2⇠ 2 , (115)

where A is the total area of the domain and a varies with time as
follows:

t =
p
A⇡

2v⌘

Z 1

a2

dp

p
p
1 + p2K(p)

. (116)

Clearly, at the initial time t = 0, the parameter is a = 1, and a ! 0
for t ! 1. For a = 0, the map becomes z = p

A/⇡⇠ , which is a
circle of radius

p
A/⇡⇠ .

The limit a ! 1, on the other hand, is non-uniform, and z ! 0
for any ⇠ 6= ±1. Expanding about ⇠ = 1 corresponds to expanding
about ✓ = 0; taking the first few leading terms in ✓ and � = 1 � a
we find
z
R

= 2
✓
1 + i

✓

�
+ · · ·

◆
,

where R = p
A/(2⇡) is the radius of one of the initial cylinders.

This indicates that ✓ / � in the limit � ! 0, so we define ✓ = ��.
Taking the leading terms in this limit, the result is

z
R

= 2
✓

1
1 + '2 + i

'

1 + '2

◆
+ O(�). (117)

This is a circle of radius 1 centered at x/R = 1, corresponding to
one of the initial cylinders; the other is found by expanding about
⇠ = �1. The tip of the cusp is reached in the limit ' ! 1, where
the map is singular.

It is also instructive to consider the neighborhood of the point
x = 0, where the two cylinders join, and where for � > 0 there is a
local minimum of y(x). Putting ⇠ = iei' this corresponds to ' = 0,
and in units of the minimum radius of the neck Rm ⇡ p

A/⇡� one
finds
x
Rm

= ��
sin'

cos2 '
+ O(�2),

y
Rm

= 1 � cos'

cos'
+ O(�2),

which is a parabola. Note that the x-component vanishes as � ! 0,
reflecting the singular nature of this limit.
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Fig. 21. Experimental data on the cusping of a viscous fluid, taken from [63]. On the left, a closeup of the tip of a cusp on the surface of a viscous fluid; the scale bar
corresponds to 200 µm. On the right, the radius of curvature of the (almost) cusp as function of capillary number. In agreement with (113), the dependence is exponential.

5.8. Stationary two-dimensional potential flow without surface
tension

Inviscid potential fluid flow is governed by the equations
u = r�, 1� = 0, (118)
where � is the velocity potential. The free surface is convected by
the fluid velocity, and the free surface is at constant pressure. We
consider the simplest case of steady flow, as well as of no body or
surface tension forces. According to Bernoulli’s equation, the fluid
speed then has to be constant on the free surface.

Exact solutions to the flow problem can be found if the fluid
domain is bounded by free surfaces and straight solid boundaries
alone [72], by mapping the fluid domain onto the upper half of the
complex plane, which we denote by ⇣ . To find a greater variety
of solutions, the flow can be driven by placing singularities (like
vortices, sources, and sinks) inside the flow. To this end, one
introduces the complex potential w = � + i , where  is the
stream function. Following [73], the derivative of the mapping
function is written in the form
dz
d⇣

= dz
dw

dw
d⇣

= e⌦
dw
d⇣

. (119)

Hopkinson [74] observed that the complex velocity dw/d⇣ has
to be real on the real ⇣ -axis, while⌦ has to be purely imaginary on
a free surface; both conditions can be satisfied using the method
of images. Singularities on the free surface arise when there is a
stagnation point on the free surface, i.e. a zero of dw/d⇣ . Taking
this zero to be at ⇣ = 0, we have
dw
d⇣

= A⇣ (1 + a⇣ ) , ⌦ = i(⌦0 +⌦1⇣ ) + O(⇣ 2); (120)

owing to the boundary conditions on the real axis (which
corresponds to the free surface), all parameters A, a,⌦0,⌦1 must
be real. Then expanding to leading order and integrating, one
obtains

z = Aei⌦0


⇣ 2

2
+ (a + i⌦1)

⇣ 3

3

�
,

and it is easy to see that (x(⇣ ), y(⇣ )) for ⇣ real is a cusp.
Note that the cusp does not arrive through a gradual sharpening

of the tip (it does not unfold as in (112) or (100)). This is because
the boundary condition forbids zeros dw/d⇣ = ⇣ � i✏ near the
real axis, since dw/d⇣ would not be real. As a result, one cannot
have a zero approach the real axis, which would correspond to an
unfolding. Instead, the only way a cusp can be created is through a
higher-order zero separating into two zeroes, which corresponds
to the unfolding of a swallowtail, as shown in Fig. 10; as a result,
two cusps are created. This bifurcation corresponds to
dw
d⇣

= ⇣ 2 � ✏2 = (⇣ � ✏)(⇣ + ✏), ⌦ = i(⌦0 +⌦1⇣ ) + O(⇣ 2),

with ✏ being the unfolding parameter.
There is a very special potential flow solution in the presence

of gravity [75–77], in which liquid is layered above a two-
dimensional ridge. A local analysis shows that a 2/3 cusp is
formed [20]; this is not surprising, since gravity is not expected to
change the local behavior near a cusp.

5.9. Counterexample: Traveling wave over solid bottom

In the previous section we described driven cusps in poten-
tial flow without surface tension. One might think that the intro-
duction of surface tension will lead to a rounding, as it does in
the viscous case (112). Using complex mapping techniques, Crap-
per [78] found the shape of a nonlinear wave at finite surface ten-
sion � , traveling at speed c on a fluid of infinite depth in poten-
tial flow. Thus L = � /(⇢c2) is a characteristic length scale of
the problem. The shape of the free surface, in units of wavelength
� = 2⇡L tanh B, is

x = 1
2⇡


� � 2 sin�

cosh B + cos�

�
,

y = 1
2⇡


2 sinh B

cosh B + cos�
� 2

�
,

(121)

where B is a parameter; the minimum is at � = 0. The relative
amplitude is a/� = 2/(⇡ sinh B), which goes to zero for b !
1. However, for B > Bc = 0.78818 . . . there will be a self-
intersection, as seen on the left of Fig. 22.

Physically, the reason is that a cusp would imply an upward
force of 2� , which must be counterbalanced by a localized
minimum of the Bernoulli pressure. But although the speed of
the flow past the free surface is maximum at the trough, so
according to Bernoulli is a minimum of the pressure, this is not
sufficiently localized to produce a point cusp. On the other hand,
if the same calculation is repeated with a solid bottom, and the
gap h between the trough and the bottom becomes small, the
velocity becomes large in a small region. As shown on the right
of Fig. 22, one can produce smaller and smaller bubbles as the
gap h goes to zero. Writing all lengths in units of the wavelength
� = 4Lsn(B, k0)cd(B, k0) from now on, the Kinnersley’s exact
solution over a solid bottom [79] becomes

x = 1
4


2E(am(�, k), k) � k02� � 2k2sn(�, k)cd(�, k)

+ 2kk02sd(�, k)nd(�, k)
dn(B, k0) � kcd(�, k)

�
� 1

2
, (122)

y = 1
4


(1 + k2)B � 2E(am(B, k0), k0)
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Fig. 22. Waves traveling at speed c on a quiescent fluid, as described by (121). On the left, the fluid is of infinite depth for B = 4, 1, and B = Bc = 0.78818 . . . , while on
the right, the x-axis is a solid bottom. For infinite depth, the profile self-intersects at a critical amplitude. For finite depth, we show the profile (122), (123) for k = 0.9 and
B = 0.8731, for which a bubble is formed. In the limit k ! 1 the size of this bubble goes to zero.

+ 2k02sn(B, k0)cn(B, k0)
dn(B, k0) � kcd(�, k)

�
, (123)

where  = 2E(k) � k02K(k) and k0 = p
1 � k2; we are using the

notation of [80] for the elliptic integrals, Jacobi elliptic functions,
and Jacobi amplitude. A full period of the wave is covered by the
range 0  �  4K(k), where the trough lies at � = 2K(k).
In the range K  �  3K(k), the elliptic integral is to be
continued as E(am(�, k), k) = 2E(k) + E(am(� � 2K(k), k), k),
and the rest can be recovered by using the period of 4K(k) of
the Jacobi elliptic functions. A more concise and elegant complex
formulation of Crapper’s and Kinnersley’s solutions has been given
in [81,82]. Though potentially useful, it is not clear how to separate
the complex solution into real and imaginary parts in order to
apply an analysis in terms of a real mapping, as we do here. Hence
the analysis that follows is based on the original real formulation.

The solution (122), (123) has the two parameters k and B, which
permit to prescribe the amplitude a of the wave and the spacing h
between the minimum and the bottom according to

a = 1
2
sc(B, k0) (124)

and

h = 1
4

⇥
(1 + k2)B � 2E(B, k0) + 2sc(B, k0)(dn(B, k0) � k)

⇤
.

(125)

We investigate the limit of small gap h/� ! 0 while a/� remains
finite, i.e. k ! 1. We expect the profile near the solid bottom to
assume a singular shape.

Taking the limit k0 ! 0 leads to an equation for an ellipse
( ⇡ 2):

x = 1
2

sinh� cosh�

cosh2 � � sin2 B
� 1

2
, y = 1

2
sin B cos B

cosh2 � � sin2 B
. (126)

Here � = 0 corresponds to the crest of the wave at x = �1, while
in the limit � ! 1 theminimum is reached for x = y = 0, i.e. the
wave touches the wall; the right of the minimum can be recovered
by symmetry. For small x the profile is linear:

y = ± tan 2Bx, (127)

which means that at x = 0 there is a corner, a reflection of the
singular limit we are taking.

We are interested in taking the limit in such a way that a
bubble is inclosed, as shown in the inset on the right of Fig. 22.
By construction, this means that a cusp is formed, and the profile

becomes vertical, corresponding to the limit B ! ⇡/4 in (127).
If the wave profile were to remain smooth in the limit, it would
follow from the arguments of Section 4.1 that the cusp has a 2/5
power, and is described by the scaling function (39). However, for
B = ⇡/4, (126) becomes the equation of a circle, so near the cusp
tip the profile is

x = y2, (128)

a 1/2 cusp, which does not appear within the singularity theory
framework. We now aim to describe the bubble at the end of the
tip, in the limit k ! 1; the condition that the two sides of the
profile touch amounts effectively to a condition on B = B(k). To
that end, we have to describe the profile near the minimum at
� = 2K(k) ! 1 for k ! 0. To find a regular expansion, we
shift the origin to zero: � ! � + 2K , to obtain

x = 1
4


2E(�, k) � k02� � 2k2sn(�, k)cd(�, k)

� 2kk02sd(�, k)nd(�, k)
dn(B, k0) + kcd(�, k)

�
, (129)

y = 1
4


(1 + k2)B � 2E(B, k0) + 2k02sn(B, k0)cn(B, k0)

dn(B, k0) + kcd(�, k)

�
. (130)

To find the inner asymptotics, we expand (129), (130) in a
power series in ✏ = k02/8,

x = 1


1X

i=2

xi✏ i, y = 1


1X

i=2

yi✏ i, (131)

using series expansions of the Jacobi elliptic functions in k0 inspired
by [83]; this yields to leading non-vanishing order

x = ✏2


[2� + cos 2B sinh 2�] ,

y = ✏2


[2B + sin 2B cosh 2�] .

(132)

This has a quadratic minimum with curvature proportional to
1/k04, while for large � one recovers the linear behavior (127),
which matches the outer solution.

However, for B = ⇡/4 the linear behavior (127) becomes
singular, which means we have to expand to higher order in ✏, and
to consider corrections B = ⇡/4+ �, where � is a small parameter.
Considering the leading order expressions in � only, we find

x3(�, ⇡/4) = 8� + ⇡ sinh(2�) + O(�), (133)
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Fig. 23. The neighborhood of the bubble for k0 = 10�2. The solid line is the full
solution (129), (130), with B adjusted such that pinch-off occurs (both sides of the
profile touching). The symbols are the asymptotic result (135), with � determined
by (137). The dashed line is the scaling function (139).

x4(�, ⇡/4) = 1
4
[�16⇡� cosh(2�) + 34⇡ sinh(2�)

+ 164� + sinh(4�)] + O(�), (134)

so that for large � the contributions to x behave like

x ⇡ ✏4e4�

16
⇡ y2,

which matches the outer solution (128). To achieve this, we had to
go to fourth order in the expansion in ✏.

Using this insight, we now consider the limit ✏ ! 0 in such a
way that a bubble is enclosed. We will see below that on the scale
of the bubble, e�2� ⇠ ✏, so it is sufficient to consider (133), (134) in
the limit � ! 1, which means that x3 ⇡ ⇡e2�/2 and x4 ⇡ e4�/8.
On the other hand, we take into account terms of order � in the
expression for x2, since the dominant term cancels for B = ⇡/4.
Thus x2 ⇡ 2� � �e2� , so we expect � ⇠ e�2� ⇠ ✏. In other words,
in the limit of ✏ ! 0 the solution on the scale of the bubble is

x =
✓

� � �

2
e2�

◆
✏2 + ⇡e2�

4
✏3 + e4�

16
✏4,

y =
✓

⇡

4
+ cosh(2�)

2

◆
✏2,

(135)

where now all contributions are consistently of order ✏2.
Using (135) and putting � = a✏, the conditions x = 0, @x/@� =

0 for the two sides of the profile to touch lead to

1
2

� �c + e4�c ✏2

16
= 0 (136)

for the critical value of � = �c at which pinch-off occurs. This
equation can be solved perturbatively as

�c = ✏̃

4
+ ln ✏̃

4
+ ln ✏̃ � 2

4✏̃
+ O

✓
1
✏̃2

◆
,

� = ✏


✏̃1/2

2
+ ⇡

2
+ ln ✏̃

4✏̃1/2 + O
�
✏̃�3/2�

�
,

(137)

with ✏̃ = �2 ln(✏/2). This result is compared to numerics in
Fig. 23, with very good agreement.

The size of the bubble is determined by the height at the pinch
point yc , and the position xb, yb of themaximum at the base, which
to leading order become

yc ⇡ ✏

2

p
✏̃, xb ⇡ ✏̃✏2

4
, yb ⇡ ✏

2
p

✏̃
. (138)

Clearly yb ⌧ yc in the limit, so the bubble becomes very flat at its
base. Introducing similarity variables X = x̃/xb and Y = ỹ/yc (so
that the lower half of the bubble becomes squashed to zero), the
shape of the bubble becomes

X = 1 � 2Y + Y 2, (139)

which is shown as the dashed line in Fig. 23. Note the appearance of
scaling factors

p�2 ln ✏/2, which is reminiscent of the very slow
approach to the asymptotic limit seen in inviscid bubble pinch-
off [84].

6. Conclusions

When thinking about singularities of PDE’s, most often one
considers them from the point of view of functions becoming non-
smooth, i.e. no longer possessing derivatives of arbitrary order. It is
therefore remarkable that many singularities, as we have seen, can
be describedwithin the framework of smoothmappings. In a sense
described before, these singularities are geometrical in nature.
Another type of such geometrical singularities, not considered
here, are vortices [85,5].

Using the approach of singularity theory, we have been able
to gain two different types of new physical insight. First, we have
identified certain scaling properties with a given structure, which
before had not been associated with one another. For example, we
showed that the pinch-off of a small bubble, observed previously
in Hele-Shaw flow, is governed by the scaling exponent 5/2, which
gives the ratio of the length to the width of the bubble. In Stokes
flowwith surface tension,we showed that the cusp solution,which
appeared previously as a specific feature of a solution obtained by
complex mapping, is in fact a universal feature, independent of
boundary conditions. Second, we can now predict the appearance
of higher order singularities for flows where they have not yet
been found by traditional solution methods. For example, the
swallowtail bubble with two cusps shown in Fig. 11 (governed
by the scaling exponent 5/4), should be found in the potential
flow described in Section 5.8. Likewise, pinch-off of a smooth
bubble should be found in Stokes flow with surface tension (see
Section 5.5), given the right driving.

The most obvious extension of the present review is to curves
in space, and in particular to surfaces (two-dimensional objects
in three-dimensional space). Within catastrophe theory, this
generalization does not present much of a problem, and has been
worked out fully in optics [42,86]. For the description of shocks in
higher dimensions a potential is not available, so that catastrophe
theory is not applicable directly. However, our understanding of
the structure of the singularity taking from these theories can form
the basis for a description based on the equations of motion [87–
89].

Moving beyond wave problems to free surface equations is
muchmore challenging, sincemost solutions in terms ofmappings
come from the complex domain, and thus are usually confined
to two dimensions. However, even in the absence such solutions,
an important aspect is that singularity theory provides us with
inspiration for the possible structure of solutions. For example,
one might guess how the viscous free-surface singularity (112) is
‘‘unfolded’’ into the third dimension in a manner similar to shocks
in two and three dimensions [88]. What is needed are rigorous
asymptotic arguments, based on the equations, which allow for
such an extension.
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Appendix A. Invariants of plane curve germs

As we have seen in Section 3, any possible germ of a plane
curve can be represented in the form (16). However, under an
equivalency transformation the sequence of exponents appearing
in (16)will in general change. On the other hand, certain properties
of a germwill not change, and are called invariants. Clearly, they aid
in classifying different types of singularities, although in general
they are not enough for a complete classification.

As a first step, we define the so-called Puiseux exponents
(invariants), which are chosen in such a way that no common
factor exists between different exponents, and which could easily
be eliminated by substitution. This is ensured by the following
algorithm: define �1 to be the smallest exponent appearing in y(t),
which is not divisible by m. If no such exponents existed, it would
mean that y is a power series in x and the curve is regular. Now
define e1 = hcf (m,�1) (the highest common factor), and �2 as
the smallest exponent appearing in y(t) and not divisible by e1.
Defining e2 = hcf (e1,�2), it is clear that e2 < e1. Proceeding
inductively, we obtain the strictly decreasing sequence of integers
m > e1 > e2 > · · · > ei > · · ·, which means there is an integer g
such that eg�1 6= 1 and eg = 1, called the genus of the curve. More
formally, we have defined

e0 = �0 = m,

�i+1 = min{k | ci 6= 0, ei - k}
ei = hcf (ei�1,�i)

(A.1)

which satisfies �1 = n. The integers �0,�1, . . . ,�g are called the
Puiseux characteristic exponents or the Puiseux characteristics of
the curve f , and are denoted by ch(f ), and the parameterization of
f can be rewritten as:

x = t�0 , y =
�2�1X

i=�1
cit i + · · · +

�g�1X

i=�g�1

cit i +
X

i��g
cit i, (A.2)

where the coefficients c�1 , . . . , c�g 6= 0. From the definition of
characteristic exponents we can deduce that the coefficients in
above parameterization have the following property: if i and k are
integers such that �j�1 < k < �j and if ej�1 does not divide k
then the coefficient ck 6= 0. A parameterization of the form (A.2)
is called a ‘‘good’’ parameterization. The set of Puiseux exponents
forms an invariant of the curve since if one were to perform any
diffeomorphic transformation on (A.2), after repeating the above
procedure one arrives at the same set of exponents.

Another invariant sequence of numbers, characterizing topo-
logical and analytical properties of a curve, is the semigroup, intro-
duced in Section 3 for special cases. We will motivate its construc-
tion in a heuristic fashion below, as the set of intersection num-
bers of a curve f with other curves in the plane, in the following
sense: Suppose a curve f1 is given by the equation g(x, y) = 0, and
a curve f2 by a good parameterization (x, y) = (�(t), (t)), such
that �(0) =  (0) = 0. Then the intersection number of f1 and
f2 at the origin is defined as the order of the zero of g , written as
function of t , at the origin:

i(f1, f2) = ord(g(�(t), (t))). (A.3)

The reason is that if one perturbs the leading-order term t i(f1,f2),
the maximum number of zeroes is the intersection number. Hence
t i(f1,f2) measures the maximum number of local intersections
between the curves as they are perturbed.

Now we construct the generators v0, v1, . . . , vg , of a curve f
of genus g > 1 with Puiseux characteristic �0,�1, . . . ,�g . The
intersection number of f with the x̂ or ŷ axis is given by the
equations g(x, y) = x = 0 or g(x, y) = y = 0, respectively.
Then the corresponding orders of g(�(t), (t)) are �0 and �1,

for the intersections with the x̂ and ŷ axes, respectively, and the
first two generators are v0 = �0 and v1 = �1. To calculate the
next term, we consider the intersection between f and the leading
order behavior x = t�0 , y = t�1 of the expansion (A.2), which
we define as the curve f2. However, on account of g > 1, this
parameterization contains a common factor hcf(�0,�1) = e1 > 1,
which we must divide out to obtain the implicit representation
g(x, y) = x�1/e1 � y�0/e1 of f2. It is the straightforward to calculate
the series expansion of g(�(t), (t)) to obtain

v2 = i(f , f2) = ord(g(�(t), (t))) = v1
e0
e1

+ �2 � �1. (A.4)

Not giving any details, we can continue in this manner to find the
remaining generators

vi+1 = ei�1

ei
vi + �i+1 � �i, i = 2, . . . , g, (A.5)

the same number as the number of Puiseux exponents.
Finally, the semigroup is defined as S(f ) = ⌦

v0, v1, v2, . . . , vg
↵
,

which is another invariant of the representation (A.2), and thus of
the curve.We statewithout proof that the numberNG of gaps of the
semigroup determines the number of self-intersections (or double
points) �f of the possible unfoldings of the curve. The number of
gaps is half the conductor c of the semigroup, which is defined as
the smallest member of S(f ) such that c�1 is a gap. The conductor
can be calculated from the intersection numbers, so that we obtain
the general relation:

�f = NG = c
2

= 1
2

gX

i=1

 
ei�1

ei
� 1

!

vi � v0 + 1. (A.6)

To give two examples, consider f : (x, y) = (t3, t7). The Puiseux
characteristics are �0 = 3 and �1 = 7. The genus of the curve is
g = 1, and so the semigroup is generated by the numbers v0 = 3
and v1 = 7. The conductor of the semigroup is c = 12, which
is twice the number of gaps G = {1, 2, 4, 5, 8, 11}, so that the �-
invariant is �f = 6. In the second example, we take f : (x, y) =
(t4, t6 + t7). The characteristic of the curve is ch(f ) = (4; 6, 7)
and g=3. The semigroup is Sf = h4, 6, 13i, the conductor c = 16,
�f = 8 and G = {1, 2, 3, 5, 7, 9, 11, 15}.

To complete the description of invariants of plane curve
singularities, we describe the constraints on the possible values of
the Zariski invariant �, which we introduced before in Section 3.3.
Starting from a ‘‘good’’ parameterization (A.2), � < �2 is the first
monomial exponent above�1. There can be a single suchmonomial
only with �1 < �  �2, and hence up to equivalence the germ of a
plane curve singularity can be written in the form:

f : x = t�0 , y = t�1 + t� +
X

�2<ic

cit i. (A.7)

In particular, this shows that if one limits oneself to two exponents
only, the Zariski invariant guarantees a complete classification of
singularities. If there is a third monomial present, the singularity
is modular, i.e. the coefficient ci in front of this monomial cannot
be reduced to unity. Since � is not contained in the semigroup, it
does not change the number of double points �f , but it reduces the
codimension of the singularity.

The possible values � can attain are subject to the condi-
tions [32]:

�, �+ v0 62 S(f ) and v1 < �  �2 = v2 � v1

⇣v1

v2
� 1

⌘
. (A.8)

In particular, if g = 1, (A.8) simplifies to

� = n1v1 � n0v0, n0 � 2, 2  n1  v1 � 1. (A.9)



130 J. Eggers, N. Suramlishvili / European Journal of Mechanics B/Fluids 65 (2017) 107–131

Appendix B. Classification of singularities up to m = 4 with

unfoldings

A complete classification of plane singularities does not exist,
but one can consider singularities up to a certain order of the
multiplicity m of the germ f . For historical reasons, singularities
up to m = 4 are called simple singularities, whose classification
we report now. The coefficients in front of the powers of the germ
can all be normalized to unity, up to equivalence. We also report
the miniversal unfolding F (when it is known explicitly), which
contains parameters whose number equals the codimension.

1. A2k, m = 2.

f : t ! (t2, t2k+1), k � 1, cod(f )Ae = k,

F :
 

t2, t2k+1 +
kX

j=1

µ2j�1t2j�1

!

.

Unfolding and bifurcations of the A2 singularity are described
in Section 4.1 (see Fig. 7), and applications are discussed
in Sections 5.1–5.3. The A4 singularity with corresponding
bifurcations is described in introductory part of Sections 4 and
4.1 (see Fig. 6), and applications are discussed in Section 5.5.

2. E6k, m = 3.
(a) monomial:

f : t ! (t3, t3k+1), k � 1, cod(f )Ae = 3k,

F :
 

t3 + ✏1t, t3k+1 +
kX

j=1

µ3j�2t3j�2 +
2k�1X

j=1

µ3j+1t3j+1

!

(b) with Zariski invariant:

f : t ! (t3, t3k+1 + (±)l�kt3l+2),

k � 2, k  l  2k � 2, cod(f )Ae = k + l + 1. (B.1)

The unfolding of the E6 singularity and corresponding bifurca-
tions are investigated in Section 4.1 (see Fig. 9), and applications
are discussed in Sections 5.1, 5.2 and 5.4.

3. E6k+2, m = 3.
(a) monomial:

f : t ! (t3, t3k+2), k � 1, cod(f )Ae = 3k + 1,

F :
 

t3 + ✏1t, t3k+2 +
kX

j=1

µ3j�1t3j�1 +
2kX

j=1

µ3j�2t3j�2

!

(b) with Zariski invariant:

f : t ! (t3, t3k+2 + (±)l�kt3l+1),

k � 2, k + 1  l < 2k � 1,
cod(f )Ae = k + l � 1

(B.2)

4. W1,2, m = 4.
(a) monomial:

f : t ! (t4, t5), cod(f )Ae = 6,

F :
✓
t4 + ✏2t2 + ✏1t, t5 + µ7t7 + µ3t3 + µ2t2 + µ1t

◆

(b) with Zariski invariant:

f : t ! (t4, t5 ± t7), cod(f )Ae = 5,

F :
✓
t4 + ✏2t2 + ✏1t, t5 + µ3t3 + µ2t2 + µ1t

◆
.

The unfolding and bifurcations of the singularity are described
in Section 4.1 (see Fig. 12), and application are discussed in
Section 5.5.

5. W1,8, m = 4.
(a) monomial:

f : t ! (t4, t7), cod(f )Ae = 9,

F :
✓
t4 + ✏2t2 + ✏1t, t5 + µ13t13 + µ9t9 + µ6t6

+ µ5t5 + µ3t3 + µ2t2 + µ1t
◆

(b) with first Zariski invariant:

f : t ! (t4, t7 ± t9), cod(f )Ae = 7,

F :
✓
t4 + ✏2t2 + ✏1t, t5 + µ6t6 + µ5t5

+ µ3t3 + µ2t2 + µ1t
◆

(c) with second Zariski invariant:

f : t ! (t4, t7 ± t13), cod(f )Ae = 8,

F :
✓
t4 + ✏2t2 + ✏1t, t5 + µ9t9

+ µ6t6 + µ5t5 + µ3t3 + µ2t2 + µ1t
◆

6. W#
1,2k�1, m = 4, genus g = 2:

f : t ! (t4, t6 + t2k+5), k � 1, k � 1,
cod(f )Ae = k + 5,

F :
 

t4 + ✏2t2 + ✏1t, t6 + t2k+5 +
k+2X

j=1

µ2j�1t2j�1 + µ2t2
!

.
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