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When a liquid containing a dilute solution of long, flexible polymers breaks up under
the action of surface tension, it forms long threads of nearly uniform thickness.
However, at a thickness in the order of microns, the thread becomes unstable to the
formation of a non-uniform “blistering” pattern: tiny drops separated by threads of
highly concentrated polymer solution. We show that standard models for the coupling
between stress and polymer concentration lead to a linear instability, which exhibits
very strong transient growth of the free surface perturbation. A high concentration
of polymer remains in the thread part of the structure. C⃝ 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4869721]

I. INTRODUCTION

The breakup of a piece of fluid is affected strongly by the presence of long, flexible polymers
dissolved in it. In the case of a Newtonian fluid, pinch-off is described by localized similarity
solutions, leading to breakup in finite time.2, 3 However, even a small amount of polymer leads to
the formation of thin threads of uniform thickness,4–7 and breakup is inhibited. The reason is that
polymers are stretched in the extensional flow close to the pinch point, leading to a buildup of elastic
stresses. The rate of thinning ϵ̇ of the fluid neck is now controlled by the rate at which polymers
can relax, determined in the simplest case by the inverse of the polymer time scale λ. This means
the filament thins exponentially as polymers are stretched, and the finite-time pinch-off singularity
is regularized.

However, once the polymeric thread has become sufficiently thin, it is observed to be subject
to instabilities (“blistering”),1, 8, 9 which destroy its uniformity. A variety of different instabilities
has been reported,9 but here we focus on the growth of sinusoidal perturbations, which grow
exponentially,1 indicating a linear instability. In Fig. 1, we show both the initial stage of exponential
growth, which lasts for about 10 ms (first five profiles), as well as the later, nonlinear stages of
the instability. In this paper, we will be concerned with the linear part of the instability only. One
observes a rapid growth of perturbations, on a time scale much shorter than that on which thinning
of the thread takes place.

A possible explanation for this instability is that polymers have become fully stretched,6 so that
the extensional viscosity has reached a plateau value. The dynamics should thus resemble that of a
Newtonian fluid, which is susceptible to the Rayleigh instability.3 However, numerical simulations
using the FENE-P model, which incorporates finite extensibility of polymer molecules, show that
this situation leads to localized pinch-off,10 rather than a sinusoidal instability. Moreover, it was
shown in Refs. 1 and 9 that the growth rate of the observed blistering instability is much greater
than that expected for a Newtonian fluid of the corresponding extensional viscosity. In, Ref. 11, an
iterated local instability of a polymeric thread is described on the basis of the Oldroyd B model,12

which assumes infinite extensibility. However, the calculation does not predict a spatially periodic
structure such as that shown in Fig. 1. Another mechanism for the formation of beads that has been
proposed10, 13 requires the presence of inertia, a remnant of the initial dynamics; at least for the
experiments considered in Refs. 1 and 9, inertia was shown not to play a role. In addition, inertia
does not explain the formation of a periodic structure.
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FIG. 1. Growth of a sinusoidal instability on a viscoelastic filament; the spacing of the pictures is 300−1s.1 The inverse
growth rate is ω−1 = 9.3 ms, while the time scale of thinning is ϵ̇−1 = 130 ms. Exponential growth is observed for the first
10 ms (the first five profiles).

Here we propose that the origin of the instability comes from the coupling between the polymeric
stress σ and the polymer density n,14 driving a non-uniform polymer concentration. Indeed, it has
been observed that the polymer concentration along the thread becomes highly non-uniform,1

indicating that a coupling to the polymer density has to be included in the modeling in order
to explain the effect. The idea of a stress-density coupling has previously been applied to light
scattering data for both shear and extensional flow,15–17 as well as anomalous slip lengths in shear
flow18 and shear banding.19 The origin of the instability lies in the flow of polymers toward regions
of high stress, i.e., highly extended polymers. This flux leads to further extension, fueling an
instability.

II. POLYMER MODEL

To insure a consistent framework, we will base our calculations on model equations
for dilute polymer solutions near equilibrium. The polymers are modeled as elastic Hookean
dumbbells.12 In many pinching experiments, the concentration is semi-dilute, and in particu-
lar, polymers have reached a highly stretched state. Owing to these effects, transport coeffi-
cients may well be renormalized significantly, but we expect the structure of the equations to be
robust.

Equations for the polymer density and the stress have been developed for an elastic Hookean
dumbbell model by Bhave et al.18 and by Öttinger,20 with slightly different results. Both sets of
equations have been reviewed in Ref. 21, and have been found to agree, if one drops consistently
terms quadratic in the stress and of third order in the gradients. For the number density of polymers,
one obtains the diffusion equation

Dn
Dt

= − D
kB T

∇∇ : σ p + D△n, (1)

where the convected (substantial) derivative appears on the left, and D is the diffusion constant of
a polymer strand; σ p is the polymeric contribution to the fluid stress. The first term on the right
of (1) describes the entropically driven flow of particles toward regions of high polymer extension,
i.e., a more ordered state, the second term describes the diffusion of polymer chains. Note that
the diffusion coefficients in front of the first and second term on the right of (1) are the same.14

Equation (1) is Eq. (6) of Ref. 21 (with τ p = −σ p), based on a Hookean dumbbell model. The same
equation was found in Ref. 20, again analyzing a Hookean dumbbell, in the two-fluid description
of Mavrantzas and Beris,22 and for a Rouse chain.21 In the original paper of Bhave et al.,18 one
additional term appeared on the right hand side of (1), but which was later found to be absent in a
consistent formulation up to second order gradients.21
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The equation of motion for the velocity field is the Navier-Stokes equation, but with an extra
term accounting for the polymeric contribution to the stress:

ρ
Dv
Dt

= −∇ p + ∇ · σ p + ηs△v, (2)

where ηs is the solvent contribution to the viscosity.
To close the set of equation, we need a constitutive equation for σ p, which is derived from the

(stochastic) dynamics for the polymer conformations:

Dσ p

Dt
= (∇v)T · σ p + σ p · (∇v) − σ p

λ
+ nkB T

(
(∇v)T + (∇v)

)
− kB T

Dn
Dt

δ + D△σ p, (3)

which is Eq. (51) of Ref. 18 and Eq. (3) of Ref. 21, derived for Hookean dumbbells. The first two
terms on the right describe the deformation of polymers by the flow (“upper convected derivative”);
in an extensional flow, this results in rapid stretching of polymer strands, and a strong increase in
extensional viscosity. The next term comes from the relaxation of polymers toward an equilibrium
(coiled) state, while the fourth term describes the diffusion of beads in the Hookean dumbbell model.
From a balance between the third and fourth terms, one finds the polymeric contribution ηp = nλkBT
to the viscosity, valid near equilibrium. The fifth term, involving the substantial derivative of the
polymer concentration, has the same origin than the fourth, and will prove crucial in coupling the
polymer concentration to the flow field, balancing with the stretching term. Finally, stress is allowed
to relax by diffusion, as described by the last term on the right-hand side of (3), introduced in
Ref. 23.

In a liquid thread, we also have to couple to the motion of the free surface, and include driving by
capillary forces. Since the thread we consider is long and slender, we confine ourselves to simplified
description in which the flow and the stress distribution is assumed to be one-dimensional, and a
standard calculation3 yields:

ḣ + vhz = −vz
h
2
, (4)

ρ (v̇ + vvz) = −γ κz + 3ηs
1
h2

(
h2vz

)
z + 1

h2

(
h2σ

)
z , (5)

κ = 1

h(1 + h2
z )

1
2

− hzz

(1 + h2
z )

3
2

, (6)

σ̇ + vσz = 2vzσ + 2nkB T vz − σ

λ
− kB T (ṅ + vnz) + Dσzz, (7)

ṅ + vnz = Dnzz − D
kB T

σzz, (8)

where h(z, t) is the local thread radius, v(z, t) the axial velocity, and σ (z, t) the axial poly-
meric stress; we neglect the radial polymeric stress, which is small in an extensional situa-
tion. The subscript denotes differentiation with respect to the variable, and the dot denotes the
time derivative. The first equation describes the deformation of the free surface by the flow,
while the second is the one-dimensional version of the momentum balance (2), with κ being
(twice) the mean curvature. The last two equations are the one-dimensional versions of (1) and (3),
respectively.

We will consider the case that inertial effects are small, so the terms on the left of (5) can be
neglected, and we can perform one spatial integration. As a result, there is a constant tension T(t) in
the fluid thread:7

h2 (γ K + 3ηsvz + σ ) = T (t), (9)
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where we have defined

K = 1

h(1 + h2
z )

1
2

+ hzz

(1 + h2
z )

3
2

. (10)

Note that K is not the mean curvature of the interface (which would have a − sign in front of the
second term).7 As explained in Ref. 7, (10) results from the total surface tension contribution to the
tensile force T, which is composed of “bulk” stresses exerted over the cross-sectional area, and a
line force exerted around the perimeter.

III. BASE SOLUTION

The model described so far leads to a uniform thread of highly stretched polymers which thins
at a constant rate, described in detail in Ref. 7. Inside the thread there is an extensional flow

v = 2ϵ̇z, (11)

which causes fluid contained in the filament to empty into the drops, producing an elongational flow
with elongation rate

ϵ̇ = −∂t h

h
. (12)

As a result, polymers are being stretched by the flow at a rate ϵ̇, leading to exponential increase in
the stress

σ = σ0eϵ̇t (13)

supported by the polymers. Throughout, we will be concerned with solvents of low viscosity, whose
contribution to the total stress is negligible except at the very first stages of breakup, not considered
here. On the other hand, the stress (13) is being balanced by the capillary pressure difference, which
implies that the drop radius has to decrease like

h = h0e−ϵ̇t , (14)

consistent with a constant ϵ̇, defined by (12). The value of ϵ̇ is set by the balance between stretching
and polymer relaxation, which leads to4

ϵ̇ = 1/(3λ).

Note, however, that in practice significant deviations between measured values of ϵ̇ and rheological
measurements of λ have been reported,6 which may be the result of polydispersity,24 or multiple
time scales present on a single polymer chain.25 Significant effects of polymer concentration on the
stretch rate have been reported as well.26

In Ref. 7, we use matching between the thread and the drops to show that the amplitudes h0 and
σ 0 are related by

σ0 = f γ

h0
, (15)

where f = 2, and the tension in the thread is

T (t) = (1 + 2 f )γ h0e−ϵ̇t . (16)

Our matching procedure did use a slender filament description for the transition region between
thread and drop, where it is strictly speaking not valid. Therefore, it is possible that the value of f
is somewhat different for the true three-dimensional model. For this reason we will perform some
of the calculations below for general f. So far, the base solution we have described corresponds to a
constant polymer concentration n = n.
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IV. PERTURBATION THEORY

Now we add a small perturbation the base solution described above, putting

h(z, t) = h + h0ϵ1(t) sin kz, (17)

vz(z, t) = vz + ϵ̇ϵ2(t) sin kz, (18)

σ (z, t) = σ + σ0ϵ3(t) sin kz, (19)

n(z, t) = n + nϵ4(t) sin kz, (20)

which makes all the amplitudes ϵi dimensionless. The effect of the mean flow field (11) is that
perturbations become stretched, leading to an exponential increase in wavelength: the wavenumber
k must be time dependent. Specifically, the equation of motion to be satisfied by k is

k̇
k

= −v

z
= −2ϵ̇, (21)

with solution

k = k0e−2ϵ̇t . (22)

Note that the inverse growth rate of perturbations shown in Fig. 1 is short compared to the time scale
of thinning, so that the change in wavelength during the linear part of the instability (about 10 ms) is
less than 20%. Unfortunately, measurements of the wavelength are currently not sufficiently accurate
to detect such a small change.9 We attribute the slight decrease in the wavelength of perturbations
seen in the last five frames of Fig. 1 to nonlinear effects.

It is straightforward to check that if k is chosen according to (22) in (17)–(20), the extra term
coming from the time derivative of k cancels against the convective terms on the left of (4)–(8). In
the following, we neglect the contribution of the solvent viscosity ηs, since its contribution to the
stress is very small compared to the polymeric stress.

Inserting (17), (18) into (4) and linearizing in ϵi, we find

ϵ̇1 = − ϵ̇e−ϵ̇t

2
ϵ2 − ϵ̇ϵ1. (23)

The linearized form of the force balance (9) reads

ϵ3 = e2ϵ̇t

2

(
h

2
k2 − 1 − 2 f

)
ϵ1, (24)

where we have used (15). Next the constitutive Eq. (7) leads to

ϵ̇3 = ϵ̇ϵ3 + ϵ̇

σ0

(
2σ0eϵ̇t + 2nkB T

)
ϵ2 + 4

ϵ̇

σ0
nkB T ϵ4 − nkB T

σ0
ϵ̇4 − Dk2ϵ3, (25)

having used 1/λ = 3ϵ̇. Finally, the linearized version of (8) is

ϵ̇4 = Dσ0

nkB T
k2ϵ3 − Dk2ϵ4. (26)

With the help of (23) and (24), we can eliminate ϵ2 and ϵ3. We also introduce the dimensionless
time τ = ϵ̇t and dimensionless initial wave number p0 = h0k0. As a result, (25) and (26) turn into
the linear system

dϵ1

dτ
= a(τ )ϵ1 + b(τ )ϵ4,

dϵ4

dτ
= c(τ )ϵ1 + d(τ )ϵ4, (27)
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with

a(τ ) =
[
1 − 2 f + 5p2

0e−6τ − 4Ne−τ + 2D p2
0e−4τ

(
1 + 2 f − p2

0e−6τ
)]

×
(
2 f − 1 + p2

0e−6τ + 4Ne−τ
)−1

,

b(τ ) = Ne−2τ
(
4 + D p2

0e−4τ
) (

2 f − 1 + p2
0e−6τ + 4Ne−τ

)−1
, (28)

c(τ ) = (D/N )p2
0e−2τ

(
p2

0e−6τ − 1 − 2 f
)
, d(τ ) = −D p2

0e−4τ ,

which determines the stability of the thread. The problem is controlled by only two dimensionless
parameters

D = D
ϵ̇h2

0

, N = h0nkB T
γ

. (29)

We are interested in the stability of the thread for small h0, which means that we can neglect b(τ )
and all terms proportional to N, which scale like h0. Now (27) can be solved in the form

ϵ1 = ϵ
(0)
1 e

∫ τ

0 a(τ ′)dτ ′
, ϵ4 = ϵ

(0)
4 exp

{
D p2

0

(
e−4τ − 1

)}
+

∫ τ

0
c(τ ′)ϵ1(τ ′)dτ ′. (30)

In the limit of small h0, the growth of ϵ1 is controlled by the eigenvalue

ω = a(τ ) ≈ 2D p2
0e−4τ 1 + 2 f − p2

0e−6τ

2 f − 1 + p2
0e−6τ

, (31)

so that growth occurs in the long-wavelength limit, for initial wave numbers k0 ! √
1 + 2 f h−1

0 . It
is clear from (31) that the behavior of ω remains essentially unchanged, as long as its value is not
too far from the value f = 2 predicted by slender jet theory.7 In the absence of a better estimate, we
will assume f = 2 for the calculations to be reported below.

As an aside, we note that for vanishing D, a(τ ) becomes positive in the limit p0 → ∞,
corresponding to instability at very small wavelengths. This is clearly unphysical, and represents a
failure of the slender jet description in this limit. We therefore ignore this branch of solutions, as it
is not related to the polymer concentration becoming non-uniform. Rather, it represents an apparent
instability of the Oldroyd B model, which is expected to be cured in a fully three-dimensional
description. It would be interesting to perform such a stability analysis, along the lines of Ref. 27,
but using an exponentially thinning thread as the base solution.

Significant growth occurs when D " 1, in other words when h0 is in the order of the critical
radius

hcr =
√

D/ϵ̇. (32)

Owing to the exponential time dependence of some of its coefficients, a(τ ) eventually becomes
negative and the perturbation ϵ1 returns to zero. The reason is that perturbations stretch to increas-
ingly long wavelengths, and transport becomes inefficient. However, before this happens ϵ1 grows
transiently, as shown in Fig. 2 for a moderate value of D = 2. As h0 decreases, the maximum value
reached by ϵ1 increases very rapidly, as we will now show.

To estimate the growth of ϵ1, note that its maximum occurs at a time τm for which a(τm) = 0.
In the limit of D → ∞, τm increases, and exponentially damped terms in the expression for a(τ )
can be dropped. Thus to leading order, and using the marginal value p2

0 = 5, one obtains

τm ≈ −1
4

ln
(

3

50D

)
.

Putting N = 0 in the expression for a(τ ), the integral (30) can be performed easily in elementary
terms, and upon inserting τm, we find

ϵ
(max)
1 ≈ 1.028

D
1/4 e1.877D. (33)
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FIG. 2. Growth of perturbation amplitudes according to (27) for h0 = 0.5µm, which corresponds to D = 2, N = 10−5. The
initial reduced wavenumber is p0 =

√
5. The perturbation to the concentration saturates at −3.17 × 107.

The constants can be expressed in terms of elementary, yet somewhat cumbersome expressions,
which we omit here. For D = 2, this yields ϵ

(max)
1 = 36.9, in good agreement with Fig. 2. Since D

scales like 1/h2
0, this maximum value ϵ

(max)
1 increases very rapidly with decreasing h0. Hence in

practice the thread will be observed to be unstable.
The amplitude ϵ4 of the concentration fluctuations reaches even higher values, as seen in

Fig. 2, and the perturbation does not decay in the long time limit, but goes to a constant. The reason
is that the growth of ϵ4 is proportional to the integral over ϵ1, multiplied by c(τ ), the latter being
proportional to h−3

0 , which becomes very large. In the long time limit, both c(τ ) and ϵ1(τ ) go to
zero, so ϵ4 saturates at a value of

ϵ∞
4 =

∫ ∞

0
c(τ )ϵ1(τ )dτ. (34)

The first contribution to ϵ4, which is proportional to ϵ
(0)
4 , comes from the diffusive term. It decays

very quickly with time as the perturbation is stretched, and thus does not lead to decay of ϵ4.
The typical behavior of ϵ∞

4 is shown in Fig. 3, the integral having been performed numerically. The
expression for c(τ ) in (28) is proportional to D, which can be traced back the density–stress coupling
coefficient D in (1). This confirms that it is this coupling which is responsible for the giant growth
of polymer density fluctuations.

The parameters used for Figs. 2 and 3 were estimated on the basis of some recent experiments1, 9

performed with semi-dilute solutions of long, flexible polymers (PEO with molecular weight Mw =
4 × 106). The polymer time scale is λ ≈ 4.3 × 10−2 s, and γ /(nkB T ) ≈ 4.9 cm. To estimate the
diffusion constant D of PEO in water, we used molecular dynamics simulations of much smaller
molecules,28 and assumed the diffusion constant to scale like the inverse square root of molecular
weight. This results in the value D ≈ 4 × 10−8cm2/s; light scattering experiments29 yield similar
results.

Figure 2 shows the solution curves for h0 = 0.5 µm, obtained by integrating the linear system
(27) with coefficients (28). As the initial reduced wave number, we chose p0 =

√
5, the limiting

value for growth in the limit h0 → 0. The approximate solution (30) (obtained for N = 0) is so
close that it is indistinguishable on the scale of the figure. Note that while the transient growth of ϵ1

is still only moderate, concentration fluctuations grow by more than 7 orders of magnitude and do
not decay. Also note that the signs are opposite, which means that polymer concentration is high at
minima of the thread radius. This comes from the fact that polymers are stretched in the extensional
flow at the minima, which drives a flux of polymers toward these regions. Figure 3 shows the growth
of the asymptotic value (34) of ϵ4. The integral was performed numerically, using an analytical
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FIG. 3. The logarithm of the long-time value of the amplitude ϵ4, as function of h0/hcr, using the same parameters as for
Fig. 2.

expression for ϵ1(τ ). Note the extremely rapid growth as h0 falls below the critical radius hcr, so for
all practical purposes ϵ4 can be considered as growing without limit.

V. DISCUSSION

We have found a novel mechanism for the instability of a highly stretched polymeric thread,
which is consistent with the experimental observation of sinusoidal growth of perturbations. Although
the growth is transient, the perturbation amplitude can grow over many orders of magnitude, and in
the case of concentration fluctuations, does not decay. One should keep in mind that linear theory only
describes the initial stages of the instability, until nonlinear effects take over, leading for example
to beads with threads attaching them. Thus in practice, significant transient growth may well be
indistinguishable in from unlimited exponential growth. As a result of the instability, the polymer
concentration becomes high in the neck regions, which ultimately form threads between tiny droplets
of fluid. This finding is consistent with the experimental observation that threads become highly
concentrated with polymer, which ultimately solidifies.1

Our calculation leads to the identification of a critical thread radius (32), below which coupling
between stress and density becomes significant. Since the growth rate increases like h−2

0 , the instabil-
ity will appear quite suddenly, once the threshold has been passed. As growth occurs for wavelengths
λ ! 2.8h0, with the wavelength increasing in time, the observed wavelength will be several times the
thread radius, as observed experimentally.1, 9 Instability based on the Rayleigh-Plateau mechanism,
on the other hand, predicts a wavelength more than a hundred times the radius.9

Calculations have been based on a simple model of dilute, linear Hookean springs, with beads
attached to them. In the experiments considered by us,1, 8, 9 polymers are at a semidilute concentration,
and obviously their configuration is highly stretched. We expect that while the same coupling terms
between the fields are present, the value of the coupling coefficients will be changed owing to
nonlinear effects. As a result, there will be more independent parameters, since for example diffusion
and transport in (1) are not necessarily controlled by the same Onsager coefficient D, as it is found
for the Hookean dumbbell and Rouse models. As remarked in Ref. 14, a nonlinear theory would
probably renormalize the two coefficients differently. In particular, if interactions between polymers
are taken into account, the coupling between density and stress is expected to be stronger than
the mechanism based on diffusion alone, which was assumed in Sec. II. This means the instability
could set in at a critical radius somewhat greater than predicted by (32), as observed in experiment.
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Otherwise there would not be a significant change in the results, since a different value of, e.g., the
stress-density coupling would be dwarfed by growth of the density fluctuations, predicted to be over
seven orders of magnitude.
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