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The structure of a simple liquid may be characterized in terms of ground state clusters of small numbers of atoms
of that same liquid. Here we use this sensitive structural probe to consider the effect of a liquid–vapour interface
upon the liquid structure. At higher temperatures (above around half the critical temperature) we find that the
predominant effect of the interface is to reduce the local density, which significantly suppresses the local cluster
populations. At lower temperatures, however, pronounced interfacial layering is found. This appears to be
connected with significant orientational ordering of clusters based on three- and five-membered rings, with the
rings aligning perpendicular and parallel to the interface respectively. At all temperatures, we find that the
population of fivefold symmetric structures is suppressed, rather than enhanced, close to the interface.
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1. Introduction

What is the structure of the transition zone between
liquid and vapour? In 1893 van der Waals [1,2]
described the liquid–vapour interface as a smooth
density profile �(z), shortly preceded by Rayleigh [3].
Early computational [4] and theoretical work based on
the Born–Green–Yvon equation [5] suggested a signif-
icant degree of surface layering in the Lennard-Jones
model of simple liquids. However, further simulations
[6] and density functional theory [2,7] showed that little
surface layering is expected for materials based on van
der Waals interactions, and that the interfacial profile
is dominated by a smooth change in density. Relative
to the critical temperature Tc, metals typically remain
liquid at rather lower temperatures than Lennard-
Jones like materials, and here pronounced surface
layering is indeed found [7–11]. An important related
problem to the free interface is the confinement
introduced by a hard wall, crystal or similar external
field, which may be tackled with density functional
theory [7,12], simulation [13] and experiment [14,15]. In
this case, layering is more generally observed.

In experiments on conventional materials, the mea-
surement of (intrinsic) interfacial profiles is complicated
by collective surface excitations in the form of capillary
waves [16–19]. For those systems where surface layering
is pronounced such as metals, the lengthscale above

which capillary wave effects become dominant is

around 100 nm. This lengthscale is larger than that

typically encountered in computational studies, where

capillary waves only cause a small broadening of surface

layering [9], but cannot be neglected in experiment.

Nonetheless surface layering has been demonstrated in

experiments, for example in liquid mercury [20].
A further class of materials which may be directly

investigated in real space due to their mesoscopic

lengthscale are colloidal suspensions. Most notably,

colloid–polymer mixtures exhibit (colloidal) vapour–

liquid phase separation [21,22], moreover the hard-

sphere interactions that closely approximate such

systems are amenable to theory [23]. Here capillary

waves have been directly visualized [24]. So far, to our

knowledge, interfaces in colloidal systems with long-

ranged interactions [25] which can be deeply cooled

and might exhibit pronounced layering (the equivalent

of metals) have not been studied. However, single-

particle resolution enables other approaches to be

used. Notably, a method introduced by Chacon and

Tarazona [26] which pins a plane to a layer of surface

particles indeed revealed density oscillations perpen-

dicular to the pinned surface in a colloidal liquid [27].
Here we consider the perturbation induced by the

interface on the liquid structure at the molecular/

atomic level. We consider two different liquid systems.
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The first is a truncated and shifted Lennard-Jones (LJ)
liquid [28,29] whose triple temperature TLJ

tr lies at
TLJ
tr =T

LJ
c ¼ 0:630 where TLJ

c is the critical temperature.
To observe a stronger effect of the liquid–gas interface,
we also consider a model potential which approximates
sodium (Na), whose triple point lies at a rather lower
temperature relative to criticality of TNa

tr =T
Na
c ¼ 0:22

[8,10]. This model is known to exhibit strong surface
layering around the triple point, which is also seen in
ab initio simulations [11].

In the bulk, it is argued that liquid structure is
determined to a significant degree by structures which
are energetically locally favourable [30]. Such locally
favoured structures can correspond to clusters which
minimize the potential energy in isolation and may be
catalogued and ordered by the number of particles they
contain [31–34]. Structures which exhibit fivefold
symmetry, in particular, are very common and account
for up to 2/3 of all particles [34,35]. As a result, the
local dynamics can be determined to a significant
degree by the geometry and the symmetries of the
locally favoured structures. This observation is poten-
tially significant to understand the glassy behaviour of
supercooled liquids: if the symmetry of the locally
favoured structure differs from that of the crystalline
state, the path to crystallization is frustrated.

It is thus natural to ask what happens to the
concentration of clusters near the liquid–gas interface.
This will be a significant measure of local liquid
structure. Two mechanisms will contribute to a signif-
icant change in cluster concentration near the interface.
First, structures favoured by the bulk may be sup-
pressed near the free surface. Second, clusters are non-
isotropic, and might thus be ordered in a particular
way with respect to the free surface. We will explore
this ordering effect in the case of two very common
clusters, following the nomenclature of Doye et al. [31]:
the 5A triangular bipyramid and 7A pentagonal
bipyramid, which are three- and five-membered rings
with atoms attached above and below the plane of
the ring.

One might think that the free surface could lead to
an enhancement of local fivefold symmetry. The reason
is that in the case of deeply quenched liquids, the free
interface can to an extent be thought of as a
constraining field. Now the structure induced in
simple liquids by confinement such as hard walls has
been shown, under the application of a second field, to
induce some fivefold symmetry [36], which may be
conjectured to relate to X-ray reflectometry experi-
ments on lead which found evidence for local fivefold
symmetry at the interface [37]. Surprisingly, here our
analysis suggests the opposite effect: 7A pentagonal
bipyramid clusters, which form the basic unit of

fivefold symmetry in our methodology [33,34], are
suppressed disproportionately near the interface.

To determine locally favoured structures, we use a
novel method, the Topological Cluster Classification
(TCC). This identifies small clusters of particles from
within bulk phases which are topologically similar to a
set of reference clusters [33]. In this case the reference
structures are formed by groups of 54m413 Morse
particles in isolation [32] and, depending on the range
of the Morse potential, correspond to the global energy
minimum clusters of the Lennard-Jones and sodium
potentials considered. We have recently explored the
structure of the bulk Lennard-Jones liquid and a
system similar to the sodium model using this method
[35]. Contrary to the suggestion of Frank who
conjectured that in the structure of such liquids 13-
membered icosahedral structures might be prevalent,
we found that these only account for one particle in a
thousand, according to our criteria. Instead fivefold
symmetry stems from pentagonal bipyramids, which
account for 54% of the particles at the Lennard-Jones
triple point [35].

This paper is organized as follows. First, we
describe our methodology for identifying the interface,
and local structure in Section 2. We then proceed to
present and discuss our findings in Section 3 before
placing our findings in context in the concluding
Section 4.

2. Methodology

2.1. Models

We use the Monte Carlo (MC) method to simulate a
liquid in equilibrium with its vapour phase [38]. We use
the Lennard-Jones (LJ) 12–6 potential, where, for two
particles separated by a distance r, the interaction
energy U is given as

�ULJðrÞ ¼ 4�"LJ
�LJ
r

� �12
�
�LJ
r

� �6� �
, ð1Þ

where � ¼ 1=kBT with kB being Boltzmann’s constant
and T is temperature. There are two parameters: "LJ is
the strength of the attraction between the particles and
�LJ determines the range of the interaction. From here
on we quote all quantities in standard reduced units,
where energies and lengths are normalized by "LJ and
�LJ respectively.

Now the triple point of Lennard-Jones lies around
TLJ
tr ¼ 0:68, so the maximum degree of cooling relative

to the critical point is TLJ
tr =T

LJ
c ¼ 0:63. We would like

to realize even lower temperatures and this can be
achieved by employing models with longer-ranged
interactions which freeze at lower temperatures relative
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to criticality. In particular, the spherically symmetric
model for sodium (Na) introduced by Chacon and co-
workers [8,10] has a triple point around TNa

tr ¼ 0:27
and critical point around TNa

c ¼ 1:25, enabling a much
larger degree of cooling, TNa

tr =T
Na
c ¼ 0:22. This model

potential for sodium reads

�UNaðrÞ ¼ �A0 expð�arÞ � �A1 exp �bðr� R1Þ
2

� �
,

ð2Þ

where A0 ¼ 437.96 eV, A1 ¼ 0.18382 eV, a¼ 2.2322
Å�1 b¼ 0.2140 Å�2 and R1 ¼ 3.5344 Å. A lengthscale
�Na ¼ 3:48 Å is defined as the minimum of UNa along
with a well depth "Na ¼ UNað�NaÞ ¼ 0:1885 eV.
Energies and lengths are then normalized by "Na and
�Na respectively.

In Figure 1 we show the Lennard-Jones and sodium
potentials to be considered below. We also display the
Morse potential, which will be used as a reference
potential for the minimum energy clusters of the
sodium model.

We truncate and shift the Lennard-Jones potential
at finite range rcut ¼ 2:5� such that �ULJð2:5�Þ ¼ 0.
In the case of the model sodium potential, we follow
[10] and truncate the model potential at rcut ¼ 2:5� but,
unlike the LJ case, we do not shift the potential, i.e.
�UNað2:5�Þ5 0.

2.2. Simulation details

We use Monte Carlo simulations in the NVT ensemble
[38]. The simulations consist of N ¼ 16, 000 particles in
cuboid boxes with sides L�L�2L and with periodic
boundary conditions. This geometry ensures that, once
equilibrated, the liquid forms a slab with two interfaces
perpendicular to the z-direction. Assuming the

interface does not overlap with itself, the z-position
of the top or bottom interface may be expressed as a
function of (x, y).

We present results for two state points in the case of
Lennard-Jones �¼ 0.32, T¼ 0.95 and �¼ 0.32,
T¼ 0.68, and in the case of sodium �¼ 0.485,
T¼ 0.542 and �¼ 0.485, T¼ 0.270. These correspond
to T=Tc ¼ 0:880, 0.630, 0.434 and 0.237 respectively
where Tc is the critical point of LJ or Na respectively.
� is the overall density in the simulation box, which
contains both liquid and vapour. This gives
L ¼ 29:2�LJ for the LJ state points and L ¼ 25:5�Na

for the sodium state points.
For all simulations suitable liquid–vapour coexis-

tence initial configurations are generated by first
estimating appropriate bulk liquid �L and vapour �G
densities at coexistence from the literature [8,39] and
then equilibrating a liquid slab of density �L in
coexistence with a vapour at �G for at least 300,000
MC sweeps. Equilibration is ensured by both checking
relaxation of the total potential energy and by exam-
ining the evolution of the liquid–vapour density profile
�(z). It has been shown that the coexistence densities
and �(z) depend on the system size, the geometry of the
box, and the boundary conditions of the simulation
[40], as well as the truncation length and whether the
potential is shifted [39]. Once the density profile �(z) is
seen to have stopped evolving, we say the system is at
equilibrium and a production run of 10,000 MC
sweeps is used to generate 100 independent configura-
tions for analysis. Four or more independent simula-
tions are performed for each state point and the results
averaged over all eight or more liquid–vapour inter-
faces obtained from these.

2.3. Determining the interface location

To calculate the location of the interface we first fit
�(z) with a hyperbolic tangent function in the following
form

�ðzÞ ¼
�L þ �G

2
þ
�L � �G

2
tanh

z� z0
w

� �
, ð3Þ

where �L and �G are the bulk densities of the liquid and
the gas at equilibrium coexistence, w quantifies the
width of the interfacial region, and z0 is the position of
the interface with respect to the simulation coordinate
axis z. As we will discuss below, w as determined by (3)
ignores the effect of capillary waves on the interface.
Although it is difficult to accurately decouple the
intrinsic width of the interface from that of a capillary
broadened interface [40], we show below, for all
the state points studied here, ignoring the effects of

Figure 1. Model potentials used. Blue line, Lennard-Jones
(LJ); solid black line, sodium (Na); dashed line, Morse
potential with range parameter �0 ¼ 4.05.
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capillary broadening and using the fit (3) to determine

the position and orientation of the interface, that the

conclusions drawn about the structure of the interface

do not significantly change as a result of this

approximation.
To assess the effect of capillary waves, we note that

Equation (3) assumes that the interface position is

independent of the local x , y position and is perfectly

flat, which is clearly not the case if capillary waves are

present. We imagine that the interfacial width may be

decomposed into capillary-broadened and intrinsic

components wcw and wi where w ¼ wcw þ wi and we

are interested in the intrinsic width wi [41]. We

determine the effect of surface roughening (capillary

waves) as follows [42]. Firstly we divide the simulation

cube into n2 columns of width and breadth L / n and

height L for integer n as shown in Figure 2. Rather

than Equation (3), we model the density profile �i, jðzÞ
of column i , j with the step function

�stepðzÞ ¼
�L, z5 z0,i, j,

�G, z � z0,i, j,

�
ð4Þ

where z0,i, j is the position of the interface and i and j

are integers denoting the column. We minimize the

least-squares residuals between �i, jðzÞ and �stepðzÞ to
find z0,i, j.

Re-scaling the z axis as �i, jðz� z0Þ gives columnar

density profiles centred on the position of the interface.

Taking the mean of these columnar profiles gives

�avðz� z0Þ the averaged density profile with capillary

waves at and above the columnar scale removed, which

we then fit with the tanh function (3) leading to a new
interfacial width wn. Due to capillary broadening, the
square of the measured interfacial width has a
logarithmic dependence on the column width [41],
while extrapolating the column width to zero gives an
estimate of the intrinsic width. However, for very small
column widths, there are insufficient statistics (coordi-
nates) in the columns to reliably give the columnar
density profiles �i, jðz� z0Þ.

For the LJ T¼ 0.95 state point, where we expect
the largest contribution wcw from capillary waves, the
minimum we obtain is wn ¼ 2:11ð1Þ�LJ, compared to
the flat-interface value of w ¼ 2:38ð2Þ�LJ. w as
obtained from Equation (3) is only slightly (around
10%) larger than the minimum wn obtained from the
capillary wave analysis and therefore roughening of the
interface is minimal over the lengthscale we measure.
Following this analysis we conclude capillary waves
make a rather limited impact on the interfacial widths
we can measure and hereafter neglect the effect of
capillary waves and simply fit the whole simulation
box with Equation (3) to determine the location of
the interface. We henceforth rescale our z-axis such
that z0¼ 0.

2.4. Topological cluster classification (TCC)

To analyse the structure, we first identify the bond
network using a modified Voronoi construction with a
maximum bond length rcut ¼ 1:8� and four-membered
ring parameter fc ¼ 0:82 [33]. Having identified the
bond network, we use the topological cluster classifi-
cation to determine the nature of the cluster. This
analysis identifies all the shortest path three, four and
five membered rings in the bond network. These rings
form the basic building blocks of our analysis. A three-
membered ring with atoms bound above and below is
identified as a 5A triangular bipyramid, a four-
membered ring with two bound atoms as a 6A
octahedron and a five-membered ring as a 7A pentag-
onal bipyramid, as shown in Figure 3. The additional
atoms bonded to the rings are termed spindle atoms.
Now the ground state clusters for Lennard-Jones are
known [32], but we are unaware of any work identi-
fying ground state clusters for the sodium model
employed here. However, ground state clusters for the
variable range Morse potential have been calculated
[31]. We therefore assume that the clusters of the Morse
potential with the relevant range (as discussed below)
are also ground states for sodium. We then use the
TCC to find clusters which are global energy minima
of the Lennard-Jones and Morse potentials, applying
the latter to our sodium results. Supporting this

Gas

Liquid

Interfacial
region

Figure 2. Identification of the position of a capillary
perturbed interface. The interface is shown in blue and the
cube is split into n2 columns i , j. The interface is assumed flat
in each column and the position is extracted by a fitting step
function (Equation (4)) to the columnar density profile
�i, jðzÞ. Note periodic boundaries apply in the x and y
directions only.
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assumption is work which shows that for a model

for sodium with many-body interactions, the Gupta

model, the ground state clusters are the same as those

we infer for the Chacon and Tarazona model [43,44].
The Morse potential is defined

�UMðrÞ ¼ �"M exp½�0ð� � rÞ�ðexp½�0ð� � rÞ� � 2Þ, ð5Þ

where �0 is a range parameter and "M is the potential

well depth. The Morse potential has a variable

range and we choose the range such that it closely

approximates the sodium model. The extended law of

corresponding states [45] provides a means by

which different systems may be compared with one

another, by equating their reduced second virial

coefficients

B�2 ¼
B2

2
3 p�

3
EFF

, ð6Þ

where �EFF is the effective hard sphere diameter and
the second virial coefficient

B2 ¼ 2p
Z 1
0

dr r2 1� exp ��UðrÞð Þ½ �: ð7Þ

The effective hard sphere diameter is defined as

�EFF ¼

Z 1
0

dr 1� exp ��UREPðrÞð Þ½ �: ð8Þ

Varying the Morse range parameter such that B�2 for
sodium and the Morse potential are equal gives �0 ¼
4.05. Now the ground state minima for the Morse
potential are known [31] and here we assume those for
�0¼ 4.05 also hold for UNaðrÞ. The potentials are
compared in Figure 1. We identify all topologically
distinct Morse (�0 ¼ 4.05) and Lennard-Jones clusters
[32]. In addition, we identify the FCC and HCP 13
particle structures in terms of a central particle and its
12 nearest neighbours. We illustrate these clusters in
Figure 3. In the case of the Morse potential, for m4 7
there is more than one cluster which forms the ground
state, depending on the range of the interaction [31].
We therefore consider ground state clusters for each
system and for m5 14. For more details see [33].

3. Results

We begin our presentation of the results by showing
the interfacial profiles of the different systems and state
points. In Figure 4 we see that the interfacial width

Figure 3. Structures of LJ and Na clusters, nomenclature
following [31], and their point group symmetries. The colours
denote the method used for cluster detection by the TCC
algorithm: three-, four- and five-membered ring atoms are
grey, spindle atoms are yellow, additional atoms to a basic
cluster are red (here just 8B which is detected from 7A
clusters), and rings are coloured white, blue, pink and green.

Figure 4. Interfacial profiles �(z). From top, Lennard-Jones
T¼ 0.95, T¼ 0.68, sodium T¼ 0.542, T¼ 0.297. Data offset
for clarity. The sodium interface at the lowest temperature
shows a very pronounced surface layering. The interfaces
have all been centred at z¼ 0.
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drops with decreasing T=Tc. The lowest temperatures,
and thus the smallest interfacial widths, are realized for
the sodium system. We note the pronounced interfacial
layering at the lowest temperature [8,10]. This indicates
that the effect of the interface on the local ordering of
the liquid extends far into the bulk in that case.

We now proceed to the TCC analysis of the
Lennard-Jones liquid at two different temperatures.
We plot the total density of particles �(z) as well as the
particle densities �C(z) for the most popular clusters.
These are defined as the densities of all the particles
belonging to a particular cluster. The densities are
plotted on a logarithmic scale as a function of the
distance z from the interface in Figure 5. Note that the
liquid side only is plotted (z4 0), and that, for
Lennard-Jones, the density varies smoothly across the
interface for our treatment [8,10]. For each of the
temperatures, we also plot the cluster densities relative
to the total density on a linear scale. The relative
density is then defined as the density of particles in a
given cluster �C(z) divided by the total density �(z). In
the bulk it is seen that the most popular clusters,
including the 7A pentagonal bipyramid, account for
more than half of all the particles.

As one moves towards the interface, the relative
density of clusters decreases. For the Lennard-Jones

system, our analysis suggests that there is no enhance-
ment of fivefold symmetry at this interface. In fact, as
all cluster populations drop with the reducing density
at the interface, we argue that there is more of a
reduction in fivefold symmetry than anything else. In
particular the 7A pentagonal bipyramid cluster may be
taken as a rough proxy for five-membered rings, the
basic unit of fivefold symmetry. These clearly follow
the density profile, although the increase with depth
into the liquid is much more marked than the overall
density. Similar conclusions can be drawn about the
13A icosahedron. The decrease in relative cluster
density can be rationalized by observing that while
potential energy considerations enhance cluster popu-
lations [35], so too does packing [33]. Thus we expect a
decrease in cluster population at lower density, for
example upon approach to the interface.

For example, for both T¼ 0.95 (T=TLJ
c ¼ 0:880)

and TLJ
tr ¼ 0:68 (T=TLJ

c ¼ 0:630), the relative decrease
in density amounts to a factor of two in the case of 7A
pentagonal bipyramid clusters. Since the change
appears coupled to the overall density �, we see further
change in the structure of the liquid near the surface
for the temperatures studied. Note that although it
would be attractive to investigate the effect of reducing
the density on the cluster population in a bulk system

(a) (b)

(c) (d)

Figure 5. TCC analysis of the Lennard-Jones interface �C(z) denotes the density of particles belonging to a particular cluster
type. �(z) reproduces the data in Figure 4. (a) T¼ 0.95 (T=TLJ

c ¼ 0:880). (c) The triple point TLJ
tr ¼ 0:68 (T=TLJ

c ¼ 0:630).
(d) Same data as (c) but normalized by �(z). Interface increases from z¼ 0, black interface density profile. Yellow shading is a
guide to the eye, indicating the width of interfacial region.
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of course this is not possible because the Lennard-

Jones system would be unstable to vapour–liquid

phase coexistence.
To gain more insight into the effect of the interface

on the cluster population, it would therefore be

desirable to make the effect of the interface more

pronounced by going to lower temperatures, thus

making the interface sharper [for which we use the

model sodium potential Equation (2)]. Note that the

triple point in general has a rather higher population of

clusters than does T¼ 0.95, which is not unreasonable,

as in addition to the higher density the enhanced

relative attractions at reduced temperature would be

expected to promote clustering, which has been

observed in the bulk [46].
We next performed the same spatially resolved

cluster analysis for sodium at lower temperatures

relative to criticality. We confirmed that, at higher

TNa
tr ¼ 0:63, the results with sodium were very similar

to those for Lennard-Jones. As Figure 4 has shown, the

interface becomes narrower and at the lowest temper-

ature there are oscillations of the bulk density profile

indicating significant surface layering. This shows that
the interface changes structuring into the liquid at

longer ranges than in the case of Lennard-Jones.
Once more we first show the absolute densities for

all the clusters on a logarithmic scale, and then the

densities relative to the total on a linear scale

(Figure 6). The latter are a direct measure of the

influence of the interface on the local ordering. At the

higher temperature, the decrease in the relative cluster

density is more pronounced than before, but still
remains modest. We note that once more there is

certainly no increase of 7A pentagonal bipyramid

cluster concentration owing to orientational ordering

near the interface.
At the lower temperature, 7A clusters account for

82% of the particles in the bulk, the relative density is
reduced to 31% near the interface, a somewhat larger

drop in population. However, in stark contrast to the

higher temperature state points, the effect on cluster

concentration extends far beyond the density decrease
related to the interface, and into the bulk. This mirrors

the layering as reflected in the oscillations of the

density profile. The cluster concentrations are evi-

dently a sensitive measure of the layering effect, and of

the change in orientational order it introduces.
By contrast, the relative decrease of the triangular

bipyramidal 5A clusters is relatively mild. As the

clusters are smaller, this might be expected, since the

perturbation by the interface on the compact 5A

structure will be smaller. Other popular clusters,

notably 6A octahedra and 8A D2d also show a similar
behaviour. To gain more insight into the concentration

(a) (b)

(c) (d)

Figure 6. TCC analysis of the sodium interface �C(z) denotes the density of particles belonging to a particular cluster type. �(z)
reproduces the data in Figure 4. (a) T¼ 0.542 (T=TNa

c ¼ 0:434). (c) Near the triple point TNa
tr ¼ 0:297 (T=TNa

c ¼ 0:237). (b) and
(d) Same data as (a) and (c) but normalized by �(z). Yellow shading is a guide to the eye and indicates the interfacial region.
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of 5A and 7A clusters, we consider their orientational
ordering near the interface. As seen in Figures 3 and 7,
both are viewed as a three-membered and five-
membered ring, respectively, with two spindle particles
sticking out in a direction perpendicular (ignoring
thermal fluctuations) to the ring. We neglect the 6A
octahedron due to its high symmetry. To measure the
orientation of these structures relative to the interface,
we consider the angle � between the spindle particles
and the normal to the plane. From this we can
construct an order parameter 1=2h3 cos2 � � 1i which is
zero in the bulk, where all orientations are equal, unity
in the case that all clusters are aligned with the axis
perpendicular to the interface and �1/2 when clusters
lie with the axis parallel to the interface.

In Figure 8 we plot the order parameter as function
of z for both 5A and 7A clusters for three different
T=Tc ratios. Remarkably, the two types of clusters
behave in an opposite way near the interface. While the
7A clusters are aligned with the five-membered ring
parallel to the interface, the 5A clusters are aligned
with its three membered ring perpendicular to
the interface. This effect increases strongly with
decreasing temperature, so at that lowest temperature
[Figure 8(c)] in the case of 7A the angle � is reduced,
and the order parameter goes to 1/2, half of what
would be a perfectly ordered state.

Thus it is likely that the five-membered ring of the
7A clusters tends to be found in the plane of the
interface. Assuming that 7A is in a configuration which
minimizes bond stretching/compression (i.e. zero-tem-
perature potential energy minimum), this would leave
one end of the spindle sticking out from the free
surface. This would be an energetically unfavourable
situation, which could explain the suppression of 7A
clusters near the interface. However the consequences
of finite temperature may well play an important role

here, a point to which we return in the next section.
The situation is very different for 5A clusters, whose
degree of ordering is also rather less pronounced. More
crucially, though the ordering is such that the spindle
remains in the fluid, while the three-membered ring is
oriented parallel to the interface. This permits the
cluster to remain inside the fluid relatively undistorted,

(a)

(b)

(c)

Figure 8. The ordering of the 5A and 7A clusters relative to
the interface, as a function of the distance z from the
interface. The angle � is the angle between the vector that
connects the spindle particles and the normal to the surface.
(a) Lennard-Jones, T¼ 0.95, T=T c ¼ 0:880; (b) sodium,
T¼ 0.542, T=T c ¼ 0:434; (c) sodium, T¼ 0.297,
T=T c ¼ 0:237.

Figure 7. Definition of the orientational order parameter
used in the case of the 5A triangular bipyramid and 7A
pentagonal bipyramid. � is the angle between the normal nif
to the plane of the interface (marked in blue) and the vector
connecting the centres of the yellow spindle atoms.
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and the effect on its concentration remains small.
Figure 8(c) also shows that the surface layering is well
reflected by the orientational ordering of the clusters.

4. Conclusions

We have shown that our topological cluster classifica-
tion provides insight into the local liquid structure
close to a free interface, and can directly probe for
local structures with fivefold symmetry. The analysis
we have performed provides no evidence in support of
an enhanced fivefold symmetry near the interface,
however those fivefold symmetric structures that are
present tend to be aligned with five-membered rings
parallel to the interface.

At higher temperatures, the predominant effect
appears to be related to the lowering in density induced
by the interface. This is reflected by a drop in the
populations of all the clusters we consider. Upon
reducing temperature, the interfacial density profile
exhibits layering, and seems to induce a change in
cluster population extending well into the dense liquid,
long after the mean density is that of the bulk liquid.
Thus we argue that our analysis indicates that fivefold
symmetry is suppressed at the liquid–vapour interface
in the systems we have considered.

We use our analysis to reveal orientational infor-
mation on two basic clusters. Close to the interface, the
fivefold symmetric 7A pentagonal bipyramid is ori-
ented with its five-membered ring lying parallel to the
interface, conversely the 5A triangular bipyramid is
oriented with its three-membered ring perpendicular to
the interface. Both these effects are strongly enhanced
at lower temperature.

Our analysis is topological in nature. That is to say,
the structures identified are based on bonds, and we do
not consider structural distortions. In particular, we
note that the 7A pentagonal bipyramid, aligned with a
surface, might leave a spindle atom exposed. However,
for a small amount of strain, this exposed spindle could
in fact lie very close to the plane of the five-membered
ring. We suspect that it may do so at finite
temperature.

We identify two possible extensions of this work. It
would be interesting to consider the effect of a wall or
similar external field, as an alternative to the free
interface. It would also be interesting to investigate the
behaviour of clusters other than those which are
minimum energy ground states in isolation, for exam-
ple five-membered rings. We have seen that the
population of 7A pentagonal bipyramids is reduced
near the interface, the topological basis of our analysis
precludes ruling out that an exposed spindle atom

might be related to this suppression, although at finite
temperature we expect this effect to be small. An
extension of our analysis to consider distortions in the
clusters identified would be helpful. Both these possi-
bilities will be investigated in the future.
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